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Abstract

In this paper, we experiment with a re-
cently proposed visual reasoning task dealing
with quantities — modeling the multimodal,
contextually-dependent meaning of size adjec-
tives (‘big’, ‘small’) — and explore the impact
of varying the training data on the learning
behavior of a state-of-art system. In previ-
ous work, models have been shown to fail in
generalizing to unseen adjective-noun combi-
nations. Here, we investigate whether, and to
what extent, seeing some of these cases dur-
ing training helps a model understand the rule
subtending the task, i.e., that being big implies
being not small, and vice versa. We show that
relatively few examples are enough to under-
stand this relationship, and that developing a
specific, mutually exclusive representation of
size adjectives is beneficial to the task.

1 Introduction

A recently proposed visual reasoning task chal-
lenges models to learn the meaning of size adjec-
tives (‘big’, ‘small’) from visually-grounded con-
texts (MALeViC; Pezzelle and Fernandez, 2019).
Differently from standard approaches in language
and vision treating size as a fixed attribute of ob-
jects (Johnson et al., 2017), in MALeViC what
counts as ‘big’ or ‘small’ is defined contextually,
based on a cognitively-motivated threshold func-
tion evaluating the size of all the relevant objects
in a scene (Schmidt et al., 2009). In the most chal-
lenging version of the task, SET+POS, the subset
of relevant objects (i.e., the reference set) com-
prises all the objects belonging to the same cate-
gory as the queried one. Given a scene depicting
a number of colored shapes (e.g., the leftmost im-
age in Figure 1) and a sentence about one object’s
size (e.g., ‘The white rectangle is a big rectangle’),
models have to assess whether the sentence is true
or false in that context; i.e., whether the white rect-
angle is big given the other rectangles in the scene.
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Figure 1: SET+POS. Two original (ORIG) examples.
Left (ORIG): The white rectangle is a big rectangle,
True. Right (ORIG): The blue triangle is a small tri-
angle, False. To test model abilities in handling unex-
pected cases, an increasing number of ORIG training
samples is modified by swapping both the size adjec-
tive and its ground-truth (SWAP). Left (SWAP): small,
False. Right (SWAP): big, True. Best viewed in color.

Among the tested models, FiLM (Perez et al.,
2018) turned out to be the best overall architecture
for the task. However, when tested with adjective-
noun combinations that were never seen in train-
ing (i.e., the model has been taught what means to
be big for circles and rectangles or small for tri-
angles and squares, but not, e.g., what means to
be small for a circle), FILM was shown to use a
default strategy which ignores the adjective rather
than applying it compositionally. This finding is
in line with previous evidence showing the lack
of compositionality in neural networks (Baroni,
2019), either in multimodal tasks like visual ques-
tion answering (Agrawal et al., 2017) and visual
reasoning (Johnson et al., 2017), or when coping
with language data (Lake and Baroni, 2018; Loula
et al., 2018). To solve this well-known issue, sev-
eral attempts have been made to develop new mod-
els and techniques (Agrawal et al., 2018; Ramakr-
ishnan et al., 2018; Korrel et al., 2019), and several
datasets have been proposed to test compositional
abilities of systems (Agrawal et al., 2017, 2018).
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In this work, we focus on a tightly related prob-
lem, that is, generalization with little data. Since
models do not learn an abstract representation of
‘big’ and ‘small’ that can be applied composi-
tionally to unseen examples, we test whether, and
to what extent, this problem can be alleviated by
seeing some of these ‘unseen’ cases during train-
ing. We refer to these cases as unexpected (due
to their low frequency compared to the more fre-
quent, expected ones), and test whether injecting
an increasing proportion of these examples in the
training data helps models understand the rule sub-
tending the task, i.e., that being big implies being
not small, and vice versa. Intuitively, the model
could (1) stick to the default strategy and correctly
predict only the expected examples, or (2) learn a
more general rule that also accounts for the unex-
pected cases. Here, we are interested in checking
how much data is required to start adopting the lat-
ter strategy, and aim to understand what informa-
tion the model exploits while performing the task.

To explore these issues, we focus on the
SET+POS task and the best-performing FiLM
model, and build 7 new training settings with an
increasing proportion of unexpected cases.' Such
examples are obtained by simply swapping the
original size adjective and its ground-truth answer,
as described in Figure 1. By training the model on
each of these settings, we show that very little un-
expected data is needed to obtain high generaliza-
tions in testing, and that seeing these examples is
beneficial to learn the rule subtending the task.

2 Generalizing to Unexpected Data

Method We explore whether injecting some un-
expected cases in training data helps the model un-
derstand the relation that holds between the adjec-
tives ‘big’ and ‘small’. We use the 10K-datapoint
(8K training, 1K val, 1K test) SET+POS dataset
(hence, A) used by Pezzelle and Ferndndez (2019)
in their compositional experiment, and build 7 new
training settings containing an increasing percent-
age of unexpected examples. We refer to these set-
tings using capital letters from B to H. They con-
tain 0.8%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%, and
50.0% unexpected cases, respectively. To gener-
ate the new training settings, we sample a given
percentage of datapoints (e.g., 0.8% for B) from
the original training/validation files and simply

Data, code, and trained models are available at: ht tps :
//github.com/sandropezzelle/malevic.
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swap the original adjective and ground-truth an-
swer (see Figure 1). While doing so, we ensure
that a balanced number of cases is modified for
each <adjective-noun, ground truth> tuple. To il-
lustrate, out of the 8 modified cases in the valida-
tion split of B, 2 involve circles; out of these, one
is originally a <big-circle, true> case, the other
a <big-circle, false>. This makes all 7 settings
perfectly balanced with respect to shape, size, and
ground truth.”> This prevents biases in the data,
e.g., that circles are more likely to be big than
squares. It is worth mentioning that, compared to
A, only (some) sentences and answers are modi-
fied. As for the visual data, all settings employ the
exact same 10K images and visual features pre-
computed using ResNet-101 (He et al., 2016).

Model We experiment with FILM (Perez et al.,
2018) using the best configuration of hyper-
parameters and the same experimental pipeline re-
ported in Pezzelle and Ferndndez (2019). In each
setting, the model is trained for 40 epochs with 3
random initializations. For each of these 3 runs,
the best model epoch based on accuracy on the
validation split is selected and then tested on 3 dif-
ferent test sets: (a) seen (1K datapoints), where all
the examples are expected, (b) unseen (1K), where
all the examples are unexpected, and (c) balanced
(2K), where a balanced number of expected and
unexpected cases is present. All test sets are taken
from Pezzelle and Fernandez (2019).

Results In Table 1 we report, for each setting,
average model accuracy and standard deviation
(sd) over 3 runs (the same results are visualized
in Figure 2). Starting from the unseen test set, we
notice that injecting an extremely low percentage
of unexpected cases in B (0.8%, i.e., 64/8000 cases
in training) has already some impact on the accu-
racy, with a 12-point increase (27%) compared to
A (15%). This pattern is observed in the subse-
quent settings, with accuracy increasing to 44%
in C and to 45% in D. The most striking result is
observed in setting E, where model accuracy gets
well above chance level (65%) with a percentage
of just 6.4% unexpected cases seen in training (see
also Figure 2, where the blue line exceeds chance
level in E). This clearly indicates that the model,
instead of just trying to correctly predict all the
expected cases, which would potentially lead to a

“Note that we do not balance with respect to color since
this would increase by 5 the number of modified examples.
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test set

average accuracy + sd

A [0.0]* B [0.8] C[1.6] D [3.2]

E [6.4] F [12.8] G [25.6] H [50.0] | 16K [50.0]*

seen 0.85+0.01 0.84+0.02 0.83+0.04 0.74+0.01
unseen

balanced

0.50+£0.00 0.54 £0.03 0.6540.04 0.60=£0.01

0.75+0.04 0.81 £0.01
0.154+0.02 0.27+£0.03 0444+0.00 045+£0.03 0.65+0.04 0.74+0.03 0.72+0.02 0.75 +0.03
0.71+£0.05 0.79 £0.03 0.73+0.03 0.77 £ 0.03

0.74 £0.03 0.75£0.01 | 0.91 +£0.02
0.90 + 0.02

0.88 +0.02

Table 1: Average accuracy =+ standard deviation by FiLM on 3 test sets in settings A-H (in brackets, proportion
of unexpected cases seen in training). For comparison, performance by best model trained with 16K datapoints is
reported (16K). * refers to models trained in Pezzelle and Fernandez (2019). In bold, highest number in the row.

93.6% accuracy, employs a learning strategy that
is valuable also for unexpected examples.

It is interesting to note, in this regard, that on the
seen test set the model experiences a performance
drop from A (85%) to H (75%), which shows
how an increasing proportion of unexpected cases
makes guessing the expected ones a bit harder
(this is, to some extent, intuitive since in A there
are only 4 seen adjective-noun combinations); in-
deed, the overall best accuracy in seen is ob-
tained with A, while the best accuracy in unseen
is obtained with H, where the highest proportion
of unexpected examples is given in training. As
for the balanced test set, we observe that an in-
creasing proportion of unexpected cases in train-
ing boosts model generalization, though F turns
out to slightly outperform H (79% vs 77%) due to
its better performance on the expected (seen) in-
stances. Finally, it should be noted that training
with twice as many samples (16K) leads to a sig-
nificantly higher accuracy in all test sets (+11-16
points compared to H), which shows a ‘the big-
ger, the better’ effect of training set size on model
performance in the task.

test

—o— seen

accuracy

—e— unseen

- all

setting

Figure 2: FiLM performance on 3 test sets across set-
tings A-H. Average accuracy over 3 runs (dots) and
standard deviation (bars) are reported. The red dashed
line indicates chance level. Best viewed in color.
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3 Analysis

Linguistic representations In FiLM, the repre-
sentation of the sentence obtained via the Gated
Recurrent Unit (GRU; Chung et al., 2014) influ-
ences the CNN computation to focus on image
features that are important to solve the task. Thus,
examining it could shed light on the type of lin-
guistic information exploited by the model. Here,
we are interested in checking how much size infor-
mation is encoded by the GRU in each setting. We
run each setting’s best trained model on the bal-
anced test set and, for each sentence, we extract
the final 4096-d GRU hidden state. We then per-
form a 2-dimensional PCA analysis on these 2K
embeddings: if the model pays attention to size
adjectives, embeddings containing ‘big’ (‘small’)
should be overall similar/close to each other, but
different/far from those containing ‘small’ (‘big’).

In Figure 3, we plot the results of the PCA anal-
ysis for settings A, B, C, and H (from left to right).
In A, where each shape type is always either ‘big’
or ‘small’, embeddings are clearly grouped in 4
clusters corresponding to each shape (labels not
reported for clarity of presentation), while no pat-
tern regarding size is observed (i.e., red and blue
dots are mixed together). This shows that, in A,
the GRU does not learn a specific representation
for ‘big’ and ‘small’, in line with the hypothesis
that the model just ignores these words (Pezzelle
and Fernandez, 2019). This is confirmed by the
results of an additional analysis where we tested
the models trained in A on sentences (either from
the seen or unseen test set) from which the size
adjective is removed (e.g., ‘“The white rectangle is
a rectangle’). As conjectured, no differences in
accuracy compared to the standard setting were
observed (i.e., 0.85 in seen; 0.15 in unseen). In
B, in contrast, some information about size is en-
coded (embeddings containing a ‘big’ shape are
‘South-East’ to those containing the same shape
‘small’), with this pattern becoming clearer in C,
where ‘big’ and ‘small’ are neatly separated by
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Figure 3: PCA analysis on 2K GRU sentence embeddings by each best model on the balanced test set in settings
A, B, C, and H (from left to right). Red dots correspond to sentences embedding ‘big’, blue to ‘small’. ‘Big’,
‘small’ become progressively separated as the proportion of unexpected samples increases. Best viewed in color.

PC1. This distance increases in the subsequent
settings (not reported), and becomes extreme in H,
where the size adjective is the most discriminative
linguistic feature. By testing the models trained
in H on the ‘without adjective’ test sentences, in-
deed, we obtain an accuracy that is close to chance
level (i.e., 0.49 in seen; 0.53 in unseen), which
clearly indicates that the model is unable to per-
form the task without the size adjective. In sum,
seeing more and more unexpected cases helps the
model develop an increasingly specific, mutually
exclusive representation of size adjectives, which
goes hand in hand with a better performance.

To quantitatively assess this pattern, we evaluate
the similarity between ‘big’/‘small’ embeddings
by (1) averaging all the embeddings containing the
same adjective, (2) computing the cosine similar-
ity between the two centroids. If the model pro-
gressively develops a mutually exclusive represen-
tation for ‘big’ and ‘small’, the similarity should
decrease across settings; in contrast, such a pat-
tern should not be found for shape (the meaning
of, e.g., square is not supposed to change).> The
expected pattern is shown in Figure 4, with simi-
larity starting very high in A and rapidly decreas-
ing with an increasing proportion of unexpected
cases. Note that, in A, there is almost no difference
between ‘big’ and ‘small’. This is somehow intu-
itive since, in the balanced test set, the sentences
in the ‘big’ centroid are exactly the same as those
in the ‘small’ one, except for the size adjective. As
for shape, a rather ‘flat’ pattern is observed.

Mutual exclusivity of predictions An insight-
ful way to test whether FILM has learned a
mutually exclusive representation for ‘big’ and
‘small’ is to consider its predictions for the orig-

3For shape, we obtain an average representation for each
shape (circle, square, etc.), compute all pairwise similarities
between the 4 centroids, and compute the average similarity.

21

inal (ORIG) and swapped (SWAP) test samples. If
the model has learned that being big implies being
not small, and vice versa, we should expect it not
to output the same answer (e.g., frue) to both ques-
tions. To explore this issue, we first obtain model
predictions on both the seen and unseen test set.
We then take either test set and, for each sample,
we swap the size adjective and the ground truth
(see Figure 1). This way, we obtain two SWAP
test sets where ground truths are systematically re-
versed compared to ORIG. We obtain model pre-
dictions on each SWAP test set, compare them to
those on the corresponding ORIG, and count the
number of non-overlapping (i.e., mutually exclu-
sive) predictions. As shown in Figure 5, mutual
exclusivity is close to 0 in A, where FILM outputs
(almost) always the same answer to both ORIG
and SWAP samples, and progressively increases
across settings, which boosts FILM’s generaliza-
tion ability. This pattern of results is in line with
what is reported by Gandhi and Lake (2019), i.e.,
that standard neural networks lack the ability to
reason with mutual exclusivity. Until there is a
balanced enough number of ‘big’ and ‘small’ ex-
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Figure 4: Similarity between sentence embeddings
grouped by shape or size. Best viewed in color.
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Figure 5: Mutual exclusivity (ME) of predictions be-
tween ORIG and SWAP seen/unseen. The less overlap-
ping predictions, the higher ME. Best viewed in color.

amples in training, indeed, the model does not
fully understand the mutually exclusive relation
tying the two adjectives; rather, it makes predic-
tions that are biased toward the most frequent, ex-
pected instances.

4 Generalization vs Compositionality

The results described above show the ability of
FiLM to make powerful generalizations with lit-
tle data. However, this is not informative of its
compositional skills since, in settings B-H, the
same proportion of unexpected cases is seen by
the model for each shape type. As a conse-
quence, the model is not required to apply the
‘big’/‘small’ relation learned for, say, circles to,
say, squares. Here, we test whether learning the
rule for some shape types makes the model able to
apply it to other shapes. Crucially, this is differ-
ent from the compositional experiment in Pezzelle
and Fernandez (2019) (here referred to as set-
ting A) where the ‘big’/‘small’ relation had to be
learned across shapes.

We train the model with perfectly balanced data
(as in H) for triangles and circles, and perfectly
unbalanced data (as in A) for squares and rectan-
gles. More in detail, the model is trained with sen-
tences containing the following queries:* big tri-
angle (1K datapoints), small triangle (1K), big cir-
cle (1K), small circle (1K), small square (2K), big
rectangle (2K), and is then tested with the usual
seen and unseen test sets. If the model learns the
abstract, mutually exclusive relation between ‘big’
and ‘small’ by being exposed to examples of these
two adjectives combined with two different shape

“We employ the same 8K training datapoints and images
used in the previous experiments.
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types, it should then be able to compositionally ap-
ply the rule to the other two types of shape. Other-
wise, a similar pattern as the one observed in set-
ting A should be found for squares and rectangles.
On the seen test set, where all the adjective-
noun combinations are seen in training, the model
obtains an average accuracy (over 3 runs) of 0.81.
On the unseen one, in contrast, it stops at 0.64.
As expected, this worse performance is due to the
extremely low accuracy on big square (0.22) and
small rectangle (0.23), i.e., the cases that were
never seen in training. This opposite pattern of re-
sults (triangle and circle vs square and rectangle)
suggests that the model learns a ‘big’/‘small’ rule
that is shape-dependent and cannot be composi-
tionally applied to other shapes. This is confirmed
by the results obtained when testing the model on
the ‘without adjective’ test sentences: in the best
model run, e.g., chance-level accuracy is observed
for triangles and circles in either test set (i.e., the
model ‘needs’ the adjective to perform the task),
while the same numbers as those obtained with
the default sentences are observed for squares and
rectangles (i.e., the adjective is ‘ignored’).

5 Conclusion

Previous work has reported the inability of FiLM
to apply ‘big’, ‘small’ to unseen adjective-noun
combinations (Pezzelle and Fernindez, 2019).
Here, we show that seeing some of these cases
in training mitigates the problem, leading to high
generalizations (in line with Lake and Baroni,
2018) and helping the model understand the mutu-
ally exclusive status of size adjectives. Although
the model can learn the ‘big’/‘small’ rule, this rule
is shown to be shape-dependent; i.e., it cannot be
learned for some nouns and compositionally ap-
plied to others for which direct evidence was not
observed during training. Taken together, these
findings indicate that models fail to apply rules
compositionally, but are extremely good at gen-
eralizing to even rarely seen examples.
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