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Abstract

We describe our exploratory system for
the shallow surface realization task, which
combines morphological inflection us-
ing character sequence-to-sequence mod-
els with a baseline linearizer that imple-
ments a tree-to-tree model using sequence-
to-sequence models on serialized trees.
Results for morphological inflection were
competitive across languages. Due to time
constraints, we could only submit com-
plete results (including linearization) for
English. Preliminary linearization results
were decent, with a small benefit from
reranking to prefer valid output trees, but
inadequate control over the words in the
output led to poor quality on longer sen-
tences.

1 Introduction
With our entry in the shallow surface realiza-
tion shared task, we aimed to (1) implement
an up-to-date morphological inflection model
based on the approach of Faruqui et al. (2016)
and Kann and Schütze (2016), and (2) conduct
exploratory experiments with linearization us-
ing the constrained decoding approach of Bal-
akrishnan et al. (2019) adapted to dependency
trees.

Our system is a pipeline that begins by gen-
erating inflected wordforms from uninflected
terminals in the tree using character seq2seq
models. We then serialize these inflected syn-
tactic trees as constituent trees by converting
the relations to non-terminals. The serialized
constituent trees are fed to seq2seq models (in-
cluding models with copy and with tree-LSTM
encoders), whose outputs also contain tokens

marking the tree structure. We obtain n-best
outputs for orderings and choose the highest
confidence output sequence with a valid tree—
i.e., one where the input and output trees are
isomorphic up to sibling order—in order to ob-
tain a projective linearization where possible,
given that the vast majority of gold lineariza-
tions are projective.1

While we found that this validity checking
step provided a small benefit, fully adapting
the constrained decoding approach to depen-
dency trees would have required adding a step
to ensure that all and only the input words ap-
peared in the output tree, and enforcing these
constraints during beam search. Due to time
constraints, however, we were only able to ob-
tain preliminary linearization results for En-
glish without these word-level checks.

Development results for morphological in-
flection were competitive across languages as
compared to previous implementations (King
and White, 2018; Puzikov and Gurevych,
2018). With linearization, the preliminary
results were decent, but showed substantial
degradation for longer sentences where prob-
lems with lack of control over the output words
became more severe.

In the rest of the paper, we describe our in-
flection and linearization components in more
detail, along with our experimental results.

2 Inflection
Our pipeline begins by producing fully in-
flected word forms from the citation forms pro-

1To handle non-projective cases, the arc-lifting
method of Bohnet et al. (2012) could be applied as
a preprocessing step.
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vided in the UD input. In a sense, at this
stage, the system has to be able to perform
the wug test (Berko, 1958): having never seen
a word before, we need to have the ability to
produce the correct form for a given paradigm
cell. We utilize sequence-to-sequence models
(Bahdanau et al., 2014) in keeping with previ-
ous successful approaches (Kann and Schütze,
2016; Faruqui et al., 2016; King and White,
2018). Additionally, we reimplemented Kann
and Schütze’s 2016 approach in PyTorch.2

We also follow Kann and Schütze’s approach
by training our inflection model at the lan-
guages level and not at the level of individ-
ual paradigm cells as originally proposed by
Faruqui et al. More formally, our LSTMs
(Hochreiter and Schmidhuber, 1997) create an
encoding, producing hidden state ht which is
dependent on the input xt, the hidden state
from the previous time step ht−1, and nonlin-
ear function f . c is the context of all previous
time steps. Additionally, we set hj to be the
concatenated forward and backward encodings
since we use bidirectional LSTMs.

ht = f(xt, ht−1) (1)

c = q(h1, ..., hTx) (2)

hj =

[−→
hTj ,
←−
hTj

]T
(3)

During inference (i.e. decoding), output y
depends on the input sequence and previous
inference steps. We also use the same atten-
tion as described by Bahdanau et al. and
Kann and Schütze:

p(y|x) =
Ty∏
t=1

p(yt|{y1, ..., yt − 1}, st, ct) (4)

ci =
Tx∑
j=1

αijhj (5)

αij =
exp(eij)∑Tx

k=1 exp(eik)
(6)

eij = a(si−1, hj) (7)
As seen in Table 1, uncased results are al-

most always higher than cased. This should
not surprise us as, operating on the word-
internal level, any sequence-to-sequence model

2Freely available here: https://github.com/
davidlking/med-pytorch

would have no access to syntagmatic informa-
tion outside of how UDs encode that infor-
mation in the morphosynctactic feature sets.
Also Arabic, Hindi, and Japanese do not have
cased orthography and therefore have no dif-
ference in their case/uncased accuracies.

As for feature sets, we include the same
set as described by King and White. In ad-
dition to using the morphosyntactic features
provided by the UD schema, we also used the
POS tag and dependency name as input to the
system. Differing from previous shared tasks
(Cotterell et al., 2016, 2017), we do not al-
ter the token frequencies. In traditional SIG-
MORPHON inflection tasks, each system only
sees a word form once per epoch. We found
that this causes the system to miss irregulars.
Since irregular forms tend to occur with higher
frequency, allowing the system to see more
examples during each epoch increased perfor-
mance on irregular forms. We also found that
adding a rule for English specifically designed
to account for the “to be” paradigm raises ac-
curacy for English another 0.6% to 98.5%.

Finally, for Korean and Chinese, we simply
write rule sets for their morphology. The Ko-
rean dataset exclusively uses concatenation.
The input forms list items and their corre-
sponding affixes, in order, and simply remov-
ing the morpheme boundary token (a “+”)
yielded 100% accuracy. For Chinese, the plu-
ral marker “们” (men) only ever occurred with
“人” (rén, “person”), “我” (wǒ, “I”), “�”
(tā, “it” [animals]), “它” (tā, “it” [inanimate]),
“她” (tā, “she”), and “他” (tā, “he”). Writing
a rule that adds “们” when any of the char-
acter co-occur with the Num=Plur feature also
gives us 100% accuracy for Chinese.

3 Linearization

To help assess the potential of using tree-to-
tree models with constrained decoding (Bal-
akrishnan et al., 2019) for linearization and
guide future work in this direction, we con-
ducted exploratory experiments using off-the-
shelf sequence-to-sequence models where the
input and output trees are represented as
sequences using non-terminal tokens corre-
sponding to dependency relations. In these
serialized trees, each non-terminal token is fol-
lowed by the inflected form, its dependents,

https://github.com/davidlking/med-pytorch
https://github.com/davidlking/med-pytorch
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Figure 1: A graphical representation of the architecture originally introduced by Faruqui et al. (2016) and
adapted by Kann and Schütze (2016). A bidirectional LSTM creates an encoding of the input wordform
and supplied features. That encoding is subsequently fed to the decoder LSTM along with the original
input wordform.

Language
Model ar en es fr hi id ja ko pt ru zh
Cased 92.2 91.1 91.3 89.2 97.3 86.4 99.6 N/A 87.1 90.0 N/A
Uncased 92.2 97.9 93.5 95.3 97.3 98.9 99.6 N/A 91.4 96.9 N/A

Table 1: Morphological inflection results on the development set. Although we only submitted results
for the English due to time constraints, we did train inflection models for each language.

Figure 2: Example of serialized tree representation used for linearization.
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and finally a closing-bracket indicating the end
of the non-terminal’s span, as exemplified in
Figure 2 shows an example of serialized inputs
and outputs.

We experimented with three different vari-
ants of sequence-to-sequence models:

Seq2Seq: Simple encoder-decoder model
with attention (Bahdanau et al., 2014). Both
the encoder and decoder are LSTMs.

Tree2Seq: Similar to Seq2Seq, but we use
a variant of the N-ary tree-LSTM (Tai et al.,
2015) as the encoder, as described in Rao et al.
(2019), thereby potentially taking better ad-
vantage of the input tree structure.

Seq2Seq-Copy: Seq2Seq model with a
pointer-generator mechanism (See et al., 2017)
for copying tokens from input. The decoder
can choose to either generate a word from the
vocabulary or copy an input token instead.
We did not have an off-the-shelf implementa-
tion for a Tree2Seq-Copy model, though our
experiments suggest it would be worth devel-
oping one.

Additionally, we also experimented with
constrained decoding (Balakrishnan et al.,
2019) with each of the above model. Using
this method, in each step of beam search, we
check for and remove candidates whose tree
structures deviate from that of the input tree.
The constraints include ensuring that a par-
ent node only accepts valid children, and that
all its children have been generated before it
can accept a closing bracket, thereby helping
to ensure a projective realization. However,
as noted in the introduction, we did not have
time to extend the constraints to ensure that
all and only the input words appeared in the
output, so we did not expect this method to
work as well as we would have liked. As such,
we also experimented with reranking an n-best
list to select the highest-scoring output with a
valid tree (i.e., one that matches the tree of
the input, up to sibling ordering).

4 Results

We picked the approach that gave the best per-
formance on dev set. We combined samples
of all English train sets, training on all sets
together gave better dev BLEU scores than
training individually. Table 2 shows a com-
parison of the different models that we tried.

Model en_gum-ud en_partut-ud
Seq2Seq 0.180 0.163
Tree2Seq 0.585 0.275
Seq2Seq-Copy 0.870 0.902

Table 2: Dev set BLEU scores (calculated along
with non-terminals), using gold inflected forms

In the table, the BLEU scores are calculated
with the non-terminals included in both input
and output sequences, inflating them some-
what relative to regular BLEU scores. Gold
inflected forms were also used.

Table 3 compares the constrained and un-
constrained versions of the Seq2Seq-Copy
(again with non-terminals in the output and
gold inflected forms). Since we did not have
time to implement word-level constraints, the
results seem to be mixed. In the end, we chose
the constrained model on datasets where dev
BLEU was higher than its unconstrained coun-
terpart. Table 4 shows the gains obtained by
doing validity reranking (again with gold in-
flected forms); here the scores shown are cal-
culated without non-terminals.

Given our time constraints, we only submit-
ted English results for evaluation. Although
we generated inflected forms for all languages
in the T1 task, we could only obtain lineariza-
tion results for English. Our results are de-
cent (with the exception of the en_partut-
ud-test dataset), suggesting that the approach
may represent a viable starting point for fu-
ture work. In particular, in the human eval-
uation results for English in the shared task
overview paper (Mille et al., 2019), our system
was ranked in the middle group of systems for
meaning preservation and in the large group
of systems tied for third–twelfth place in read-
ability. Consistent with the human evaluation,
the automatic scores for our system (Table 5)
were also in the middle of the pack. Note that
the test scores are lower than the dev scores
at least in part because only the former are
calculated with generated inflected forms.

5 Discussion

Regarding the en_partut-ud-test dataset, our
preliminary error analysis seems to indicate
that the inflection model overfit the dev set.
Although the model outputs relatively sane er-
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Model en_ewt-ud en_gum-ud en_partut-ud
Seq2Seq-Copy Unconstr 0.8239 0.8731 0.8984
Seq2Seq-Copy Constr 0.8499 0.8337 0.8847

Table 3: Preliminary BLEU scores for constrained decoding (calculated along with non-terminals), using
gold inflected forms

Dataset w/o reranking w/ reranking
en_ewt 0.8328 0.8405
en_gum 0.8294 0.8289
en_lines 0.7655 0.7778
en_partut 0.7891 0.7909

Table 4: BLEU scores on dev sets before and after
reranking, using gold inflected forms

Test set BLEU NIST DIST
en_ewt-ud-test 62.38 11.29 77.93
en_gum-ud-test 49.91 8.5 66.88
en_lines-ud-test 54.56 9.89 71.07
en_partut-ud-test 7.37 3.21 54.27
en_pud-ud-test 67.91 11.74 78.12
en_ewt-Pred-HIT-edit 60.58 10.96 74.64
en_pud-Pred-LATTICE 66.18 11.7 76.8

Table 5: Test set results for English from the or-
ganizers

rors with the other test sets, errors with this
particular set are much noisier. For example,
in another file the model emits “multichart”
as “multichartart”. This kind of error is ex-
tremely consistent with errors regarding the
attention mechanism. In fact, Faruqui et al.
explicitly feed the lemma into their decoder
for this very reason. That said, errors from
the en_partut-ud-test file are not as clear (e.g.
“copyright” → “Sropopyright”).

Turning to linearization, Seq2Seq-Copy
does much better than the other models. We
believe this is due to the architectural prior
of copying words from the input, as nearly all
output words are present in the input (mod-
ulo words whose inflected forms are sensitive
to adjacent words). Figure 3 shows that BLEU
scores significantly decrease as sequence length
increases. Figure 4 shows that the number of
extra or missing words increases with lengths,
which could explain the drop in BLEU. Such
mistakes could perhaps have been avoided by
adding word-level constraints to constrained
decoding. Other errors are due to picking

Figure 3: BLEU score plotted against gold se-
quence lengths for en-gum-ud dev set.

Figure 4: Extra or missing words normalized by
length, plotted against gold sequence lengths for
en-gum-ud dev set.
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the correct words but in the incorrect order.
Out of 366 mismatches on the en-gum dev set,
193 (53%) are cases of mismatched word order
with the correct words.

Figure 5 shows examples of linearization
model predictions. In 1, the model misses
the word “summer” and repeats “olympic” in-
stead. This can potentially be alleviated by
constraining the generation of a word based on
the number of times it appears in the input.
In 2, the model picks the right set of words
but in an order that is different from the gold
order. In 3, the model fails by stuttering, i.e.
it repeats the same phrase again and again.

6 Conclusions and Future Work

Our exploratory experiments show that com-
bining a morphological inflection with a base-
line linearizer achieves decent results. Our
pipeline for the shallow surface realization
shared task first produces inflected wordforms
from lemmas using a character level sequence-
to-sequence model. We then use those forms
in serialized trees as input to a tree-to-tree
model, which is also implemented using a
sequence-to-sequence architecture, yielding se-
rialized trees as output. This allows outputs
to be filtered for validity in most cases, en-
forcing projective outputs. Due to time lim-
itations we could only submit fully linearized
results for English, and we were not able to im-
plement word-level constraints, so we consider
these preliminary baseline results. Given our
error analysis, in future work it may be fruitful
to update the attention mechanism in the in-
flection model (Aharoni and Goldberg, 2017),
and to use a tree encoder + copy mechanism
in the linearizer together with word-level con-
straints in decoding.
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