Well-Nested Parallelism Constraints for Ellipsis Resolution

Katrin Erk and Joachim Niehren
Saarland University, Saarbriicken, Germany
erk@coli.uni-sb.de / niehren@ps.uni-sb.de

Abstract

The Constraint Language for Lambda
Structures (CLLS) is an expressive tree
description language. It provides a uni-
form framework for underspecified se-
mantics, covering scope, ellipsis, and
anaphora. Efficient algorithms exist for
the sublanguage that models scope. But
so far no terminating algorithm exists
for sublanguages that model ellipsis. We
introduce well-nested parallelism con-
straints and show that they solve this
problem.

1 Introduction

Ellipsis phenomena are ubiquitous in natural lan-
guage, e.g. in VP ellipsis, answers to questions,
and corrections. They have been studied exten-
sively (Sag, 1976; Williams, 1977; Fiengo and
May, 1994; Dalrymple et al., 1991; Hardt, 1993;
Kehler, 1995; Lappin and Shih, 1996) but remain
difficult to handle. Among the problems to solve
in connection with ellipsis are: determining the el-
lipsis antecedent, constructing a description of the
ellipsis meaning, and resolving the ellipsis (i.e. ac-
tually determining its meaning). In this paper we
focus on the problem of resolving ellipsis. We as-
sume an analysis of its structure (source, target,
and parallel elements) in the Constraint Language
for Lambda Structures (CLLS) (Egg et al., 2001).

CLLS is an expressive tree description language
that provides a uniform framework for seman-
tic underspecification covering scope, ellipsis, and
anaphora. CLLS offers dominance constraints for
modeling scope ambiguity in a similar way as pre-
vious approaches (Reyle, 1993; Pinkal, 1995; Bos,

1996), parallelism constraints for modeling ellip-
sis, and anaphoric links for modeling coreference.
The interaction of ellipsis with scope (quantifier
parallelism) is handled in a modular fashion. Enu-
merating scope readings becomes solving domi-
nance constraints, while ellipsis resolution is re-
duced to solving parallelism constraints.

Constraint solving subsumes satisfiability
checking. Satisfiability of dominance constraints
is NP-complete (Koller et al., 2001). But for
modeling scope underspecification a sublanguage
of constraints suffices. These constraints can be
solved in low polynomial time (Althaus et al.,
2002). Parallelism constraints are as expressive
as the language of Context Unification, the
satisfiability problem of which is prominent but
still open (Comon, 1992). A lower bound is given
by string unification (Makanin, 1977), for which
the best known algorithm runs in PSPACE.

So far, no terminating algorithm exists for sub-
languages of CLLS that model ellipsis. The sound
and complete semi-decision procedure for CLLS
(Erk et al., 2002) can be used for this purpose but
is slow in practice and not guaranteed to terminate.

In the current paper we introduce well-nested
parallelism constraints and so solve this prob-
lem for the first time. We argue that well-nested
parallelism constraints are powerful enough to
model ellipsis, in particular VP-ellipsis. We
present a solver for well-nested parallelism con-
straints which decides satisfiability in nondeter-
ministic polynomial time, and hence proves the
NP-completeness of this problem, as dominance
constraints are subsumed.

2 CLLS

We represent the meaning of sentences by lambda
terms, which are seen as trees and then described

115

3. Labeled variables in P don’t have outgoing
dominance edges in the graph G(P).

4. If X 1Y € P then neither P + X<*Y nor
PFHY<*X.

5. Not X#X € Pandnot X=Y € P.

Proposition S5.1. A dominance solved form is sat-
isfiable.

Segment relations. Fig. 5 defines the possible
relationships between two tree segments. The for-
mula seg(A) that we use there states that the seg-
ment term A = X /X' denotes a segment:

seg(A) =gt X<*X'

The inside and outside relations are nonproper so
that the formulas inside(A, B) Ainside(B, A) and
inside(A4, B) A outside(A, B) remain satisfiable.
In the first case, equal(A, B) follows, in the sec-
ond case A must denote the empty segment. The
overlap relation, however, is proper:

inside (A, B) |= —overlap(A, B)

We also use “inside” and “outside” to describe the
relation between a segment term and a variable:

inside(Z, A) =4rinside(Z/Z, A)
outside(Z, A) =qroutside(Z/Z, A)

Predecision. In a predecided constraint, the rel-
ative positions of segment terms are decided. (A
dominance-solved form need not be predecided.)
A constraint P is predecided if any two segment
terms A, B in P satisfy the following conditions:

D1 Different segment terms denote different seg-
ments: P |= —equal(A, B) if A # B.

D2 Segment inclusion is decided: P |=
inside(A, B) or P |= —inside(A4, B).

D3 No overlap: P |= —overlap(A4, B).

D4 Variable inclusion is decided: For all Z €
V(P), P | inside(Z,A) or P |
—inside(Z, A).

D5 Equality to holes is decided: For A = X/ X'
and all Z in V(P), P E Z#X' or P |
zZ=X'

Proposition 5.2. Every well-nested parallelism
constraint is satisfaction equivalent to a finite dis-
Junction of predecided constraints.

Blank segment terms. If for a parallelism lit-
eral A~B, the segment term B is blank, i.e. con-
tains no information, then it is easy to read off the
solutions of this parallelism literal. We call a seg-
ment term B = X/Y blank in P if it fulfills three
conditions:

B1 Variables Z € V(P)—V(B) cannot take val-
ues inside B, i.e., P |= —inside(Z, B).

B2 Bis a segment term X /Y with distinct vari-
ables and X<*Y is the only literal of the
dominance part of P containing X and Y.

B3 No literal X:f(...) or Z:f(...,Y,...) be-
longs to P for any f and Z.

Nesting graphs. In a predecided parallelism
constraint, we can study the nesting of segment
terms: The nesting graph N (P) of a constraint P
is a directed graph whose nodes are the segment
terms of P. The edges of N(P) are given by the
relation < that we define recursively:

A< B if P |=inside(4, B) A —equal(4, B)
or A< B and B~BecP

or A/ < Band A'~A € P

Proposition 5.3. If P is satisfiable then the nest-
ing graph N (P) is acyclic.

Proof. Let (1,~,0) &= P be a solution of P. If
A < B holds in N(P) then the inner b,(c(A))
has properly less nodes than b (o(B)). So if there
existed a cycle A < ... < A in N(P) then
b-(c(A)) would contain strictly less nodes than
itself. g

The segment term A is outermost in P if A has
no outgoing edges in the nesting graph N(P).

Well-nested solved forms. Now we have all
the notation we need to define well-nested solved
forms, constraints from which a well-nested solu-
tion can be directly read off. We call P a well-
nested solved form ift:

S1 The dominance part of P is satisfiable.
S2 P is predecided.

119

AY<X A (X'<*Y'V X LY
ANY'@*XVvX'a*YVX1Y

AX<TY < X'aY' VY <t X<t Y X'V

XY X'1Y vY<X<aY' LX)

Figure 5: Segment relations where A = X/X'and B=Y/Y’

inside(A, B) =4 seg(A) A seg(B)
outside(A4, B) =qr seg(A) A seg(B)
equal(4, B) =4 seg(A) Aseg(B)AX=Y A X'=Y’
overlap(A, B) =g4r seg(A) A seg(B)
cap(P, B, A) =

% invariant: P A A~ B is predecided

% cut

let Py = P — cut(B, P)— para(P)

let P, = Py A X<*Y where X/Y =B

% paste

letr : V(B, P) — V be some variable renaming

withr(B) = Aand r(Z) fresh for all Z ¢ V(B)

let P3 = Py Ar(cut(B, P)) A s(r)(para(P))
return predecide(Ps)

Figure 6: Cut and paste simplification

S3 The nesting graph N (P) is acyclic.
S4 If P = P’ A A~B then B is blank in P’.

Proposition 5.4. Every well-nested solved form
has a well-nested solution.

6 Constraint Solving

In this section we present a constraint solver for
well-nested parallelism constraints: Given a par-
allelism constraint P, it computes a finite set
of well-nested solved forms with the same well-
nested solutions as P.

Dominance constraint solving and predecision.
To compute predecide(P):

e first compute dominance solved forms of P.

e In each dominance solved form P’, guess rel-
ative positions of variables with respect to
the roots and holes of segment terms, unless
they are implied by P’ already. Discard P’ if
it contains overlapping segments. Substitute
variables if necessary to fulfill condition D1.

e Again compute dominance solved forms to
detect inconsistencies.

120

Cut-and-paste simplification. Given a domi-
nance solved and predecided constraint, we apply
cut-and-paste to an outermost parallelism literal.
The goal is to make one segment term blank.

We need some notation. Given a constraint P
with segment B let V (P, B) be the set of variables
of B that must take their value inside B.

V(P,B) = {Z | P k= inside(Z, B)}

The constraint cut(B, P) consists of all literals of
P with variables in V(P, B), with the exception
of constant labelings of the hole of B:

Cut(B, P) = HV(P,B) - lab(B, P)
lab(X/Y,P) = {Zwa|PEZ=Y,a €3}

Let para(P) be the conjunction of parallelism lit-
erals in P. Finally, we lift substitutions » : V' —
V with V! C V to a substitution s(r) on segment
terms which only alters segment terms with vari-
ables solely in V':

0 - {10 ey

The cut-and-paste simplification cap(P, B, A) is
shown in Fig. 6. It requires that P A A~B is
predecided. It first cuts out the contents of B,
cut(B, P), from P and removes all parallelism lit-
erals. Then it makes B blank. In Pjs, two things
happen: First, the contents of B are pasted over
those of A. This is done by renaming the variables
in cut(B, P) apart but mapping root and hole of
B to those of A. Second, the parallelism literals
are adapted by mapping segment terms inside B
to segment terms inside A. Finally, the resulting
constraint gets dominance-solved and predecided.

Lemma 6.1. A predecided constraint P' = P A

A~B where A, B are outermost in N(P') has the
same models as A~B N \/ cap(P, B, A).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

