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Abstract

How can we teach artificial agents to use hu-
man language flexibly to solve problems in
real-world environments? We have an exam-
ple of this in nature: human babies eventu-
ally learn to use human language to solve prob-
lems, and they are taught with an adult human-
in-the-loop. Unfortunately, current machine
learning methods (e.g. from deep reinforce-
ment learning) are too data inefficient to learn
language in this way. An outstanding goal
is finding an algorithm with a suitable ‘lan-
guage learning prior’ that allows it to learn hu-
man language, while minimizing the number
of on-policy human interactions. In this pa-
per, we propose to learn such a prior in sim-
ulation using an approach we call, Learning to
Learn to Communicate (L2C). Specifically, in
L2C we train a meta-learning agent in simula-
tion to interact with populations of pre-trained
agents, each with their own distinct communi-
cation protocol. Once the meta-learning agent
is able to quickly adapt to each population
of agents, it can be deployed in new popula-
tions, including populations speaking human
language. Our key insight is that such pop-
ulations can be obtained via self-play, after
pre-training agents with imitation learning on
a small amount of off-policy human language
data. We call this latter technique Seeded Self-
Play (S2P). Our preliminary experiments show
that agents trained with L2C and S2P need
fewer on-policy samples to learn a composi-
tional language in a Lewis signaling game.

1 Introduction

Language is one of the most important aspects of
human intelligence; it allows humans to coordinate
and share knowledge with each other. We will want
artificial agents to understand language as it is a
natural means for us to specify their goals.
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So how can we train agents to understand lan-
guage? We adopt the functional view of language
(Wittgenstein, 1953) that has recently gained pop-
ularity (Lazaridou et al., 2016; Gauthier and Mor-
datch, 2016; Mordatch and Abbeel, 2017): agents
understand language when they can use language
to carry out tasks in the real world. One ap-
proach to training agents that can use language
in their environment is via emergent communica-
tion, where researchers train randomly initialized
agents to solve tasks requiring communication (Fo-
erster et al., 2016; Lazaridou et al., 2018; Tieleman
et al., 2018). An open question in emergent com-
munication is how the resulting communication
protocols can be transferred to learning human lan-
guage (Baroni, 2019; Hupkes et al., 2019). Existing
approaches attempt to do this using auxiliary tasks
(Lee et al., 2018, 2017), for example having agents
predict the label of an image in English while si-
multaneously playing an image-based referential
game (Evtimova et al., 2017). While this works for
learning the names of objects, it’s unclear if simply
using an auxiliary loss will scale to learning the
English names of complex concepts, or learning to
use English to interact in an grounded environment.

One approach that we know will work (eventu-
ally) for training language learning agents is us-
ing a human-in-the-loop, as this is how human
babies acquire language. In other words, if we had
a good enough model architecture and learning al-
gorithm, the human-in-the-loop approach should
work. However, recent work in this direction has
concluded that current algorithms are too sam-
ple inefficient to effectively learn a language with
compositional properties from humans (Chevalier-
Boisvert et al., 2018). Human guidance is expen-
sive, and thus we would want such an algorithm to
be as sample efficient as possible. An open problem
is thus to create an algorithm or training procedure
that results in increased sample-efficiency for lan-



Figure 1: Schematic diagram of the L2C framework.
An advantage of L2C is that agents can be trained in
an external environment (which grounds the language),
where agents interact with the environment via actions
and language. Thus, (in theory) L2C could be scaled to
learn complicated grounded tasks involving language.

guage learning with a human-in-the-loop.
In this paper, we present the Learning to Learn

to Communicate (L2C) framework, with the goal
of training agents to quickly learn new (human)
languages. The core idea behind L2C is to lever-
age the increasing amount of available compute for
machine learning experiments (Amodei and Her-
nandez, 2018) to learn a ‘language learning prior’
by training agents via meta-learning in simulation.
Specifically, we train a meta-learning agent in sim-
ulation to interact with populations of pre-trained
agents, each with their own distinct communication
protocol. Once the meta-learning agent is able to
quickly adapt to each population of agents, it can be
deployed in new populations unseen during train-
ing, including populations of humans. The L2C
framework has two main advantages: (1) permits
for agents to learn language that is grounded in an
environment with which the agents can interact (i.e.
it is not limited to referential games); and (2) in
contrast with work from the instruction following
literature (Bahdanau et al., 2018), agents can be
trained via L2C to both speak (output language to
help accomplish their goal) and listen (map from
the language to a goal or sequence of actions).

To show the promise of the L2C framework, we
provide some preliminary experiments in a Lewis
signaling game (David, 1969). Specifically, we
show that agents trained with L2C are able to learn
a simple form of human language (represented by
a hand-coded compositional language) in fewer it-
erations than randomly initialized agents. These
preliminary results suggest that L2C is a promis-
ing framework for training agents to learn human
language from few human interactions.

Figure 2: Schematic diagram of the S2P framework.
Phase 1b and 1c are carried out in alternation or over
some schedule to counter language drift while achiev-
ing high reward in the corresponding task. See Sec 3
for more details.

2 Learning to learn to communicate

L2C is a training procedure that is composed of
three main phases: (1) Training agent popula-
tions: Training populations of agents to solve some
task (or set of tasks) in an environment. (2) Train
meta-learner on agent populations: We train a
meta-learning agent to ‘perform well’ (i.e. achieve
a high reward) on tasks in each of the training pop-
ulations, after a small number of updates. (3) Test-
ing the meta-learner: testing the meta-learning
agent’s ability to learn new languages, which could
be both artificial (emerged languages unseen during
training) or human.

A diagram giving an overview of the L2C frame-
work is shown in Figure 1. Phase 1 can be achieved
in any number of ways, either through supervised
learning (using approximate backpropogation) or
via reinforcement learning (RL). Phases 2 and 3 fol-
low the typical meta-learning set-up: to conserve
space, we do not replicate a formal description of
the meta-learning framework, but we direct inter-
ested readers to Section 2.1 of (Finn et al., 2017). In
our case, each ‘task’ involves a separate population
of agents with its own emergent language. While
meta-training can also be performed via supervised
learning or RL, Phase 3 must be done using RL, as
it involves interacting with humans which cannot
be differentiated through.

3 Seeded self-play

Seeded self-play (S2P) is a straightforward tech-
nique for training agents in simulation to develop
complex behaviours. The idea is to ‘seed’ a pop-
ulation of agents and use that data to train other
populations. Fig 2 gives a pictorial representation



Figure 3: Lewis Signalling game with 2 agents, a
Speaker and a Listener. For more details refer to Sec 4.

of S2P.
We collect some data which is sampled from a

fixed seed population. This corresponds to the ac-
tual number of samples that we care about which is
basically the number of human demonstrations. We
first train each agent (a listener and a speaker) that
performs well on these human samples. We call
this step as the imitation-learning step. Then we
take each of these trained agents (a pair of speaker
and a listener) and deploy them against each other
to solve the task via emergent communication. We
call this step as the fine-tuning step. While these
agents are exchanging messages in their emergent
language, we make sure that the language does not
diverge too much form the original language (i.e.
the language of the fixed seed population). We en-
force this by having a schedule over the fine-tuning
and the imitation-learning steps such that both the
agents are able to solve the task while also keep-
ing a perfect accuracy over the seed data. We call
this process of generating populations as seeded
self-play (S2P).

4 Problem set-up

A speaker-listener game We construct a refer-
ential game similar to the Task & Talk game from
(Kottur et al., 2017), except with a single turn. The
game is cooperative and consists of 2 agents, a
speaker and a listener. The speaker agent observes
an object with a certain set of properties, and must
describe the object to the listener using a sequence
of words (represented by one-hot vectors). The lis-
tener then attempts to reconstruct the object. More
specifically, the input space consists of p properties
(e.g. shape, color) and t types per property (e.g.
triangle, square). The speaker observes a symbolic
representation of the input x, consisting of the con-
catenation of p one-hot vectors, each of length t.
The number of possible inputs scales as tp. We

define the vocabulary size (length of each one-hot
vector sent from the speaker) as |V |, and fix the
number of words sent to be w.

Developing a compositional language To simu-
late a simplified form of human language on this
task, we programatically generate a perfectly com-
positional language, by assigning each ‘concept’
(each type of each property) a unique symbol. In
other words, to describe a blue shaded triangle,
we create a language where the output description
would be “blue, triangle, shaded”, in some arbitrary
order and without prepositions. By ‘unique sym-
bol’, we mean that no two concepts are assigned
the same word. We call these agents speaking com-
positional language as Compositional Bots. By gen-
erating this language programmatically, we avoid
the need to have humans in the loop for testing,
which allows us to iterate much more quickly. This
is feasible because of the simplicity of our speaker-
listener environment; we do not expect that gen-
erating these programmatic languages is practical
when scaling to more complex environments.

Implementation details The speaker and lis-
tener are parameterized by recurrent policies, both
using an embedding layer of size 200 followed by
an LSTM of size 200. Both the speaker and the
listener agents use the same number of parameters
for encoding/decoding the message. The message
produced by the speaker is a sequence of p cate-
gorical random variables which are discretized us-
ing Gumbel-Softmax relaxation (Jang et al., 2016;
Maddison et al., 2016) with an initial temperature
τ = 1 which is annealed over a schedule with
γ = 0.7 for every 10000 iterations. We set the
vocabulary size to be equal to the total number of
concepts p · t. In our initial experiments, we train
our agents using Cross Entropy which is summed
over each property p. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001 and a scheduler which anneals the learning
rate with a γ = 0.5. We first demonstrate the re-
sults with a meta-learning listener (a meta-listener),
that learns from the different speakers of each train-
ing population.

5 Experiments

5.1 Meta-learning improves sample efficiency

Here, we describe our initial results into the fac-
tors affecting the performance of L2C. Since our
ultimate goal is to transfer to learning a human



Figure 4: Performance of the meta-learner (in terms of
number of training samples required to achieve >95%
test accuracy on a test population) over the course of
meta-training (horizontal axis), while varying the num-
ber of training encoders. Results averaged over 5 seeds,
with standard error shown. Note the vertical axis is in
log scale.

language in as few human interactions as possible,
we measure success based on the number of sam-
ples required for the meta-learner to reach a certain
performance level (95%) on a held-out test popula-
tion, and we permit ourselves as much computation
during pre-training as necessary.

As can be inferred from Figure 4, having more
training populations improves performance. Hav-
ing too few training populations (eg: 5 train en-
coders) results in overfitting to the set of training
populations and as the meta-learning progresses,
the model performs worse on the test populations.
For more than 10 training encoders, models trained
with L2C require fewer samples to generalize to a
held-out test population than a model not trained
with L2C.

5.2 Self-play improves sample efficiency

We wanted to see if we can further reduce the num-
ber of samples required after L2C. So instead of
doing L2C on a population of compositional bots,
we train the population of agents using Seeded self-
play (S2P). We collect some seed data from a single
compositional bot which we call as seed dataset.
Now we partition this data into train and test sets
where the train set is used to train the agents via
S2P. This set of trained populations is now used
as the set of populations for meta-training (L2C).
Fig 5 compares the results of populations trained
via S2P and the compositional bots. It is evident
that we need 40 fewer samples to generalize on the
test set, when the populations are trained via S2P

Figure 5: Varying performance across different number
of test samples for all combinations of proposed frame-
works. L2C+S2P performs the best, only needing 20
samples as compared to the 60 samples for L2C and
150 samples for randomly initialized agent.

than using hard-coded bots.

6 Outstanding challenges

There are several immediate directions for future
work: training the meta-agent via RL rather than
supervised learning, and training the meta-agent as
a joint speaker-listener (i.e. taking turns speaking
and listening), as opposed to only listening. We
also want to scale L2C training to more compli-
cated tasks involving grounded language learning,
such as the Talk the Walk dataset (de Vries et al.,
2018), which involves two agents learning to navi-
gate New York using language.

More broadly, there are still many challenges
that remain for the L2C framework. In fact, there
are unique problems that face each of the phases de-
scribed in Section 2. In Phase 1, how do we know
we can train agents to solve the tasks we want?
Recent work has shown that learning emergent
communication protocols is very difficult, even for
simple tasks (Lowe et al., 2017). This is particu-
larly true in the multi-agent reinforcement learning
(RL) setting, where deciding on a communication
protocol is difficult due to the non-stationary and
high variance of the gradients (Lowe et al., 2017).
This could be addressed in at least two ways: (1)
by assuming the environment is differentiable, and
backpropagating gradients using a stochastic dif-
ferentiation procedure (Jang et al., 2016; Mordatch
and Abbeel, 2017), or (2) by ‘seeding’ each popula-
tion with a small number of human demonstrations.
Point (1) is feasible because we are training in sim-
ulation, and we have control over how we build
that simulation — in short, it doesn’t really matter
how we get our trained agent populations, so long



as they are useful for the meta-learner in Phase 2.
In Phase 2, the most pertinent question is: how

can we be sure that a small number of updates is
sufficient for a meta-agent to learn a language it
has never seen before? The short answer is that
it doesn’t need to completely learn the language
in only a few updates; rather it just needs to per-
form better on the language-task in the host pop-
ulation after a few updates, in order to provide
a useful training signal to the meta-learner. For
instance, it has been shown that the model agnos-
tic meta-learning (MAML) algorithm can perform
well when multiple gradient steps are taken at test
time, even if it is only trained with a single inner
gradient step. Another way to improve the meta-
learner performance is to provide a dataset of agent
interactions for each population. In other words,
rather than needing to meta-learner perform well af-
ter interacting with a population a few times, we’d
like it to perform well after doing some supervised
learning on this dataset of language, and after a
few interactions. After all, we do have lots of avail-
able datasets of human language, and not using this
seems like a waste.
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