
Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 41–49
Hong Kong, China, November 3rd, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

41

Realizing Universal Dependencies Structures using a symbolic
approach

Guy Lapalme
RALI-DIRO, Université de Montréal
lapalme@iro.umontreal.ca

Abstract

We first describe a surface realizer for Uni-
versal Dependencies (UD) structures. The
system uses a symbolic approach to transform
the dependency tree into a tree of constituents
that is transformed into an English sentence by
an existing realizer. This approach was then
adapted for the two shared tasks of SR’19.
The system is quite fast and showed compet-
itive results for English sentences using auto-
matic and manual evaluation measures.

1 Introduction

This paper describe the system that we submit-
ted to the Surface Realization Shared Task 2019
(SR’19)1 in conjunction with Second Workshop
on Multilingual Surface Realization (Mille et al.,
2019). The data used by this shared task was cre-
ated by modifying original Universal Dependen-
cies structures (Nivre et al., 2016) (UD) to create
two tracks:

Shallow Track (T1) in which word order is per-
muted and tokens have been lemmatized and
some information about linear order about
the governor has been added. The task con-
sists in determining the word order and in-
flecting the words.

Deep Track (T2) in which functional and
surface-oriented morphological information
has been removed from the T1 structures.
The goal is to reintroduce the missing func-
tional words and morphological features.

The creation of the data set is described in (Mille
et al., 2018). The output of the systems have been
evaluated using automated metrics and a subset of
those, evaluated manually.

1http://taln.upf.edu/pages/msr2019-ws/
SRST.html

The organizers of SR’19 have taken for granted
that this task would be solved using statistical and
machine learning approaches, which seems to be
an obvious way of going given the recent trends in
NLP. They provide a list of authorized resources
such as language models and distributed represen-
tations of words.

We decided to try an alternative approach by
first building UD-SURFR (Universal Dependency
Surface Realizer), a symbolic system for the orig-
inal UD structures and then adapting it for the two
tasks of SR’19. We thought it would be interest-
ing to see how this classical approach compares
with machine learning systems.

Written in Prolog, UD-SURFR parses the orig-
inal UD structure and builds the corresponding
dependency tree which is then converted to a
tree of constituents realized using JSREALB,2 a
web-based English and French realizer written in
JavaScript; only the English realizer is used here
because we worked only on the English corpora
of UD. The UD structures are provided in tab sep-
arated files in a well-defined format (see row 1 of
Table 1 for a small example). Given the fact that
the input and output representations are trees, Pro-
log seemed a natural symbolic of choice for a tree
to tree transformation engine.

We are aware that we are not following the rules
of SR’19 as we use JSREALB, a system that is
not authorized by the competition, but we think
this experiment is still interesting. It does not re-
quire any specialized hardware and huge amount
of memory as is often the case by modern ma-
chine learning approaches. It has been developed
using only a few hand selected examples. These
results could be used as a baseline on which sta-
tistical systems could build. We have deliberately
shirked from adding any statistical techniques on

2http://rali.iro.umontreal.ca/rali/?q=
en/jsrealb-bilingual-text-realiser

lapalme@iro.umontreal.ca
http://taln.upf.edu/pages/msr2019-ws/SRST.html
http://taln.upf.edu/pages/msr2019-ws/SRST.html
http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser
http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

42

the output of UD-SURFR just to determine how
far a symbolic approach can go. In a production
setting, it would surely be better to combine statis-
tical and symbolic systems.

We did not find any text realizer that takes UD
annotations as input except for Ranta and Ko-
lachina (2017) who present an algorithm to trans-
form many UDs into Grammatical Framework
structures from with English sentences can be gen-
erated.

A UD realizer might seem pointless, because
UD annotations are created from realized sen-
tences. As UDs contains all the tokens in their
original form (except for elision in some cases),
the realization can be obtained trivially by listing
the FORM in the second column of each line.

What we propose in this paper is a full realizer
that uses only the lemmas and the syntactic infor-
mation contained in the UD to create the final sen-
tence from scratch which can be compared to the
original. The linear ordering of the tokens is ex-
tracted from the tree structure given by the HEAD
links (column 7) of the UD. We can imagine two
interesting uses for such a realizer:

• Should a What to say module of an NLG sys-
tem produce UD structures, then UD-SURFR
could be used as the How to say module.

• Providing help to annotators to check if the
information they entered is correct by regen-
erating the sentence from the dependencies.
This enables to catch more types of errors in
the annotation; this is not foolproof, but it is
easier to detect a strange sentence than a bad
link buried in lines of dependencies. During
our development, we encountered a concrete
example where the automatic realization re-
vealed an error in the original annotation; the
error was later confirmed by the maintainer
of the corpus.

The next section shows the tree representations
used by our system using a simple example from
the training test. Section 3 describes the develop-
ment of UD-SURFR for the original UD structures
and how it was adapted for SR’19. As T1 struc-
tures are a permutation of the lines of the original
structure, but we conjectured that, once the tree
structure would be retrieved, the differences would
be minor after sorting the leaves at each level of
the tree. For T2, we took the realizer for T1
and abstracted the name of the dependencies by

reversing the transformations described in (Mille
et al., 2018). Section 4 gives the results of the eval-
uation obtained using the evaluation scripts pro-
vided with the task. We also compare our results
with the automatic and manual scores obtained by
other systems that participated in the task. We
conclude with some lessons learned from this de-
velopment.

2 Representations

Table 1 illustrates the transformation steps be-
tween an input UD (row 1) and an English sen-
tence using a short example from the train set
(en_ewt-ud-train.conllu). Row 1 shows
the CONLLU format,3 a series of tab separated
lines into fields giving information for each token
of the sentence. Row 2 shows the dependencies
either as a set of links between words (on the left
part) or as a tree (on the right) Row 3 shows the
Prolog structure corresponding to the tree which
is transformed into the Deep Syntactic Repre-
sentation shown in Row 4. Row 5 shows the Sur-
face Syntactic Representation which is used by
JSREALB to realize the sentence shown in Row 6.

2.1 UD in Prolog

The first step is to parse a group of lines in CON-
LLU format corresponding to UD structure and to
build the corresponding tree. The root is easily
identified: its HEAD (field 7) is 0. Its children are
found by looking for lines that have the root as
HEAD. Each child is then taken as the root of the
subtree and recursively parsed and transformed in
the following format, using the official CONLLU
field names:

[DEPREL>LR, [UPOS:LEMMA | FEATS]
| children]

LR is either l or r depending on whether the re-
lation is to the left or the right of the HEAD. In Pro-
log, “|” separates the start of a list within brackets
from the rest of the list which can be empty.

This representation keeps intact the parent-child
relations and the relative ordering between the
children, it also keeps track of the fact that some
children occur to the left or to the right of the par-
ent. This is easily inferred from the ID of each
token compared with the value of its HEAD. This

3https://universaldependencies.org/
format.html

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html

43

1 Universal
Dependencies
in CONLLU

sent_id = weblog-juancole.com juancole 20051126063000 ENG 20051126 063000-0020

text = His mother was also killed in the attack.
1 His he PRON PRP Gender=Masc|... 2 nmod:

poss
2 mother mother NOUN NN Number=Sing 5 nsubj:

pass
3 was be AUX VBD Mood=Ind|... 5 aux:

pass
4 also also ADV RB _ 5 advmod
5 killed kill VERB VBN Tense=Past|... 0 root
6 in in ADP IN _ 8 case
7 the the DET DT Definite=Def|... 8 det
8 attack attack NOUN NN Number=Sing 5 obl
9 . . PUNCT . _ 5 punct

2

Linked and tree
representations

3 Universal
Dependencies
in Prolog

[root>r,[verb:"kill",tense:past,verbform:part,voice:pass],
[aux:pass>l,[aux:"be",mood:ind,number:sing,person:3,

tense:past,verbform:fin]],
[obl>l,[noun:"attack",number:sing],

[det>r,[det:"the",definite:def,prontype:art]],
[case>r,[adp:"in"]]],

[nsubj:pass>l,[noun:"mother",number:sing],
[nmod:poss>r,[pron:"he",gender:masc,

number:sing,person:3,
poss:yes,prontype:prs]]],

[punct>l,[punct:".",lin:1]],
[advmod>l,[adv:"also"]]]

4 Deep
Syntactic Rep-
resentation

s(vp(ls(v("kill")*t("ps"),
adv("also")),

np(d("my")*pe(3)*ow("s")*n("s")*g("m")*g("m"),
n("mother")*n("s")),

pp(p("in"),
np(d("the"),

n("attack")*n("s")))))*typ({pas:true})*a(".")

5 Surface
Syntactic Rep-
resentation

S(VP(V("kill").t("ps"),
Adv("also"),
NP(D("my").pe(3).ow("s").n("s").g("m").g("m"),

N("mother").n("s")),
PP(P("in"),

NP(D("the"),
N("attack").n("s"))))).typ({pas:true}).a(".")

6 English His mother was killed also in the attack.

Table 1: Representations used in the transformation of the Universal Dependencies in CONLLU format in row 1
to the sentence shown in row 6.

is useful in some cases for putting compounds and
complements before or after the head. But for the
T1 and T2, this information is not reliable because
the nodes have been permuted and it is the job of
the realizer to get the compound and complements
in the right order.

2.2 Deep Syntactic Representation (DSR)

The DSR is an intermediary Prolog structure that
corresponds to the constituency tree of the real-
ized sentence. A Definite Clause Grammar (DCG)
transforms this structure into the Surface Syntac-
tic Representation (SSR) described in the next
subsection. In principle, it would have been pos-

44

sible to create the SSR directly, but, for technical
reasons, it proved more convenient to use this in-
termediary step.

The creation of the DSR from the UD in Prolog,
which is the core part of the system, is described
in Section 3.

2.3 Surface Syntactic Representation
(SSR)

The SSR is the input form for JSREALB(Molins
and Lapalme, 2015), a surface realizer writ-
ten in JavaScript similar in principle to
SIMPLENLG (Gatt and Reiter, 2009) in which
programming language instructions create data
structures corresponding to the constituents of the
sentence to be produced. Once the data structure
(a tree) is built in memory, it is traversed to
produce the list of tokens of the sentence.

This data structure is built by function calls
whose names are the same as the symbols usually
used for classical syntax trees: for example, N to
create a noun structure, NP for a noun phrase, V
for a verb, D for a determiner, S for a sentence
and so on. Options added to the structures using
the dot notation can modify the values according
to what is intended.

The JSREALB syntactic representation is pat-
terned after classical constituent grammar nota-
tions. For example:
S(NP(D("a"),N("woman")).n("p"),

VP(V("eat"),
NP(D("the"),

A("red"),
N("apple"))).t("ps"))

is the JSREALB specification for Women ate
the red apple. Plural is indicated with the
option n("p") where n indicates the number and
"p" plural; this explains why the determiner "a"
does not appear in the output. The verb is conju-
gated to past tense indicated by the option tense t
with value "ps". Agreement within the NP and
between NP and VP is performed automatically.

JSREALB is aimed at web developers that want
to produce web pages from data.4 It takes care
of morphology, declension and conjugation to cre-
ate well-formed texts. Some options allow adding
HTML tags to the realized text.

An interesting feature of JSREALB, inspired
by a similar mechanism in SIMPLENLG, is

4Tutorial and demos are available at http:
//rali.iro.umontreal.ca/JSrealB/current/
documentation/in_action/README.html

the fact that once the sentence structure has
been built, many variations can be obtained by
adding a set of options to the sentences, to get
negative, progressive, passive, modality and
some type of questions. For example, adding
.typ({neg:true,pas:true,mod:"poss"}) to
the previous JSREALB structure will be realized
as The red apple cannot be eaten
by women., a negative passive sentence with a
modal verb for possibility.

Row 5 of Table 1 is the JSREALB structure that
is realized as the bottom part of the table. The
structure of constituents written as an active sen-
tence has been realized as a passive one, the orig-
inal complement becoming the subject. The verb
was also conjugated to the past tense. This was
made possible by the options given to JSREALB.

3 Deep Syntactic Representation

We now describe how a UD in Prolog is trans-
formed into a DSR. The main idea is to reverse
engineer the universal dependencies annotation
guidelines5.

3.1 Morphology

Word forms in UD are lists without children that
are mapped to terminal symbols in JSREALB. So
we transform the UD notation to the DSR one by
mapping lemma and feature names, see Table 2.

As shown in the last example, we had to nor-
malize pronouns to what JSREALB considers as its
base form. In the morphology principles of UD6,
it is specified that

treebanks have considerable leeway in
interpreting what “canonical or base
form” means

In the English UD corpora, it seems that the
LEMMA of pronoun is always the same as its FORM.
We decided to lemmatize further instead of merely
copying the lemma as a string input to JSREALB
so that verb agreement can be performed.

What should be a LEMMA is a hotly discussed
subject on the UD GitHub, but there are still too
many debatable lemmas such as an, n’t, plural
nouns etc. In one corpus, lowercasing has been ap-
plied to some proper nouns, but not all. We think

5https://universaldependencies.org/
guidelines.html

6https://universaldependencies.org/u/
overview/morphology.html

http://rali.iro.umontreal.ca/JSrealB/current/documentation/in_action/README.html
http://rali.iro.umontreal.ca/JSrealB/current/documentation/in_action/README.html
http://rali.iro.umontreal.ca/JSrealB/current/documentation/in_action/README.html
https://universaldependencies.org/guidelines.html
https://universaldependencies.org/guidelines.html
https://universaldependencies.org/u/overview/morphology.html
https://universaldependencies.org/u/overview/morphology.html

45

UD JSREALB
[noun:"mother",number:sing] n("mother")*n("s")
[verb:"be",mood:ind,number:sing,person:3, v("be")*t("p")*pe(3)

tense:pres,verbform:fin]
[pron:"we",case:nom,number:plur,person:1, pro("I")*n("p")*pe(1)

prontype:prs]

Table 2: Some examples of mapping between UD features and JSREALB options

it would be preferable to do a more aggressive
lemmatization to lower the number of base forms
in order to help further NLP processing that is of-
ten dependent on the number of different types.

3.2 UD to Deep Syntactic Representation

The essential idea is to transform recursively each
child to produce a list of DSRs labeled with the
name of the relation. The head of the relation is
used as the constituent to which are added the de-
pendents.

According to the annotation guidelines, there
are two main types of dependents: nominals and
clauses7 which themselves can be simple or com-
plex.

Nominals are triggered when the head is ei-
ther a noun, an adjective, a proper noun, a pro-
noun or a number. When it is a noun, most often
a NP is created using information gathered from
the dependents depending on their part of speech
tags such as det, nummod, amod, compound
or nmod:poss. Special cases are needed for
proper nouns, possessives with ’s, prepositional
phrases and appositions. Nouns and adjectives can
be transformed to a sentence when its dependent is
a nsubj with a possible cop; if the copula is not
given, then be is used.

Clauses (both simple and complex) are trig-
gered when a verb is encountered as the head. In
this case, a S is created taking as subject a expl
or nsubj; the V of the VP is the lemma of the
head and the complements are all other dependen-
cies in order of appearance which corresponds to
the order of the original sentence.

Prepositional phrases are dealt specially by re-
moving the preposition and dealing with the other
dependents like an ordinary clause that is then
nested into the prepositional phrase. Proper nouns
with flat dependents are built beforehand.

This mechanism (25 rules in 100 lines of com-
mented and indented Prolog) was first developed
by reading the annotation guidelines and then re-
fined by experience on the UD corpus.

7not to be confused with the Prolog clauses...

This exercise in transforming UD structures to
JSREALB revealed an important difference in their
level of representation. By design UD stays at the
level of the form in the sentence, while JSREALB
works at the constituent level. For example, in
UD, negation is indicated by annotating not and
the auxiliary elsewhere in the sentence, while in
JSREALB the negation is given as an option for the
whole sentence. So before starting the transforma-
tion previously described, the structure is checked
for the occurrence of part:"not" and an aux-
iliary to generate the .typ({neg:true}) op-
tion for JSREALB; these dependents are then
removed for the rest of the processing. Simi-
lar checks must also be performed for passive
constructs, modal verbs, progressive, perfect and
even future tense in order to abstract the UD
annotations into the corresponding structure for
JSREALB.

3.3 T1 to Deep Syntactic Representation

The algorithm given in the previous section cannot
be used directly on the input of the Shallow Track
because the word order has been permuted while
keeping the intact the relations between the words.

Proper lemmatization is performed by
JSREALB. Unfortunately, lemmatization for
T1 is not always systematic, there are a few cases
such as grounds or rights where the plural was
left in the lemma; no pronoun is lemmatized,
so we find he, them, she, it while a canonical
pronoun should be used, JSREALB uses I. Not
having to find the appropriate pronoun simplifies
realization because this is one of the difficulties
of English generation whose morphology is
otherwise relatively simple at least compared to
other languages.

Given the fact that the permutation left intact
the links between the words, we used a very sim-
ple approach: we first build the tree and then sort
the dependents at each level. The sorting first takes
into account the information about the linear order
added to make sure proper nouns and punctuation
can be added at the appropriate place. Then a fixed

46

sent_id = weblog-juancole.com_juancole_20051126063000_ENG_20051126_063000-0020
text = His mother was also killed in the attack.
1 kill _ VERB _ Tense=Past|id2=1|id1=9|original_id=5|... 0 ROOT
2 mother _ NOUN _ Number=Sing|id1=3|original_id=2 ... 1 A2
3 also _ ADV _ id1=7|original_id=4 ... 1 A1INV
4 attack _ NOUN _ Number=Sing|id2=5|id1=2|id3=8|origina... 1 AM
5 he _ PRON _ Number=Sing|id1=4|Poss=Yes|original_i... 2 AM

['ROOT'>r,[verb:"kill",tense:past,clausetype:dec],
['A2'>r,[noun:"mother",number:sing],

['AM'>r,[pron:"he",number:sing,poss:yes,person:3,prontype:prs]]],
['A1INV'>r,[adv:"also"]],
['AM'>r,[noun:"attack",number:sing,definite:def]]]

s(vp(v("kill")*t("ps"),
adv("also"),
np(d("my")*pe(3)*ow("s")*n("s")*g("m"),

n("mother")*n("s")),
pp(p("in"),

np(d("the"),
n("attack"))*n("s"))))*typ({pas:true})

His mother was killed also in the attack.

Table 3: The T2 dependency given at the top is parsed into the nested list structure shown in the second line; the id
and original id features are ignored as they are given for easing the training of learning algorithms. It is then
transformed into a Deep Syntactic Representation shown in the third line and then into a Surface Syntactic
Representation (not shown here) which is given to JSREALB to realize the sentence shown at the bottom which
is the same as the original sentence given at the top of Table 1.

order of relation name is chosen so that a subject
appears before the verb or its complements, a de-
terminer will be placed before an adjective and a
noun, etc.

Once the T1 structure has been sorted, it is pro-
cessed like a UD structure using the algorithm de-
scribed above. In this case, the algorithm does not
use the fact the left or right position of the chil-
dren in relation to the head; this relation being lost
by the permutation applied in creating T1. For the
two previous examples, the sorting process recre-
ates almost exactly the structure of the original UD
and the output sentence is the same. This hap-
pens because small differences in the placement
of aux, mark or prep do not change the realiza-
tion.

3.4 T2 to Deep Syntactic Representation

The SR’19 documentation dataset8 provides a
mapping between the universal dependencies and
the ones used for T2. So we adapted the algorithm
given for the UD by changing the names of the re-
lations.

The tree is built by reading the T2 dependen-
cies and the dependents are sorted at each level

8http://taln.upf.edu/pages/msr2019-ws/
srst_dataset_doc.txt

according to the relation names. Then the NAME
dependents are processed using the linear order in-
formation.

Using a similar process as described for UD, we
deal with nominals and clauses. For nominals, all
A1 and AM dependents are used for building a NP.
A sentence is built when a verb is encountered as
a head, the subject being the value of the A1 rela-
tion, the verb phrase comprises the head verb and
all other dependents. Some care has to be given to
the AiINV relations that are used as relative sen-
tences for verbs and noun complements. Given the
fact that important information has been removed
in the T2 structures, the results leave much room
for improvement. It would surely be interesting to
improve this output using a statistical spell or style
checker.

Table 3 shows the T2 structure for the exam-
ple shown in Table 1. That this sentence should
be written in passive mode is not specified in the
input, but the transformation rules indicate that a
passive subject is indicated by a A2 relation with-
out any A1. Prepositions being absent from T2
structures, we computed the most frequent prepo-
sition used with each word as head in the orig-
inal UD corpora; this is the only statistical pro-

http://taln.upf.edu/pages/msr2019-ws/srst_dataset_doc.txt
http://taln.upf.edu/pages/msr2019-ws/srst_dataset_doc.txt

47

cess used in our system, but there should be more.
This preposition is added for all dependents hav-
ing relation AM and Ai (i>= 3). For the verb kill,
the most frequent preposition being in, it is added
(correctly in this case) before the attack. The orig-
inal sentence was thus reproduced verbatim but, of
course, this is not always the case...

4 Results and Evaluation

We ran the program on all training (≈ 20 000 sen-
tences) and development (≈ 4 000 sentences) sets
provided by the organizers of SR’19 for English.
We also ran them on the test sets of the 2018 and
2019 competitions. Using SWI-Prolog V8.1, the
whole set is processed in about 5 minutes of real
time (half of which is CPU) on a 2.2 GHz Mac-
Book Pro, including the production of evaluation
files, a good example of Green AI (Schwartz et al.,
2019).

4.1 Automatic Evaluation

4.1.1 Training and development sets
Table 4 shows the BLEU, NIST and DIST scores
on the 2019 training and development sets for the
four English corpora. The scores for T1 and UD
are quite similar and their value are within the
scores obtained by systems on a similar task in
2018. Comparing the automatic results on the
train and development sets, we see that the results
for T1 are only slightly worse than the ones for UD
(especially for BLEU), so we consider that this ap-
proach is valuable for this special task.

It seems to us that the permutation of the lines
in the dependency file does not change the input
so much to warrant a special task. In fact, from an
NLG point of view, T1 seems artificial, as we can-
not imagine a generation system that determines
all the tokens but in a random order.

4.1.2 Test sets
Table 5 gives these scores for the test set used in
the 2018 competition. These scores are compet-
itive for T1 and only slightly less in BLEU than
the unique participant for this task in 2018. A cur-
sory manual evaluation of the output for T2 shows
the need for improvement for long sentences even
though the automatic scores are quite similar ex-
cept for BLEU. This can be explained by the fact
that a lot of information is not given in the output,
but is expected to be inferred by the NLG system.
For the moment, the only real information added

by the system is the most frequent preposition en-
countered in the test and development set for com-
plements of nouns or of verbs.

The 2019 test set was much more comprehen-
sive with more languages and different types of
corpora. Evaluation was done on both tokenized
and detokenized input. In the case of UD-SURFR,
as JSREALB was already realizing a detokenized
output, we had to write a tokenizer to separate
the tokens in order to make the output comparable
with the one of other systems working at the to-
ken level and then applying some postprocessing
to produce a more readable output with proper cas-
ing and appropriate spacing around punctuation.
In terms of automatic scores, UD-SURFR is com-
petitive: it is more or less the average between the
best and worst scores obtained by other systems.
And this seems consistent across all types of cor-
pora. Figure 1 shows a graph of the BLEU scores
for the tokenized sentences which seem to be typi-
cal of the comparison across the scores for all par-
ticipants to the tasks. For T1 (left part of the fig-
ure), the score for UD-SURFR (the black stripped
bar on the left) is approximately in the middle of
the score of other systems. For T2, except for the
very best system, UD-SURFR does surprisingly
well compared with other participants.

4.2 Manual Evaluation

The SR’19 organizers evaluated the output of 16
systems on two aspects:

• The text adequately expresses the meaning of
the sentence for which our T1 system ob-
tained 73% (ranked 11th) and T2 obtained
68% (ranked 14th) after scoring about 700
sentences; in fact these scores are not statisti-
cally different from each other.

• the text reads well and is free from grammat-
ical errors and awkward constructions for
with our T1 system obtained 58% which cor-
responds to the second group of system over
4. Note that the human reference only ob-
tained 71% on this evaluation. These scores
were based on about 550 sentences. We were
quite surprised to see that the T2 system man-
aged to get 50% even though no effort was
put in adding any language model.

Given the relative simplicity of our approach, we
are quite satisfied with these scores.

48

ewt gum lines partut
BLEU DIST NIST BLEU DIST NIST BLEU DIST NIST BLEU DIST NIST

train 12 543 sent. 2 914 sent. 2 738 sent. 1 781 sent.
UD 0.49 0.64 12.26 0.48 0.58 10.93 0.46 0.56 10.53 0.44 0.48 10.37
T1 0.38 0.62 10.88 0.40 0.55 10.17 0.36 0.53 9.42 0.38 0.48 9.73
T2 0.25 0.56 9.24 0.26 0.47 8.63 0.24 0.49 8.11 0.24 0.42 8.03
dev 2002 sent. 707 sent. 912 sent 156 sent.
UD 0.48 0.69 10.39 0.49 0.60 9.87 0.48 0.60 9.96 0.39 0.61 7.76
T1 0.37 0.66 9.33 0.41 0.57 9.23 0.38 0.56 9.00 0.33 0.60 7.31
T2 0.25 0.64 8.21 0.25 0.49 7.83 0.24 0.54 7.66 0.23 0.54 6.46

Table 4: Automatic evaluation scores produced by the evaluation scripts of the SR’19 organizers on the train and
dev sets. For UD and T1, the scores seem competitive with the ones obtained by the participants at the 2018
competition shown in Table 5.

BLEU DIST NIST
T1 0.38 0.69 9.38
2018-best 0.69 0.80 12.02
2018-worst 0.08 0.47 7.71
T2 0.19 0.60 7.87
2018 0.22 0.49 6.95

Table 5: Automatic evaluation on the 2061 sentences of the 2018 test set compared with the scores obtained by
systems participating in the 2018 shared task. Only one system provided output for the T2 task.

0

10

20

30

40

50

60

70

80

90

100

en_ewt-ud-test en_gum-ud-test en_lines-ud-test en_partut-ud-test en_pud-ud-test en_ewt-Pred-HIT-edit en_pud-Pred-
LATTICE

Task 1 - BLEU - Tokenized

Team 2 Team 1 Team 3 Team 4 Team 6 Team 7 Team 8 Team 9 Team 11 Team 12 Team 13

0

10

20

30

40

50

60

en_ewt-ud-test en_gum-ud-test en_lines-ud-test en_partut-ud-test en_pud-ud-test en_ewt-Pred-HIT-edit en_pud-Pred-LATTICE

Task 2 - BLEU-Tokenized

Team 2 Team 5 Team 9 Team 10 Team 13

Figure 1: Comparison for BLEU scores for T1 (left) and T2 (right) on tokenized sentences from the English
corpora for UD-SURFR (Team 2) shown as the first black stripped bar to the left compared with the scores obtained
by other participants.

5 Conclusion

We have described a symbolic approach for tack-
ling the tasks T1 and T2 of SR’19. We first de-
scribed the development of UD-SURFR, a text
realizer for standard UD input that can be used
for checking the annotation. We then described
UD-SURFR was modified to take into account the
specificities of the shared task. The system has
processed the training, development and test sets
of the competition and obtained average results
compared to other machine learning approaches.
This is quite surprising given the fact, that the

symbolic system only used a very small part of
the training and development corpora. But more
important, the experiment has revealed that task
T1 (for English at least) is perhaps too easy and
does not really correspond to a realistic input for a
text realizer. T2 proved more challenging but the
results are finally relatively similar.

49

References
Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A re-

alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natural
Language Generation (ENLG 2009), pages 90–93,
Athens, Greece. Association for Computational Lin-
guistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, and Leo Wanner. 2019. The Second Mul-
tilingual Surface Realisation Shared Task (SR’19):
Overview and Evaluation Results. In Proceedings of
the 2nd Workshop on Multilingual Surface Realisa-
tion (MSR), 2019 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Hong
Kong, China.

Simon Mille, Anja Belz, Bernd Bohnet, and Leo Wan-
ner. 2018. Underspecified universal dependency
structures as inputs for multilingual surface reali-
sation. In Proceedings of the 11th International
Conference on Natural Language Generation, pages
199–209, Tilburg University, The Netherlands. As-
sociation for Computational Linguistics.

Paul Molins and Guy Lapalme. 2015. JSrealB: A bilin-
gual text realizer for web programming. In Pro-
ceedings of the 15th European Workshop on Natu-
ral Language Generation (ENLG), pages 109–111,
Brighton, UK. Association for Computational Lin-
guistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Aarne Ranta and Prasanth Kolachina. 2017. From
universal dependencies to abstract syntax. In Pro-
ceedings of the NoDaLiDa 2017 Workshop on Uni-
versal Dependencies (UDW 2017), pages 107–116,
Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2019. Green AI. arXiv-1907.10597.

https://www.aclweb.org/anthology/W09-0613
https://www.aclweb.org/anthology/W09-0613
https://www.aclweb.org/anthology/W18-6527
https://www.aclweb.org/anthology/W18-6527
https://www.aclweb.org/anthology/W18-6527
https://doi.org/10.18653/v1/W15-4719
https://doi.org/10.18653/v1/W15-4719
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/W17-0414
https://www.aclweb.org/anthology/W17-0414
http://arxiv.org/abs/1907.10597

