
Well-Nested Parallelism Constraints for Ellipsis Resolution

Katrin Erk and Joachim Niehren
Saarland University, Saarbriicken, Germany

erk@coli.uni - sb.de / niehren@ps.uni - sb.de

Abstract

The Constraint Language for Lambda
Structures (CLLS) is an expressive tree
description language. It provides a uni-
form framework for underspecified se-
mantics, covering scope, ellipsis, and
anaphora. Efficient algorithms exist for
the sublanguage that models scope. But
so far no terminating algorithm exists
for sublanguages that model ellipsis. We
introduce well-nested parallelism con-
straints and show that they solve this
problem.

1 Introduction

Ellipsis phenomena are ubiquitous in natural lan-
guage, e.g. in VP ellipsis, answers to questions,
and corrections. They have been studied exten-
sively (Sag, 1976; Williams, 1977; Fiengo and
May, 1994; Dalrymple et al., 1991; Hardt, 1993;
Kehler, 1995; Lappin and Shih, 1996) but remain
difficult to handle. Among the problems to solve
in connection with ellipsis are: determining the el-
lipsis antecedent, constructing a description of the
ellipsis meaning, and resolving the ellipsis (i.e. ac-
tually determining its meaning). In this paper we
focus on the problem of resolving ellipsis. We as-
sume an analysis of its structure (source, target,
and parallel elements) in the Constraint Language
for Lambda Structures (CLLS) (Egg et al., 2001).

CLLS is an expressive tree description language
that provides a uniform framework for seman-
tic underspecification covering scope, ellipsis, and
anaphora. CLLS offers dominance constraints for
modeling scope ambiguity in a similar way as pre-
vious approaches (Reyle, 1993; Pinkal, 1995; Bos,

1996), parallelism constraints for modeling ellip-
sis, and anaphoric links for modeling coreference.
The interaction of ellipsis with scope (quantifier
parallelism) is handled in a modular fashion. Enu-
merating scope readings becomes solving domi-
nance constraints, while ellipsis resolution is re-
duced to solving parallelism constraints.

Constraint solving subsumes satisfiability
checking. Satisfiability of dominance constraints
is NP-complete (Koller et al., 2001). But for
modeling scope underspecification a sublanguage
of constraints suffices. These constraints can be
solved in low polynomial time (Althaus et al.,
2002). Parallelism constraints are as expressive
as the language of Context Unification, the
satisfiability problem of which is prominent but
still open (Comon, 1992). A lower bound is given
by string unification (Makanin, 1977), for which
the best known algorithm runs in PSPACE.

So far, no terminating algorithm exists for sub-
languages of CLLS that model ellipsis. The sound
and complete semi-decision procedure for CLLS
(Erk et al., 2002) can be used for this purpose but
is slow in practice and not guaranteed to terminate.

In the current paper we introduce well-nested
parallelism constraints and so solve this prob-
lem for the first time. We argue that well-nested
parallelism constraints are powerful enough to
model ellipsis, in particular VP-ellipsis. We
present a solver for well-nested parallelism con-
straints which decides satisfiability in nondeter-
ministic polynomial time, and hence proves the
NP-completeness of this problem, as dominance
constraints are subsumed.

2 CLLS

We represent the meaning of sentences by lambda
terms, which are seen as trees and then described

115

by formulas of CLLS. The most basic formulas of
CLLS are dominance constraints (Marcus et al.,
1983). They model scope ambiguity in an under-
specified way such that the solved forms of a con-
straint correspond precisely to the readings of a
scopally ambiguous sentence.

Next we look at a simple example to see how
ellipsis is modeled in this setting.

(1) Mary sleeps, and John does, too.

Fig. I (a) shows the meaning of sentence (1) as
a tree. The source Mary sleeps has the same mean-
ing as the target John does, too except that the
contribution of the source parallel element Mary
is replaced by the one of the target parallel ele-
ment John. In the tree in Fig. 1, this is reflected
in the two shaded tree segments having the same
structure.

(a) and

Z kb	 Z
ki)

sleep	 mary	 sleep	 Am

(b)
X 0 :	 0

sleep	 mary'	 johni

X 0 /X Y0 / Y

Figure 1: (a) The semantics of sentence (1), and
(b) a CLLS description

Next we look at an idealized CLLS constraint
that a syntax/semantics interface could produce
for the above sentence. The graph of this con-
straint is given in Fig. 1 (b).

The semantics of the source starts at node X0,
the semantics of the target at Yo. The source par-
allel element starts at X1 and the target parallel
element at Y1. The graph contains an explicit de-
scription of the source semantics, but leaves the
semantics of the target (mostly) unspecified. How-
ever the target semantics is described by the par-
allelism constraint X0/X1 Y0 /Y1 , which states
that the tree segment X0/X1 has the same struc-
ture as the tree segment Yo/Yi.

CLLS models coreference by anaphoric
links The interaction of ellipsis and anaphora
(strict/sloppy ambiguity) is modeled by copying
rules, which result in link chains equivalent to
Kehler's (1995) analysis.

For modeling more complex classes of ellip-
sis, generalizations of parallelism constraints are

needed: parallelism segments with more than one
hole, and jigsaw parallelism, (Erk and Koller,
2001), which is used for cases where the ex-
cluded semantic contributions are not subtrees, as
in "John went to the station, and every student did
too, on a bike." The approach we describe in this
paper extends canonically to segments with more
than one hole. For jigsaw parallelism the exten-
sion remains a topic of further research.

3 Parallelism Constraints

In the following sections we restrict ourself to the
language of parallelism constraints: CLLS with-
out anaphoric links However our results extend
to the whole language of CLLS. We comment on
this further in Sec. 7.

We first briefly recall the definition of paral-
lelism constraints.

Trees. We assume a signature E = { f, g, . .}
of function symbols, each equipped with an arity
ar(f) > 0. A tree is a ground term over E. A
node of a tree can be identified with its path from
the root down, expressed by a word over N. We
use the letters u, v for paths. We write E for the
empty path and uv for the concatenation of two
paths u and v. A tree T consists of a finite set of
nodes u E DT , each of which is labeled by a sym-
bol LT (u) E E. Each node u has a sequence of
children ul, , un E DT where n = ar(Ly (u))
is the arity of the label of u. A single node E, the
root of -r, is not the child of any other node.

A tree defines the following relations. The
labeling relation u:f (ui, , un) holds in T if
LT (u) = f and ui = ui for all 1 < i < n.
The dominance relation uev holds iff there is a
path u" such that nu' = v. Inequality is sim-
ply inequality of nodes; disjointness ulv holds iff
neither wev nor vu. We combine dominance
and inequality into strict dominance uev, which
holds if both /Lev and

Parallelism. Intuitively, a segment is an occur-
rence of a subtree from which another subtree has
been cut out.

Definition 3.1 (Segments). A segment a of a tree
T is a pair uo I ui of nodes in DT such that uo<i*ui
holds in r. The root of the segment is uo, and its

116

X 0 / X 1. "-TO

P,Q ::= XeY I X _LY I X
X: f	 , X) (ar(f) = n)
A ,-, B IP A Q

A,B,C ::= XIY

Figure 2: The language of parallelism constraints

hole is ui. The set bi- (a) of inner nodes of a is:

bi- (a) = {2) E 13,- I no* v ,(nifv)}

The proper inner by- (a) = br (a) - full excludes
the hole ui. A segment a is empty iff uo = ui.

A correspondence function is an isomorphism
between two segments of some tree that have the
same structure.

Definition 3.2 (Correspondence function). A
correspondence function between two segments
a, /(3 is a bijective mapping c : 11,-(a) b(8)
such that c maps the root of a to the root of 13
and the hole of a to the hole of /3, and for every
u E by- (a) and every label f, u:f (ul, , un) <=>
c(u): f (c(u1), c(un)).

Corresponding nodes bear the same labels and
have corresponding children, except for the holes.

Definition 3.3 (Parallelism relation). A paral-
lelism relation in a tree T is a two-place relation
a on segments of T such that a im-
plies the existence of a correspondence function
between a and 0.

Constraint Language. We assume an infinite
set of node variables X, Y, Z. Figure 2 shows the
language of parallelism constraints.

A constraint P is a conjunction of literals (for
dominance, labeling, parallelism etc). We use
the abbreviations Xa -hY for XeY A X and
X = Y for Xa*Y A Ya*X. For simplicity, we
view inequality () and disjointness (I) literals
as symmetric. A segment term A is a pair of node
variables X/Y. A parallelism literal relates two
segment terms. We write V(P) for the set of vari-
ables of P. The dominance part of P is P without
its parallelism literals.

A tuple (T, a) of a tree T, a parallelism re-
lation - and a variable assignment a satisfies a
constraint P iff it satisfies each literal, in the obvi-
ous way. In that case, (T, a) is a solution, and
(T,	 a model of P.

Dominance constraints can be drawn as con-
straint graphs, like in Fig. 1 (b). The nodes of
the constraint graph are the variables of the con-
straint. Labels and solid lines indicate labeling lit-
erals, dotted lines represent dominance.

4 Well -Nested Parallelism

Parallelism constraints are
very expressive - more
expressive than is neces-
sary for modeling ellip-
sis. In particular, over-
lapping parallel segments
seem useless, but are dif-
ficult to resolve. Consider the example on the
right. The parallel segments Xo/X1 and Yo/Y1
must overlap but this is impossible. If one tries to
build a solution, one quickly runs into an infinite
repetition caused by the overlap.

4.1 Well-Nested Parallelism Relations

Figure 3: (a) inside, (b) outside, (c) overlap

The idea behind well-nested parallelism con-
straints is to exclude overlap between all parallel
segments in a solution.

Definition 4.1 (inside, outside, overlap). Let a,)3
be segments of a tree T, a = uolui, = volvi.
Then inside(ce, 13) holds in T iff

• either voeuoeurevi,

• or Vo 4* UOIV1.

outside(a, 0) holds in T iff (a) n b,- (0) = 0.
Otherwise, overlap(a,)3) holds in T.

The image of a segment
is its copy within another
segment, as illustrated to
the right:

Definition 4.2 (Image).
Let c : a -> 13 be a correspondence function and
let -y = ulv be inside a. Then c(-y) = c(u)lc(v)
is the image of under c.

117

teiCi—eher

in the
spring

alAT
(a
	

(b)We have to prohibit overlap between images as
well as "original" segments.

Definition 4.3 (Image closure). A parallelism re-
lation — is image-closed if for all correspondence
functions c relating segments a 13, and all 7
inside a: 7	 c(7).

Definition 4.4 (Well-nested Models). Let	 be
an image-closed parallelism relation in the tree T.

Then (7- ,	 is a well-nested model iff for all seg-
ments a	 either inside(a, (3) or inside(13, a)
or outside(a, 0) holds in 'T.

Definition 4.5 (Well-nested Constraints). A par-
allelism constraint is well-nested if it is unsatisfi-
able or permits a well-nested model.

4.2 Application to Ellipsis

Well-nesting seems to be
a sufficiently weak condi-
tion to ensure that we can
still model ellipsis. We
now show a few examples.
In Fig. 1 (b), the two seg-
ments involved do not overlap, in fact, they have
to lie in disjoint positions in any tree that matches
the description. If we outline segments as boxes,
the situation of Fig. 1 (b) can be sketched as the
picture to the right.

In a similar way, the following elliptical sen-
tences can be modeled with CLLS constraints in
which segment terms are properly nested:

(2) John revised his paper before the teacher
did, and so did Bill.

(3) Mary can't go to Princeton in the fall, but
she can in the spring, although if she does,
those that expect her in fall will be very
disappointed. (Sag, 1976)

Sentence (2) is a famous many-pronouns puz-
zle. Figure 4 (a) shows a sketch of the two paral-
lelisms that model the two ellipses. Both segments
of the first parallelism are nested in the same seg-
ment of the second. The situation for sentence (3)
is sketched in Fig. 4 (b). The right segment of
the first parallelism is nested in the left segment
of the second parallelism. So in both cases, the
parallelism segments are either nonoverlapping or
properly nested.

Figure 4: Nesting sketches for (2) and (3)

These examples are typical of the constellations
we found. It seems that many cases of ellipsis can
be modeled without overlapping parallelism. Cor-
rections may be problematic, although we have not
yet managed to construct a definitive counterex-
ample.

5 Solved Forms

In this and the following section, we describe
our algorithm for well-nested parallelism con-
straints. It makes a constraint dominance-solved,
then solves one parallelism literal, then makes the
constraint dominance-solved again, etc. In the
current section we define the dominance solved
forms that all dominance constraint solvers com-
pute, and the well-nested solved forms that will be
constructed by our solver.

Dominance solved forms and constraint
graphs. In Sec. 2 we have introduced constraint
graphs informally. We now make this notion for-
mal. The graph G(P) of a dominance constraint
P is a directed graph (V(P), a* W- al t1 4 2 Lt1 . Its
nodes are the variables of P, and it has two kinds
of directed edges:

(X, Y) E e if Xa*Y E P
(X,Y) E ‹i if X: f (. ,Y,...) E P,

Y i-th child of X

We draw dominance edges (X, Y) E e by dashed
lines and children edges (X, Y) E <1./ by solid
lines. (We leave out node labels as they are not es-
sential here.) We write P H Xa*Y if there exists
a directed path from X to Y in the graph G(P).

A dominance solved form is a dominance con-
straint P with the following properties for all
X, Y E V (P):

1. The constraint graph G(P) is a tree (no two
incoming edges, acyclic, exactly one root).

2. No variable is labeled twice in P.

118

3. Labeled variables in P don't have outgoing
dominance edges in the graph G(P).

4. If X_LY e P then neither P H X a*Y nor
P H Y<I*X.

5. Not)C. .X- E P and not X=Y E P

Proposition 5.1. A dominance solved form is sat-
isfiable.

Segment relations. Fig. 5 defines the possible
relationships between two tree segments. The for-
mula seg(A) that we use there states that the seg-
ment term A = X/X 1 denotes a segment:

seg(A) =df X4 * X l

The inside and outside relations are nonproper so
that the formulas inside(A, B) A inside(B, A) and
inside(A, B) A outside(A, B) remain satisfiable.
In the first case, equal(A, B) follows, in the sec-
ond case A must denote the empty segment. The
overlap relation, however, is proper:

inside (A, B)	 —ioverlap(A, B)

We also use "inside" and "outside" to describe the
relation between a segment term and a variable:

inside(Z, A) =df inside(Z/Z, A)

outside(Z, A) =df outside(Z/Z, A)

Predecision. In a predecided constraint, the rel-
ative positions of segment terms are decided. (A
dominance-solved form need not be predecided.)
A constraint P is predecided if any two segment
terms A, B in P satisfy the following conditions:

DI Different segment terms denote different seg-
ments: P H —iequal(A, B) if A B.

D2 Segment inclusion is decided: P
inside(A, B) or P H —iinside (A, B).

D3 No overlap: P H —ioverlap (A, B).

D4 Variable inclusion is decided: For all Z E
V (P), P
—iinside(Z, A).

D5 Equality to holes is decided: For A = X/X'
and all Z in V (P), P	 or P
z=xi.

Proposition 5.2. Every well-nested parallelism
constraint is satisfaction equivalent to a finite dis-
junction of predecided constraints.

Blank segment terms. If for a parallelism lit-
eral AB, the segment term B is blank, i.e. con-
tains no information, then it is easy to read off the
solutions of this parallelism literal. We call a seg-
ment term B = XI Y blank in P if it fulfills three
conditions:

B1 Variables Z E V(P)—V(B) cannot take val-
ues inside B, i.e., P H	 B).

B2 B is a segment term X/ Y with distinct vari-
ables and X<*Y is the only literal of the
dominance part of P containing X and Y.

B3 No literal X: f (. .) or Z : f (. , Y, . . .) be-
longs to P for any f and Z.

Nesting graphs. In a predecided parallelism
constraint, we can study the nesting of segment
terms: The nesting graph N(P) of a constraint P
is a directed graph whose nodes are the segment
terms of P. The edges of N(P) are given by the
relation < that we define recursively:

A < B if P H inside(A, B) A —iequal(A, B)
or A < B' and B'	 E P
or A' < B and	 P

Proposition 5.3. If P is satisfiable then the nest-
ing graph N(P) is acyclic.

Proof Let (T, cr) H P be a solution of P. If
A < B holds in N (P) then the inner by (o- (A))
has properly less nodes than bi- (o- (B)). So if there
existed a cycle A < < A in N (P) then
13,-(o- (A)) would contain strictly less nodes than
itself.

The segment term A is outermost in P if A has
no outgoing edges in the nesting graph N(P).

Well-nested solved forms. Now we have all
the notation we need to define well-nested solved
forms, constraints from which a well-nested solu-
tion can be directly read off. We call P a well-
nested solved form iff:

Si The dominance part of P is satisfiable.

S2 P is predecided.

inside(Z, A) or P

119

inside (A, B) =df
outside(A, B) =df

equal(A, B) —df
overlap (A, B) =df

seg(A) A seg(B) A Ya*X A (X'a*Y V X_LY')
seg(A) A seg(B) A Y'a*X V X'<f"Y V X1Y
seg(A) A seg(B) A X=Y A X 1 =Y'
seg(A) A seg(B) A (XeY‹+ X'‹± -171 V Y<I+X<IFY'eX / V

Xa*Ya*X'_LY' V Ya*X<*r_LX 1)

Figure 5: Segment relations where A = X/X' and B = Y/ Y'

cap(P, B, A) =
% invariant: P A AB is predecided
% cut
let Pi = P — cut (B, P)— para(P)
let P2 = P1 A Xl*Y where X/ Y = B
% paste
let r : V(B, P)	 V be some variable renaming
with r(B) = A and r (Z) fresh for all Z V V (B)

let P3 = P2 A r(cut(B, P)) A s(r)(para(P))
return predecide(P3)

Figure 6: Cut and paste simplification

S3 The nesting graph N(P) is acyclic.

S4 If P = P' A A ,-,B then B is blank in P'.

Proposition 5.4. Every well-nested solved form
has a well-nested solution.

6 Constraint Solving

In this section we present a constraint solver for
well-nested parallelism constraints: Given a par-
allelism constraint P, it computes a finite set
of well-nested solved forms with the same well-
nested solutions as P.

Dominance constraint solving and predecision.
To compute predecide(P):

• first compute dominance solved forms of P.

• In each dominance solved form P', guess rel-
ative positions of variables with respect to
the roots and holes of segment terms, unless
they are implied by P' already. Discard P' if
it contains overlapping segments. Substitute
variables if necessary to fulfill condition Dl.

• Again compute dominance solved forms to
detect inconsistencies.

Cut-and-paste simplification. Given a domi-
nance solved and predecided constraint, we apply
cut-and-paste to an outermost parallelism literal.
The goal is to make one segment term blank.

We need some notation. Given a constraint P
with segment B let V(P, B) be the set of variables
of B that must take their value inside B.

V (P, B) = {Z I P inside(Z, B)}

The constraint cut (B , P) consists of all literals of
P with variables in V(P, B), with the exception
of constant labelings of the hole of B:

cut(B , P) = P- i v (P,B) — lab(B, P)
lab(X/Y,P) = {Z:a P Z=Y, a E El

Let para(P) be the conjunction of parallelism lit-
erals in P. Finally, we lift substitutions r : V' —>
✓ with V' C V to a substitution s(r) on segment
terms which only alters segment terms with vari-
ables solely in V':

r(C) if V(C) C V'
C	 else

The cut-and-paste simplification cap(P, B, A) is
shown in Fig. 6. It requires that P A AB is
predecided. It first cuts out the contents of B,
cut(B , P), from P and removes all parallelism lit-
erals. Then it makes B blank. In P3, two things
happen: First, the contents of B are pasted over
those of A. This is done by renaming the variables
in cut(B, P) apart but mapping root and hole of
B to those of A. Second, the parallelism literals
are adapted by mapping segment terms inside B
to segment terms inside A. Finally, the resulting
constraint gets dominance-solved and predecided.

Lemma 6.1. A predecided constraint P' = P A
A ,-,B where A, B are outermost in N(P') has the
same models as A ,- A V cap(P, B, A).

s(r)(C) =

120

0.)
\

 lam

paper— ana
of

and	 0

z 	
1/ \

X 1 /6\
	 hill lam

john lam	 lam
the
teacher X 0/X I — Y 0 /Y I^

revise	 Z 0/X I — WO / WI

solve(P) =	 solve the literal, and afterwards we only change
% invariant: P is predecided	 parts of the constraint that are deeper nested than
if P contains no parallelism literals then return {P}B. For the same reason, the acyclicity of the
elseif N(P) is cyclic then return 0 	 nesting graph is guaranteed. Well-nested models
else let P =	 A P' with A outermost in N(P) are preserved in spite of the changed parallelism

Figure 7: Constraint solver

This holds because parallel segments have the
same structure, so in any model, the segment de-
noting A contains the structure described by A and
the structure described by B.

The complete algorithm. The solver for well-
nested parallelism constraints is shown in Fig. 6. It
applies cut-and-paste simplification exhaustively
to parallel segment terms in P. always choosing
an outermost parallelism literal next. Constraints
with cyclic nesting graphs are discarded as they
have no solution.

Proposition 6.2 (Complexity). The computation
of solve(P) terminates for all predecided P;
emptiness of solve(P) can be checked in non-
deterministic polynomial time.

Recursive calls during solve(P) apply to con-
straints P' with properly fewer parallelism literals
than P. All used subroutines terminate, and thus,
the computation of solve(P) terminates.

Emptiness of solve(P) can be decided by
computing the elements of solve(P) non-
deterministically: Whenever solve (P) works with
sets of constraints, we choose a single element and
continue it alone. The remaining deterministic
steps require at most polynomial time.

Proposition 6.3 (Correctness). If P is predecided
then solve(P) is a finite set of well-nested solved
forms that has the same well-nested models as P.

The dominance solver and predecision algo-
rithm see to it that solve(P) is predecided and has
a satisfiable dominance part. Cutting and pasting
leaves the right segment term of a parallelism lit-
eral blank, and nothing can move into a blank seg-
ment term later because we work from the outside
in: B is outermost at the point in time that we

literals because well-nestedness presumes image-
closedness (Def. 4.3).

Theorem 6.4. Satisfiability of well-nested paral-
lelism constraints is NP-complete.

Propositions 6.2 and 6.3 prove satisfiability in
nondeterministic polynomial time. NP-hardness
already holds for dominance constraints (Koller et
al., 2001) which are clearly well-nested.

7 An Example

We demonstrate the algorithm on sentence (2), and
we also show how ellipsis resolution and anaphora
resolution may be integrated. Figure 8 shows the
constraint for that sentence. The coreference is
represented by the arrow from "ono" to "john".
We have abbreviated "revise" and "the teacher" for
better readability.

Figure 8: "John revised his paper before the
teacher did, and so did Bill."

Constructing a dominance-solved form includes
resolving the scope of "john" and "his paper". We
pursue the case where "john" takes wide scope.
The resulting constraint is already predecided: It
entails that the segment terms do not overlap, and
it is clear for all variables whether they are inside
the segment terms or outside. This is typical for
constraints from the linguistic application. So al-
though the problem is NP-hard in theory, in prac-
tice it is not necessary to guess relative positions.

We first resolve the ellipses, ignoring the
anaphora. We start by solving the outer paral-
lelism X0/X1 ,-, Yo/Y1 by "cut-and-paste". The
result is shown in Fig. 9 (a). For better read-
ability we have abbreviated "his paper" to "ana".

let Si = cap(P',B,A) % cut-and-paste
let S2 = U{ solve(Q) Q E Sl}
return { Q A
	

I Q E S2 }

121

X I /6\
john lam

(b)

beforeZ	
\Wo

WI

the
teacher

and	 An interesting question to pursue is whether we
Y o

can use an even less expressive fragment of paral-
lelismconstraints to model ellipsis.

References

(a)	 X 0___---and 	0

before	 w	 Y ,
Z 	bill

6—	 61 \ ;K\
john lam	 lam

the
teacher

ana	 Z0 / X — W0 /W

revise

E. Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren,
and S. Thiel. 2002. An effi cient graph algorithm for dom-
inance constraints. Journal of Algorithms. To appear.

ana

revise

Figure 9: After solving (a) the outer parallelism,
(b) the inner parallelism

Now Zo /Xi ,--, W0/Wi is outermost. The re-
sult of applying "cut-and-paste" to it is shown
in Fig. 9 (b). As no parallelism literals are left,
solve(P) is this constraint plus X0/X1- , Y0/ Yi A
Zo/X1 ,- Wo/W1, a well-nested solved form.

To read off a solution from the well-nested
solved form, we take each parallelism literal and
copy the contents of the left segment term to the
right, this time working from the inside out. Fi-
nally we enumerate the anaphora readings, using
the CLLS rules for the interaction of parallelism
and anaphoric links Figure 10 shows one of the 5
readings (Egg et al., 2001) that this yields.

andX Yo

before	 before.Z

	

w1('_,	 6x i /6\	 6\
john lam	 AL,,, Y	 iii	 lam

thehe
teacher '	 teacheriii. LI—ja 	 ,,,,,,	 ana)	 _iana/ 	 ana

A .., \T revise	 revise	 revise	 revise

John revised John's paper before the teacher revised John's paper, and
Bill revised Bill's paper before the teacher revised Bill's paper.

Figure 10: Reading off the results

8 Conclusion and Outlook

We have introduced well-nested parallelism con-
straints, a fragment of CLLS for which satisfi-
ability is decidable in nondeterministic polyno-
mial time. We have presented an algorithm for
computing well-nested solved forms, and we have
shown how well-nested parallelism constraints can
be used to model ellipsis.

J. Bos. 1996. Predicate logic unplugged. In Proc. of the 10th
Amsterdam Colloquium.

H. Comon. 1992. Completion of rewrite systems with mem-
bership constraints. In Proc. of ICALP '92.

M. Dalrymple, S. Shieber, and F. Pereira. 1991. Ellipsis
and higher-order unifi cation. Linguistics & Philosophy,
14:399-452.

M. Egg, A. Koller, and J. Niehren. 2001. The Constraint
Language for Lambda Structures. Journal of Logic, Lan-
guage, and Information, 10:457-485.

Katrin Erk and Alexander Koller. 2001. VP ellipsis by tree
surgery. In Proc. of the 13th Amsterdam Colloquium.

K. Erk, A. Koller, and J. Niehren. 2002. Processing under-
specifi ed semantic representations in the Constraint Lan-
guage for Lambda Structures. Journal of Language and
Computation. To appear.

R. Fiengo and R. May. 1994. Indices and Identity. MIT
Press, Cambridge.

D. Hardt. 1993. Verb Phrase Ellipsis: Form, Meaning, and
Processing. Ph.D. thesis, University of Pennsylvania.

A. Kehler. 1995. Interpreting Cohesive Forms in the Context
of Discourse Inference. Ph.D. thesis, Harvard University.

A. Koller, J. Niehren, and R.Trei nen. 2001. Dominance con-
straints: Algorithms and complexity. In Proc. of LACL'01.

S. Lappin and H. Shih. 1996. A generalized reconstruction
algorithm for ellipsis resolution. In Proc. of COLING'96.

G. S. Makanin. 1977. The problem of solvability of equa-
tions in a free semigroup. Mat. Sbomik., 103(2):147-236.

M. P. Marcus, D. Hindle, and M. M. Fleck. 1983. D-theory:
Talking about talking about trees. In Proc. ACL'83.

M. Pinkal. 1995. Radical underspecifi cation. In Proc. of the
10th Amsterdam Colloquium. University of Amsterdam.

U. Reyle. 1993. Dealing with ambiguities by underspecifi -
cation: Construction, representation, and deduction. Jour-
nal of Semantics, 10(2).

I. Sag. 1976. Deletion and logical form. Ph.D. thesis, MIT,
Cambridge.

E. Williams. 1977. Discourse and logical form. Linguistic
Inquiry, 8(1):101-139.

122

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

