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Abstract

We report results from the SR’19 Shared
Task, the second edition of a multilingual sur-
face realisation task organised as part of the
EMNLP’19 Workshop on Multilingual Sur-
face Realisation. As in SR’18, the shared task
comprised two different tracks: (a) a Shallow
Track where the inputs were full UD structures
with word order information removed and to-
kens lemmatised; and (b) a Deep Track where
additionally, functional words and morpholog-
ical information were removed. The Shallow
Track was offered in 11, and the Deep Track
in three languages. Systems were evaluated
(a) automatically, using a range of intrinsic
metrics, and (b) by human judges in terms of
readability and meaning similarity to a refer-
ence. This report presents the evaluation re-
sults, along with descriptions of the SR’19
tracks, data and evaluation methods, as well as
brief summaries of the participating systems.
For full descriptions of the participating sys-
tems, please see the separate system reports
elsewhere in this volume.

1 Introduction and Task Overview

Following the success of the First Multilin-
gual Surface Realisation Shared Task in 2018
(SR’18), which had the goal to stimulate the ex-
ploration of advanced neural models for multi-
lingual sentence generation from Universal De-
pendency (UD) structures,1 the second edition of
the task (SR’19) aims to build on last year’s re-
sults and achieve further progress. While Natural
Language Generation (NLG) has been gaining in-
creasing attention from NLP researchers, it con-
tinues to be a smaller field than e.g. parsing, text
classification, sentiment analysis, etc. Universal
dependencies are also enjoying increasing atten-
tion: the number of UD treebanks is continuously

1http://universaldependencies.org/

growing, as is their size (and thus the volume of
available training material).2

The SR tasks require participating systems to
generate sentences from structures at the level of
abstraction of outputs produced by state-of-the-art
parsing. In order to promote linkage with pars-
ing and earlier stages of generation, participants
are encouraged to explore the extent to which neu-
ral network parsing algorithms can be reversed for
generation. As was the case with its predecessor
tasks SR’11 (Belz et al., 2011) and SR’18 (Mille
et al., 2018), SR’19 comprises two tracks distin-
guished by the level of specificity of the inputs:

Shallow Track (T1): This track starts from UD
structures in which most of the word order infor-
mation has been removed and tokens have been
lemmatised. In other words, it starts from un-
ordered dependency trees with lemmatised nodes
that hold PoS tags and morphological information
as found in the original treebank annotations. The
task in this track therefore amounts to determining
the word order and inflecting words.

Deep Track (T2): This track starts from UD
structures from which functional words (in partic-
ular, auxiliaries, functional prepositions and con-
junctions) and surface-oriented morphological and
syntactic information have additionally been re-
moved. The task in the Deep Track thus also
involves reintroduction of functional words and
morphological features, in addition to what is re-
quired for the Shallow Track.

The training and development data for both tracks
and the evaluation scripts were released on April
5th 2019, the training data on August 3rd 2019
and the outputs were collected two weeks later on
August 19th; the teams had up to 4 months to de-

2UD v2.4 contains 146 treebanks in 83 languages.

http://universaldependencies.org/
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velop their systems.3 Compared to SR’18, SR’19
has a broader variety of languages hence even
more emphasis on multilinguality, with 11 lan-
guages from 9 language families:4 Arabic (Afro-
Asiatic), Chinese (Sino-Tibetan), English (Ger-
manic), French, Portuguese and Spanish (Italic),
Hindi (Indo-Iranian), Indonesian (Austronesian),
Japanese (Japonic), Korean (Koreanic) and Rus-
sian (Balto-Slavic). This reflects a trend in NLP
towards taking into account increasing numbers of
languages for the validation of developed models;
see e.g., SIGMORPHON 2019, which addressed
crosslingual inflection generation in 100 language
pairs.5

In the remainder of this paper, we describe the
Shallow and Deep Track data (Section 2), and the
evaluation methods we used to evaluate submit-
ted systems (Sections 3.1 and 3.2). We then intro-
duce the participating systems briefly (Section 4),
report and discuss evaluation results (Section 5),
and conclude with some discussion and a look to
the future (Section 6).

2 Data

2.1 Overview of datasets and additional
resources

In order to create the SR’19 training, development
and test sets, we used as data sources 20 UD tree-
banks6 for which annotations of reasonable qual-
ity were available, providing PoS tags and mor-
phologically relevant markup (number, tense, ver-
bal finiteness, etc.). Unlike in SR’18, several tree-
banks were available for some languages, enabling
us to use out-of-domain as well as silver standard
datasets as additional test data (for details see Sec-
tion 2.3). Table 1 gives an overview of the variety
and sizes of the datasets.

Teams were allowed to build models trained on
any SR’19 dataset(s) of their choice, but not exter-
nal task-specific data. Other resources were, how-
ever, permissible. For example, available parsers
such as UUParser (Smith et al., 2018) could be
run to create a silver standard versions of provided
datasets and use them as additional or alternative
training material, and publicly available off-the-

3In the case of one team, we agreed to move the two
week window between test data release and submission to
one week earlier.

4At SR’18, there were ten languages from five families.
5https://www.aclweb.org/portal/

content/sigmorphon-shared-task-2019
6universaldependencies.org

shelf language models such as GPT-2 (Radford
et al., 2019), ELMo (Peters et al., 2018), poly-
glot (Al-Rfou et al., 2013) or BERT (Devlin et al.,
2018) could be fine-tuned with publicly available
datasets such as WikiText (Merity et al., 2016)
or the DeepMind Q&A Dataset (Hermann et al.,
2015).

Datasets were created for 11 languages in the
Shallow Track, and for three of those languages,
namely English, French and Spanish, in the Deep
Track. As in 2018, Shallow Track inputs were
generated with the aid of Python scripts from the
original UD structures, this time using all avail-
able input sentences. Deep Track inputs were
then generated by automatically processing the
Shallow Track structures using a series of graph-
transduction grammars covering steps 5–11 in
Section 2.2 below. In the training data, there is
a node-to-node correspondence between the deep
and shallow input structures, and they are both
aligned with the original UD structures. We used
only information found in the UD syntactic struc-
tures to create the deep inputs, and tried to keep
their structure simple. Moreover, words were not
disambiguated, full prepositions may be missing,
and some argument relations may be underspeci-
fied or missing.

Structures for both Shallow and Deep Tracks
are trees, and are released in a slightly modified
CoNLL-U format, comprising the following ten
columns: [1] Position, [2] Lemma, [3] Wordform,
[4] PoS, [5] Fine-grained PoS (if available), [6]
Features (FEATS), [7] governor, [8] dependency
relation, [9] additional dependency information,
and [10] metadata.7 Figure 1 shows a sample orig-
inal UD annotation for English; the corresponding
shallow and deep input structures derived from it
are shown in Figures 2 and 3, respectively (the last
two columns are empty for the task).

2.2 Task data creation

To create the data for the Shallow Track, the orig-
inal UD data was processed as follows:

1. Word order information was removed by ran-
domised scrambling, but in the training data,
the alignment with the original position of
each word in the sentence was maintained via
a feature in the FEATS column;

7http://universaldependencies.org/
format.html

https://www.aclweb.org/portal/content/sigmorphon-shared-task-2019
https://www.aclweb.org/portal/content/sigmorphon-shared-task-2019
http://universaldependencies.org/format.html
http://universaldependencies.org/format.html
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Data type Dataset Track train dev test

In-domain

arabic padt (ar) T1 6,075 909 680
chinese gsd (zh) T1 3,997 500 500
english ewt (en) T1, T2 12,543 2,002 2,077
english gum (en) T1, T2 2,914 707 778
english lines (en) T1, T2 2,738 912 914
english partut (en) T1, T2 1,781 156 153
french gsd (fr) T1, T2 14,450 1,476 416
french partut (fr) T1, T2 803 107 110
french sequoia (fr) T1, T2 2,231 412 456
hindi hdtb (hi) T1 13,304 1,659 1,684
indonesian gsd (id) T1 4,477 559 557
japanese gsd (ja) T1 7,133 511 551
korean gsd (ko) T1 4,400 950 989
korean kaist (ko) T1 23,010 2,066 2,287
portuguese bosque (pt) T1 8,328 560 477
portuguese gsd (pt) T1 9,664 1,210 1,204
russian gsd (ru) T1 3,850 579 601
russian syntagrus (ru) T1 48,814 6,584 6,491
spanish ancora (es) T1, T2 14,305 1,654 1,721
spanish gsd (es) T1, T2 14,187 1,400 426

Out-of-domain
english pud (en) T1, T2 - - 1,000
japanese pud (ja) T1 - - 1,000
russian pud (ru) T1 - - 1,000

Automatically parsed

english ewt-HIT (en) T1, T2 - - 1,795
english pud-LAT (en) T1, T2 - - 1,032
hindi hdtb-HIT (hi) T1 - - 1,675
korean kaist-HIT (ko) T1 - - 2,287
portuguese bosque-Sta (pt) T1 - - 471
spanish ancora-HIT (es) T1, T2 - - 1,723

Table 1: SR’19 dataset sizes for training, development and test sets (number of sentences).

2. Missing lemmas were added in the file, since
in some cases the lemma value was empty
(e.g. Portuguese-gsd dataset) or generalised
(e.g. @card@ or @ord@ for cardinal and or-
dinal numbers in the English-gum dataset);8

3. The lines corresponding to combined lexi-
cal units (e.g. Spanish “del” <de+el> lit.
’of.the’) and the contents of columns [9] and
[10] were removed;

4. Information about the relative order of com-
ponents of named entities, multiple coordina-
tions and punctuation signs was added in the
FEATS column (dependency relations com-
pound, compound:prt, compound:svc, flat,
flat:foreign, flat:name, fixed, conj, punct);

For the Deep Track, the following steps were ad-
ditionally carried out:

5. Edge labels were generalised into pred-
icate/argument labels, in the Prop-
Bank/NomBank (Palmer et al., 2005;
Meyers et al., 2004) fashion. That is, the

8Thank you to Guy Lapalme for spotting this.

syntactic relations were mapped to core (A1,
A2, etc.) and non-core (AM) labels, applying
the following rules: (i) the first argument is
always labeled A1 (i.e. there is no external
argument A0); (ii) in order to maintain the
tree structure and account for some cases
of shared arguments, there can be inverted
argument relations; (iii) all modifier edges
are assigned the same generic label AM; (iv)
there is a coordinating relation. See also the
inventory of relations in Table 2.

6. Functional prepositions and conjunctions in
argument position (i.e. prepositions and con-
junctions that can be inferred from other lexi-
cal units or from the syntactic structure) were
removed (e.g. about and that in Figure 2);
prepositions and conjunctions retained in the
deep representation can be found under a
A2INV dependency; a dependency path Gov
AM→ Dep A2INV → Prep is equivalent to a
predicate (the conjunction/preposition) with
2 arguments: Gov← A1 Prep A2→ Dep.

7. Definite and indefinite determiners, auxil-
iaries and modals were converted into at-
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Deep label Description Example

A1, A2, ..., A6 nth argument of a predicate fall→ the ball
A1INV, ..., A6INV nth inverted argument of a predicate the ball→ fall
AM/AMINV (i) none of governor or dependent are argument of the other fall→ last night

(ii) unknown argument slot
LIST List of elements fall→ [and] bounce
NAME Part of a name Tower→ Eiffel
DEP Undefined dependent N/A

Table 2: Deep labels.

tribute/value pairs, as were definiteness fea-
tures, and the universal aspect and mood fea-
tures9, see examples in Figure 3.

8. Subject and object relative pronouns directly
linked to the main relative verb were re-
moved (instead, the verb was linked to the an-
tecedent of the pronoun); a dummy pronoun
node for the subject was added if an origi-
nally finite verb had no first argument and no
available argument to build a passive; for a
pro-drop language such as Spanish, a dummy
pronoun was added if the first argument was
missing.

9. Surface-level morphologically relevant infor-
mation as prescribed by syntactic structure or
agreement (such as verbal finiteness or ver-
bal number) was removed, whereas semantic-
level information such as nominal number
and verbal tense was retained.

10. Fine-grained PoS labels found in some tree-
banks (see e.g. column 5 in Figure 2) were
removed, and only coarse-grained ones were
retained (column 4 in Figures 2 and 3).

11. In the training data, the alignments with the
tokens of the Shallow Track structures were
added in the FEATS column.

Figure 3 shows an example Deep Track input that
corresponds to the original and shallow structures
in Figures 1 and 2.

2.3 Additional test data
For additional test data, we used automatically
produced UD parses, which we then processed in
the same way as the gold-standard structures, us-
ing the best parsers from the CoNLL’18 shared
task on the dataset in question.10 We used the

9http://universaldependencies.org/u/
feat/index.html

10See the rankings per treebanks at https:
//universaldependencies.org/conll18/
results-las.html.

UD2.3 version of the dataset, whereas CoNLL’18
used UD2.2; we selected treebanks that had not
undergone major updates from one version to the
next according to their README files on the UD
site, and for which the best available parse reached
a Labeled Attachment Score of 85 and over.11

There were datasets meeting these criteria for En-
glish (2), Hindi, Korean, Portuguese and Spanish;
the Harbin HIT-SCIR parser (Che et al., 2017) had
best scores on four of these datasets; LATTICE
(Lim et al., 2018) and Stanford (Qi et al., 2019)
had the best scores for the remaining two;12 see
Table 3 for an overview.

As is the case for all test data, in the additional
automatically parsed test data alignments with sur-
face tokens and with Shallow Track tokens are
not provided; however, in the cases described in
4 above, the relative order is provided.

Treebank Best system LAS

english ewt HIT-SCIR 84.57
english pud LATTICE 87.89
hindi hdtb HIT-SCIR 92.41
korean kaist HIT-SCIR 86.91
portuguese bosque Stanford 87.81
spanish ancora HIT-SCIR 90.93

Table 3: The 6 combinations of dataset and parser out-
puts selected for the automatically parsed test set.

2.4 Data formats for evaluations
Unlike in SR’18, where detokenised outputs only
were used, the SR’19 teams were asked to pro-
vide tokenised (for automatic evaluations) as well
as detokenised (for human evaluations) outputs;
if no detokenised outputs were provided, the to-
kenised files were also used for the human evalu-

11The best score on the English-EWT dataset is slightly be-
low this threshold (84.57), but the dataset was selected any-
way because English was expected to be the language most
addressed by the participants.

12The CoNLL’18 shared task submissions were down-
loaded from https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2885.

http://universaldependencies.org/u/feat/index.html
http://universaldependencies.org/u/feat/index.html
https://universaldependencies.org/conll18/results-las.html
https://universaldependencies.org/conll18/results-las.html
https://universaldependencies.org/conll18/results-las.html
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885
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Figure 1: A sample UD structure in English.

Figure 2: Shallow input (T1) derived from UD structure in Figure 1
.

Figure 3: Deep input (T2) derived from UD structure in Figure 1.
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ation. The reason for using tokenised outputs for
automatic evaluation is the inclusion of languages
like Chinese and Japanese where sentences are se-
quences of characters with no white-space separa-
tors. Two of the metrics used in automatic eval-
uations, BLEU and NIST, compute scores based
on matching sequences of characters; if there is
no whitespace, the whole sentence is the sequence
that is used for matching. As a result, one single
different character in a sentence would prevent a
match with the reference sentence, and a null score
would be assigned to the whole sentence. The fol-
lowing example shows a Spanish sentence in its
tokenised and detokenised forms:

• Tokenised sample (Spanish): All tokens are
preceded by a white space.
Elı́as Jaua , miembro del Congresillo , con-
sidera que los nuevos miembros del CNE
deben tener experiencia para “ dirigir pro-
cesos complejos ” .

• Detokenised sample (Spanish): White spaces
before or after some punctuation signs are re-
moved.
Elı́as Jaua, miembro del Congresillo, con-
sidera que los nuevos miembros del CNE
deben tener experiencia para “dirigir proce-
sos complejos”.

In the original UD files, the reference sentences
are by default detokenised. In order to carry out
the evaluations of the tokenised outputs, we built
a tokenised version of the reference sentences by
concatenating the words of the second column of
the UD structures (see Figure 1) separated by a
whitespace.

3 Evaluation Methods

3.1 Automatic methods
We used BLEU, NIST, and inverse normalised
character-based string-edit distance (referred to as
DIST, for short, below) to assess submitted sys-
tems. BLEU (Papineni et al., 2002) is a precision
metric that computes the geometric mean of the
n-gram precisions between generated text and ref-
erence texts and adds a brevity penalty for shorter
sentences. We use the smoothed version and re-
port results for n = 4.

NIST13 is a related n-gram similarity metric
13http://www.itl.nist.gov/iad/mig/

tests/mt/doc/ngram-study.pdf; http://
www.itl.nist.gov/iad/mig/tests/mt/2009/

weighted in favor of less frequent n-grams which
are taken to be more informative.

DIST starts by computing the minimum num-
ber of character inserts, deletes and substitutions
(all at cost 1) required to turn the system output
into the (single) reference text. The resulting num-
ber is then divided by the number of characters in
the reference text, and finally subtracted from 1,
in order to align with the other metrics. Spaces
and punctuation marks count as characters; output
texts were otherwise normalised as for all metrics
(see below).

The figures in the tables below are the system-
level scores for BLEU and NIST, and the mean
sentence-level scores for DIST.

Text normalisation: Output texts were nor-
malised prior to computing metrics by lower-
casing all tokens, removing any extraneous
whitespace characters.

Missing outputs: Missing outputs were scored
0. We only report results for all sentences (incor-
porating the missing-output penalty), rather than
also separately reporting scores for just the in-
coverage items.

Important note: The SR’19 scores are not di-
rectly comparable to the SR’18 ones, since the
SR’18 scores were calculated on detokenised out-
puts, whereas the scores presented in this report
were calculated on tokenised outputs (see Section
2.4). In addition, the method for calculating the
DIST score in SR’18 was different in that it did
not take into account the whole sentence. 14

3.2 Human-assessed methods
For the human evaluation, we selected a sub-
set of language/track combinations based on
number of submissions received and availabil-
ity of evaluators: four Shallow Track in-domain
datasets (Chinese-GSD, English-EWT, Russian-
SynTagRus, Spanish-AnCora), one Shallow Track
dataset coming from parsed data (Spanish-
AnCoraHIT ) and one (in-domain) Deep Track
dataset (English-EWT).

As in SR’11 (Belz et al., 2011) and SR’18
(Mille et al., 2018), we assessed two quality cri-
teria in the human evaluations, in separate evalua-
tion experiments, Readability and Meaning Simi-
larity, and used continuous sliders as rating tools,
the evidence being that raters tend to prefer them

14Thank you to Yevgeniy Puzikov for pointing this out.

http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf
http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf
http://www.itl.nist.gov/iad/mig/tests/mt/2009/
http://www.itl.nist.gov/iad/mig/tests/mt/2009/
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(Belz and Kow, 2011). Slider positions were
mapped to values from 0 to 100 (best). Raters
were first given brief instructions, including the
direction to ignore formatting errors, superfluous
whitespace, capitalisation issues, and poor hy-
phenation. The statement to be assessed in the
Readability evaluation was:

The text reads well and is free from gram-
matical errors and awkward constructions.

The corresponding statement in the Meaning Sim-
ilarity evaluation, in which system outputs (‘the
black text’) were compared to reference sentences
(‘the grey text’), was as follows:

The meaning of the grey text is adequately
expressed by the black text.

Slider design: As in SR’18, and for conformity
with what has emerged as an affordable human
evaluation standard over the past three years in
the main machine translation shared tasks held at
WMT (Bojar et al., 2017, 2018; Barrault et al.,
2019), we used a slider design as follows, with the
pointer starting at 0:

Mechanical Turk evaluations: As in SR’18,
we ran human evaluation on Mechanical Turk us-
ing Direct Assessment (DA) (Graham et al., 2016),
the human evaluation used at WMT campaigns
to produce official ranking of machine translation
systems (Barrault et al., 2019). We ran both mean-
ing similarity and readability evaluations, as sepa-
rate assessments, but using the same method.

Quality assurance: System outputs are ran-
domly assigned to HITs (following Mechanical
Turk terminology) of 100 outputs, of which 20
are used solely for quality assurance (QA) (i.e. do
not count towards system scores): (i) some are re-
peated as-is, (ii) some are repeated in a ‘damaged’
version and (iii) some are replaced by their cor-
responding reference texts. In each case, a mini-
mum threshold has to be reached for the HIT to be
accepted: for (i), scores must be similar enough,
for (ii) the score for the damaged version must be
worse, and for (iii) the score for the reference text
must be high. For full details of how these ad-
ditional texts are created and thresholds applied,
please refer to Barrault et al. (2019). We report
QA figures for the MTurk evaluations below.

Test data sets for human evaluations: Test set
sizes out of the box varied for the different lan-
guages. For the human test sets we selected either
the entire set or a subset of approximately 500,
whichever was the smaller number, for a given lan-
guage, motivated by the power analysis provided
by Graham et al. (2019). For subsets, test set items
were selected randomly.

Reported scores: In keeping with the WMT ap-
proach, we report both average raw scores and
average standardised scores per system. In or-
der to produce standardised scores we simply map
each individual evaluator’s scores to their stan-
dard scores (or z-scores) computed on the set of
all raw scores by the given evaluator using each
evaluator’s mean and standard deviation. For both
raw and standard scores, we compute the mean of
sentence-level scores.

Code: We were able to reuse, with minor adap-
tations, the code produced for the WMT’17 evalu-
ations.15

4 Overview of Submitted Systems

ADAPT is a sequence to sequence model with de-
pendency features attached to word embeddings.
A BERT sentence classifier was used as a reranker
to choose between different hypotheses. The im-
plementation is very similar to ADAPT’s SR’18
submission (Elder and Hokamp, 2018).

The BME-UW system (Kovács et al., 2019)
learns weighted rules of an Interpreted Regu-
lar Tree Grammar (IRTG) to encode the cor-
respondence between word sequences and UD-
subgraphs. For the inflection step, a standard
sequence-to-sequence model with a biLSTM en-
coder and an LSTM decoder with attention is used.

CLaC (Farahnak et al., 2019) is a pointer net-
work trained to find the best order of the input.
A slightly modified version of the transformer
model was used as the encoder and decoder for
the pointer network.

The CMU (Du and Black, 2019) system uses a
graph neural network for end-to-end ordering, and
a character RNN for morphology.

DepDist (Dyer, 2019) uses syntactic embed-
dings and a graph neural network with message
passing to learn the tolerances for how far a de-
pendent tends to be from its head. These directed

15https://github.com/ygraham/
segment-mteval

https://github.com/ygraham/segment-mteval
https://github.com/ygraham/segment-mteval
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dependency distance tolerances form an edge-
weighted directed acyclic graph (DAG) (equiva-
lent to a partially ordered set, or poset) for each
sentence, the topological sort of which generates
a surface order. Inflection is addressed with regex
patterns and substitutions approximating produc-
tive inflectional paradigms.

The DipInfoUnito realiser (Mazzei and Basile,
2019) is a supervised statistical system for surface
realisation, in which two neural network-based
models run in parallel on the same input structure,
namely a list-wise learning to rank network for lin-
earisation and a seq2seq network for morphology
inflection prediction.

IMS (Yu et al., 2019) uses a pipeline approach
for both tracks, consisting of linearisation, com-
pletion (for T2 only), inflection, and contraction.
All models use the same bidirectional Tree-LSTM
encoder architecture. The linearisation model or-
ders each subtree separately with beam search and
then combines them into a full projective tree;
the completion model generates absent function
words in a sequential way given the linearised tree
of content words; the inflection model predicts a
sequence of edit operations to convert the lemma
to word form character by character; the contrac-
tion model predicts BIO tags to group the words
to be contracted, and then generate the contracted
word form of each group with a seq2seq model.

The LORIA submission (Shimorina and Gar-
dent, 2019) presents a modular approach to sur-
face realisation with three subsequent steps: word
ordering, morphological inflection, and contrac-
tion generation (for some languages). For word
ordering, the data is delexicalised, the input tree
is linearised, and the mapping between an input
tree and output lemma sequence is learned using
a factored sequence-to-sequence model. Morpho-
logical inflection makes use of a neural character-
based model, which produces word forms based
on lemmas coupled with morphological features;
finally, a rule-based contraction generation mod-
ule is applied for some languages.

The OSU-FB pipeline for generation (Upasani
et al., 2019) starts by generating inflected word
forms in the tree using character seq2seq mod-
els. These inflected syntactic trees are then lin-
earised as constituent trees by converting the rela-
tions to non-terminals. The linearised constituent
trees are fed to seq2seq models (including models
with copy and with tree-LSTM encoders) whose

outputs also contain tokens marking the tree struc-
ture. N-best outputs are obtained for orderings
and the highest confidence output sequence with
a valid tree is chosen (i.e, one where the input and
output trees are isomorphic up to sibling order, en-
suring projectivity).

The RALI system (Lapalme, 2019) uses a sym-
bolic approach to transform the dependency tree
into a tree of constituents that is transformed into
an English sentence by an existing English re-
aliser, JSrealB (Molins and Lapalme, 2015). This
realiser was then slightly modified for the two
tracks.

Surfers (Hong et al., 2019) first performs delex-
icalisation to obtain a dictionary for proper names
and numbers. A GCN is then used to encode the
tree inputs, and an LSTM encoder-decoder with
copy attention to generate delexicalised outputs.
No part-of-speech tags, universal features or pre-
trained embeddings / language models are used.

The Tilburg approach (Ferreira and Krahmer,
2019), based on Ferreira et al. (2018), realises
multilingual texts by first preprocessing an input
dependency tree into an ordered linearised string,
which is then realised using a rule-based and a sta-
tistical machine translation (SMT) model.

Baseline: In order to set a lower boundary for
the automatic and human evaluations, a simple En-
glish baseline consisting of 7 lines of python code
was implemented16. It generates from a UD file
with an in-order traversal of the tree read by py-
conll and outputting the form of each node.

5 Evaluation results

There were 14 submissions to the task, of which
two were withdrawn; 9 teams participated in the
Shallow Track only, two teams participated in both
tracks, and one team in the Deep Track only. For
the Shallow Track, four teams (BME, IMS, LO-
RIA and Tilburg) generated outputs for all lan-
guages (29 datasets), four teams (ADAPT, CLaC,
RALI and OSU-FB) submitted only for the En-
glish datasets, and three teams (CMU, DepDist
and DipInfo-UniTo) submitted in several but not
all languages. For the Deep Track, two of the three
teams (IMS, Surfers) addressed all languages (13
datasets), and one team (RALI) addressed English
only. IMS is the only team to have submitted re-
sults for all 42 datasets.

16The idea and implementation are from Guy Lapalme,
who is also the author of the RALI system.
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–T1-BLEU– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 26.4 23.01 64.9 16.71 21.12
en ewt 79.69 59.22 22.08 77.47 60.51 43.5 82.98 60.37 41.23 62.38 59.57
en gum 81.39 57.57 15.32 82.39 66.06 44.24 83.84 60.7 46.68 49.91 59.39
en lines 41.62 48.78 15.3 75.49 59.81 32.42 81 58.82 41.28 54.56 57.02
en partut 51 61.37 10.07 78.98 62.68 35.11 87.25 53.64 48.43 7.37 64.87
es ancora 61.09 76.47 59.29 83.7 43.02 59.29
es gsd 53.74 70.15 57.14 82.98 53.16 54.48
fr gsd 43.8 60.15 44.91 27.04 84 54.6 52.1
fr partut 49.17 63.7 55.05 37.69 83.38 54.14 66.01
fr sequoia 46.72 62.79 46.87 28.95 85.01 53.71 57.41
hi hdtb 63.63 64.07 80.56 26.51 60.72
id gsd 54.22 63.71 85.34 46.27 53.03
ja gsd 49.53 63.59 50.19 87.69 38.8 43.02
ko gsd 46.08 41.81 74.19 37.85 2.14
ko kaist 47.23 73.93 39.75 1.39
pt bosque 39.53 39.82 77.75 52.69 51.18
pt gsd 30.39 27.16 75.93 33.45 40.48
ru gsd 54.58 32.04 71.23 55.09 6.84
ru syntagrus 50.91 76.95 59.99 30.51
zh gsd 58.72 68.54 59.64 32.87 83.85 48.21 53

en pud 84.07 60.42 12.36 80.35 45.61 86.61 61.43 46.84 67.91 63.29
ja pud 53.65 66.52 86.64 41.72 44.37
ru pud 10.15 58.38 52.37 16.35

en ewtHIT 77.21 58.07 21.21 76.6 43.23 81.8 58.5 39.77 60.58 59.08
en pudLAT 80.66 53.46 12.89 76.22 44.06 82.6 55.4 41.5 66.18 57.92
es ancoraHIT 61.26 77.28 83.31 43.2 59.58
hi hdtbHIT 64.27 80.19 26.99 61.54
ko kaistHIT 46.72 74.27 41.83 1.73
pt bosqueSTA 40.42 78.97 53.64 52.79

Table 4: BLEU-4 scores for the 29 Shallow Track datasets

–T1-NIST– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 8.29 7.2 12.22 6.25 7.06
en ewt 13.44 12.62 9.77 13.28 12.5 11.56 13.61 11.89 10.69 11.29 12.56
en gum 12.6 11.99 8.64 12.73 12.07 11.15 12.69 11.15 10.74 8.5 11.8
en lines 9.19 11.54 8.23 12.43 11.68 10.05 12.71 11.17 10.19 9.89 11.64
en partut 8.59 10.34 7.14 10.74 10.23 9.08 11.01 9.29 9.28 3.21 10.27
es ancora 13.52 14.27 13.19 14.69 11.13 13.44
es gsd 11.44 11.99 11.43 12.77 10.68 11.39
fr gsd 10.33 10.86 10.32 9.58 12.45 10.66 10.89
fr partut 8.99 9.16 8.94 8.57 10.36 8.92 9.29
fr sequoia 10.55 11.04 10.47 9.72 12.53 10.56 10.93
hi hdtb 12.26 12.09 13.07 7.97 12.35
id gsd 11.82 12.01 12.83 9.79 11.41
ja gsd 9.99 10.62 9.67 12.42 8.51 9.36
ko gsd 11.98 10.54 12.27 9.98 3.43
ko kaist 12.65 13 10.62 2.52
pt bosque 9.77 9.76 12.15 10.52 11.01
pt gsd 8.85 8.57 13.07 8.89 10.69
ru gsd 11.91 9.06 12.15 11.43 4.68
ru syntagrus 13.8 15.08 13.98 10.87
zh gsd 11.85 12.28 11.98 11.16 12.78 10.27 11.61

en pud 13.36 12.6 8.83 13.18 11.81 13.47 11.81 11.4 11.74 12.69
ja pud 10.56 11.35 13.02 9.29 9.98
ru pud 9.64 10.91 11.16 7.19

en ewtHIT 13.24 12.49 9.69 13.18 11.44 13.46 11.61 10.48 10.96 12.45
en pudLAT 13.17 12.29 8.82 13.02 11.67 13.26 11.42 10.93 11.7 12.32
es ancoraHIT 13.51 14.3 14.61 11.09 13.44
hi hdtbHIT 12.29 13.05 8.01 12.46
ko kaistHIT 12.63 13.02 10.79 2.81
pt bosqueSTA 9.73 12.14 10.54 11.05

Table 5: NIST scores for the 29 Shallow Track datasets
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–T1-DIST– ADA BME CLa CMU Dep Dip IMS LOR RAL OSU Til

ar padt 43.06 55.72 73.71 48.96 53.44
en ewt 83.69 62.69 45.99 80.92 71.99 60.13 86.72 73.96 59.78 77.93 73.67
en gum 83.26 56.07 38.13 84.41 68.84 56.04 83.49 72.89 58.6 66.88 69.92
en lines 63.31 52.77 40.4 79.6 65.93 53.21 82.21 71.21 56.68 71.07 67.37
en partut 70.32 61.22 36.21 78.89 65.9 51.15 85.68 66.8 57.64 54.27 66.69
es ancora 58.15 75.53 62.45 79.82 63.2 63.03
es gsd 59.03 73.69 63.9 79.45 66.07 62.55
fr gsd 59.35 75.18 62.47 47.33 84.15 66.55 63.3
fr partut 56.87 79.83 69.45 54.85 82.32 65.76 72.28
fr sequoia 59.28 76.6 61.96 48.7 85.13 67.21 66.24
hi hdtb 64.04 65.85 79.07 60.67 65.63
id gsd 55.57 71.39 83.92 63.41 71.07
ja gsd 57.03 79.09 69.14 87.17 61.03 62.08
ko gsd 52.1 65.75 80.95 62.56 48.54
ko kaist 50.9 78.69 66.17 49.81
pt bosque 58.72 61.16 79.8 65.96 63.37
pt gsd 54.93 57.93 79.33 63.41 59.6
ru gsd 52.67 55.84 73.04 62.98 50.36
ru syntagrus 55.6 78.66 69.06 56.91
zh gsd 59.29 73.03 65.28 50.57 83.18 62.27 65.7

en pud 85.03 59.84 36.26 81.5 53.26 87 72.85 59.45 78.12 71.01
ja pud 56.72 77.87 84.04 61.77 60.2
ru pud 32.08 77.12 68.71 58.68

en ewtHIT 81.57 60.36 43.59 79.41 58.72 85.35 71.91 58.67 74.64 72.7
en pudLAT 83.89 56.13 36.67 79.34 54.42 86.18 70.49 57.55 76.8 67.54
es ancoraHIT 58.38 77.26 81.14 64.68 63.24
hi hdtbHIT 64.58 78.88 61.58 66.13
ko kaistHIT 50.16 79.12 67.33 51.15
pt bosqueSTA 59.72 81.56 68.09 64.32

Table 6: DIST scores for the 29 Shallow Track datasets

5.1 Results from metric evaluations

Tables 4, 5, and 6 show results for the eleven T1
systems in terms of BLEU, NIST and DIST; Table
7 shows results for the three T2 systems in terms
of the same three metrics. In general, scores are
higher than last year. This is partly due to the fact
that the evaluations are performed on tokenised
sentences (see Section 2.4). Scores are about 5-
10 BLEU points lower when evaluations are run
on detokenised sentences; for instance, the BLEU
score for ADAPT on English-EWT is 79.69, but
using detokenised outputs and references it drops
to 70.26, which is very close to the 69.14 score
obtained in SR’18 (the SR’18 and SR’19 ADAPT
systems are very similar).

IMS obtained the best scores for all metrics on
almost all datasets: the only higher scores are the
NIST score for the LORIA system on Russian-
PUD, and the DIST score for CMU on English-
GUM. IMS achieved high macro-average scores
on both Shallow and Deep track datasets, with
79.97 BLEU for T1, 51.41 BLEU for T2, 12.79
NIST for T1, 10.94 NIST for T2, 81.62 DIST for
T1, and 71.16 DIST for T2.

In the Shallow Track, 8 out of the 11 systems
scored 59 BLEU and above on the English-EWT
dataset, and three systems achieved a BLEU score
of about 80, the highest score being obtained by
IMS with 82.98. High scores were also achieved
for Spanish, Hindi, Indonesian, French and Chi-
nese (58 BLEU and above on average).

Evaluations of the out-of-domain datasets
(PUD) for English and Japanese generally yielded
higher scores than those of the in-domain datasets,
whereas the opposite is true for Russian. This may
be because of the type of language in the differ-
ent datasets: for instance, the PUD data contains
news and Wikipedia texts, i.e. rather cleanly writ-
ten texts, while the English-EWT corpus contains
customer reviews, blog and forum posts, in which
a wider variety of language use can be found. Sen-
tences such as Fun picture websites (:? or in n out
of the chicago area? are expected to be generated
but are more difficult to predict; for instance, the
IMS outputs for these two sentences are In a out
of the chicago area? and (: fun picture websites?.
In this case the type of language used seems to
have more impact than the fact that the domains
are different. On the other hand, the Russian-
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–T2– BLEU NIST DIST
IMS RAL Sur IMS RAL Sur IMS RAL Sur

en ewt 54.75 26.28 23.35 11.79 9.42 7.29 76.3 55.08 56.88
en gum 52.45 26.17 17.97 11.04 9.14 5.88 73.07 51.64 49.45
en lines 47.29 24.94 20.96 10.63 8.79 6.35 71.93 51.2 52.49
en partut 45.89 23.82 17.19 9.03 7.67 4.66 67.45 48.88 47.2
es ancora 53.13 18.59 12.38 5.66 68.58 47.19
es gsd 51.17 18.69 10.82 5.53 68.85 48.06
fr gsd 53.62 15.83 10.79 4.53 68.82 47.93
fr partut 46.95 14.06 8.27 3.61 68.99 46.55
fr sequoia 57.41 18.52 11 4.8 72.06 50.94

en pud 51.01 26.39 18.11 11.45 9.63 6.18 72.31 49.91 49.88

en ewtHIT 53.54 24.54 22.42 11.55 9.19 6.9 74.99 52.54 54.86
en pudLAT 47.6 24.18 17.3 11.08 9.21 6.16 71.65 50.14 50.17
es ancoraHIT 53.54 21.1 12.36 5.98 70.02 48.57

Table 7: BLEU-4, NIST and DIST scores for the 13 Deep Track datasets

SynTagRus and Russian-PUD datasets both con-
tain mostly news texts, so the structures to gener-
ate are more similar; in this context, the impact of
the change of domain becomes visible.

The results on the automatically parsed datasets
are in general very similar to the results on datasets
that originate from gold-standard annotations. For
English-EWTHIT , all scores are slightly lower
than the English-EWT scores, with no more than
2 BLEU points, 0.3 NIST points and 2.5 DIST
points difference. For the English-PUDLAT , the
difference is more pronounced, up to 6 BLEU
points lower e.g. for BME-UW. However, for the
other four datasets, most scores are higher, with
improvements up to 2 BLEU points; the excep-
tions to this trend are IMS on the Hindi data and
BME-UW on the Korean-Kaist data, for which the
scores according to the three metrics are slightly
below scores for gold-standard data.

For the Deep Track datasets, scores are gener-
ally substantially lower than for the Shallow Track
datasets. The trends observed for the generation
from automatically parsed data are confirmed, but
the out-of-domain scores for English (the only lan-
guage with an out of domain dataset in the Deep
Track) are lower than the in-domain ones, which
could be due in particular to the difficulty of gen-
erating punctuation signs.

Finally, the Lower Bound (LB) baseline system
results are, as expected, very low (they are not
shown in the tables): on the two datasets that are
part of the human evaluation, i.e. the T1 and T2
English-EWT, it obtained 7.62 BLEU, 8.26 NIST,
37.99 DIST, and 1.31 BLEU, 4.8 NIST, 35.13
DIST, respectively.

5.2 Results of the human evaluation

Tables 8 and 9 show the results of the human eval-
uation carried out via Mechanical Turk with Direct
Assessment (MTurk DA) for English, Chinese,
Russian and Spanish, respectively. See Section 3.2
for details of the evaluation method. ‘DA’ refers to
the specific way in which scores are collected in
the WMT approach which follows the evaluation
approach of SR’18 but differs from what was done
for SR’11.

English: For human evaluation of systems for
both the Shallow (T1) and Deep (T2) Tracks, out-
puts were combined into a single dataset prior
to being evaluated and results for all systems are
shown in Tables 8 and 9. Average Meaning Sim-
ilarity DA scores for the Shallow Track for En-
glish systems range from 86.6% to 55.3% with
ADAPT and IMS achieving highest overall scores
in terms of both average raw DA scores and cor-
responding z-scores. In order to investigate how
Readability of system outputs compares to that of
human-produced text, we included the original test
sentences as a ‘system’ in the Readability eval-
uation. Unsurprisingly, human text achieves the
highest score in terms of Readability (71.1%) but
is closely followed by the best performing systems
in terms of Readability, IMS (67.9%) and ADAPT
(68.2%), both tied with human readability (and
one another) in terms of statistical significance.

In the Deep Track for English, IMS achieved
highest results in terms of Meaning Similarity
(80.6%), significantly higher than all other sys-
tems participating in the Deep Track. In terms of
Readability, IMS (61.9%) is tied, in terms of sta-
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English
Rank Ave. Ave. z n N System

1 86.6 0.507 695 810 ADAPT-T1
85.6 0.503 672 768 IMS-T1

3 82.5 0.407 702 812 CMU-T1
4 80.6 0.324 718 826 IMS-T2

79.7 0.289 711 816 TILBURG-T1
79.3 0.276 753 859 DEPDIST-T1
78.4 0.255 720 836 OSU-FB-T1
77.0 0.222 702 816 LORIA-T1
73.5 0.164 695 796 BME-UW-T1

10 72.9 0.110 680 795 RALI-T1
69.5 −0.006 700 811 DIPINFOUNITO-T1
67.0 −0.040 692 789 SURFERS-T2
68.3 −0.052 707 808 RALI-T2

14 60.9 −0.216 752 885 CLAC-T1
15 55.3 −0.390 674 775 LB-BASELINE-T1

53.0 −0.422 733 853 LB-BASELINE-T2

Russian
Rank Ave. Ave. z n N System

1 88.3 0.238 481 551 IMS
2 83.7 0.098 477 538 LORIA

83.0 0.071 447 509 BME-UW
4 77.5 −0.134 503 577 TILBURG

Chinese
Rank Ave. Ave. z n N System

1 83.0 0.342 481 711 IMS
2 79.5 0.265 471 691 CMU
3 74.8 0.113 479 709 DEPDIST

73.0 0.043 483 676 BME-UW
74.7 0.039 479 673 TILBURG

6 66.8 −0.188 477 654 DIPINFOUNITO
67.0 −0.213 480 699 LORIA

Pred. Spanish
Rank Ave. Ave. z n N System

1 82.7 0.394 686 799 IMS
2 78.4 0.272 683 804 CMU
3 70.3 −0.042 688 803 TILBURG

67.8 −0.105 675 789 BME-UW
5 59.2 −0.422 652 754 LORIA

UD Spanish
Rank Ave. Ave. z n N System

1 81.1 0.378 620 716 IMS
2 75.8 0.168 655 753 CMU
3 72.2 0.006 614 708 TILBURG
4 70.6 −0.080 617 704 DEPDIST

69.1 −0.111 623 705 BME-UW
6 63.2 −0.302 625 706 LORIA

Table 8: SR’19 human evaluation results for Meaning Similarity. Ave. = the average 0-100% received by systems;
Ave. z = corresponding average standardized scores; systems are ranked according to Ave. z score; horizontal lines
indicate clusters, such that systems in a cluster all significantly outperform all systems in lower ranked clusters; n
= total number of distinct test sentences assessed; N = total number of human judgments.

tistical significance, with Surfers (60.9%).17

Finally, note that for both Meaning Similarity
and Readability, as expected, the Lower Bound
Baselines are tied at the last rank with significantly
lower scores than the other systems.

Russian: Tables 8 and 9 show average DA
scores for systems participating in the Russian
task. Meaning Similarity scores for Russian sys-
tems range from 88.3% to 77.5% with IMS again
achieving highest overall score. In terms of Read-
ability, again IMS achieves the highest average
score of 84.1%. Compared to the human results,

17We tested for statistical significance of differences be-
tween average DA scores using a Wilcoxon rank sum test.

there is a larger gap than that observed for English
outputs, with the best system, IMS, still signifi-
cantly lower than human performance in terms of
Russian readability.

Spanish UD: Tables 8 and 9 show average DA
scores for systems participating in Spanish UD.
Meaning Similarity scores range from 81.1% to
63.2%, with IMS achieving the highest score, sig-
nificantly higher than all other participating teams.
In terms of Readability, the text produced by the
systems ranges from 86.5% to 60.6%, and again
IMS achieves the highest score, again significantly
higher than all other systems. No system achieves
human performance here either, as the human ref-
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English
Rank Ave. Ave. z n N System

− 71.1 0.585 824 1,281 HUMAN
1 67.9 0.507 477 564 IMS-T1

68.2 0.502 482 573 ADAPT-T1
3 61.9 0.313 512 582 IMS-T2

62.5 0.285 500 575 LORIA-T1
62.4 0.260 506 589 CMU-T1
60.8 0.257 497 572 SURFERS-T2
60.5 0.211 516 591 DEPDIST-T1
59.2 0.160 516 594 TILBURG-T1
58.3 0.156 488 554 BME-UW-T1
57.4 0.121 507 583 OSU-FB-T1
57.5 0.096 497 569 RALI-T1

12 50.3 −0.117 494 549 RALI-T2
49.6 −0.195 515 598 DIPINFOUNITO-T1
48.1 −0.202 524 610 CLAC-T1

15 37.8 −0.594 492 569 LB-Baseline-T2
36.5 −0.677 468 534 LB-Baseline-T1

Russian
Rank Ave. Ave. z n N System

− 87.5 0.430 404 432 HUMAN
1 84.1 0.238 736 838 IMS
2 80.9 0.110 747 861 LORIA
3 77.7 0.022 739 846 BME-UW
4 72.7 −0.214 792 902 TILBURG

Chinese
Rank Ave. Ave. z n N System

− 72.8 0.730 323 646 HUMAN
1 68.2 0.541 500 780 IMS
2 61.4 0.319 500 735 CMU
3 54.1 0.056 500 727 LORIA

53.6 0.019 500 737 DEPDIST
53.2 −0.016 500 709 TILBURG

6 50.0 −0.122 500 746 BME-UW
7 39.1 −0.524 500 705 DIPINFOUNITO

Pred. Spanish
Rank Ave. Ave. z n N System

− 89.2 0.736 405 442 HUMAN
1 82.8 0.519 613 713 IMS
2 74.7 0.147 609 686 CMU
3 66.0 −0.103 642 737 TILBURG

64.7 −0.169 640 734 BME-UW
5 53.8 −0.531 594 670 LORIA

UD Spanish
Rank Ave. Ave. z n N System

− 89.0 0.582 389 438 HUMAN
1 86.5 0.517 511 584 IMS
2 78.9 0.236 523 601 CMU
3 72.1 −0.009 513 596 BME-UW

71.5 −0.037 498 562 TILBURG
5 67.7 −0.181 498 562 DEPDIST
6 60.6 −0.458 506 577 LORIA

Table 9: SR’19 human evaluation results for Readability. Ave. = the average 0-100% received by systems; Ave.
z = corresponding average standardized scores; HUMAN denotes scores attributed to the original reference texts;
systems are ranked according to Ave. z score; horizontal lines indicate clusters, such that systems in a cluster all
significantly outperform all systems in lower ranked clusters; n = total number of distinct test sentences assessed;
N = total number of human judgments.

erences achieve a significantly higher score than
all systems in terms of readability.

Spanish Automatically Parsed (‘Pred. Span-
ish’ in the tables): Tables 8 and 9 show aver-
age DA scores for system outputs for the Span-
ish automatically parsed data. Meaning Similar-
ity scores range from 82.7% to 59.2%, with IMS
achieving the highest score, significantly higher
than all other participating teams. IMS and CMU
achieve better scores than on the regular Spanish
UD dataset, while the other systems score lower.

In terms of Readability, the text produced by the
systems ranges from 82.8% to 53.8%, and again
IMS achieves the highest score, again significantly
higher than all other systems. But for the auto-
matically parsed data, all systems score lower than
on the Spanish UD dataset, showing that whereas
there was no clear difference between the two
datasets according to the automatic metrics, the
human evaluation shows that the systems do not
manage to generate texts with the same quality.

Chinese: Tables 8 and 9 show average DA
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scores for all participating systems. Meaning Sim-
ilarity scores range from 83% to 67%, with IMS
achieving the highest score, significantly higher
than all other participating teams. In terms of
Readability, the produced text ranges from 68.2%
to 39.1%, and again IMS achieves the highest
score, again significantly higher than all other sys-
tems. As for the other non-English languages, no
system achieves human performance.

Results from MTurk DA quality control: Sim-
ilar to SR’18, only 31% of workers passed qual-
ity control (being able to replicate scores for same
sentences and scoring damaged sentences lower),
again highlighting the danger of crowd-sourcing
without good quality control measures. The re-
maining 69%, who did not meet this criterion,
were omitted from computation of the official DA
results above. Such levels of low quality workers
are consistent with what we have seen in DA used
for Machine Translation (Graham et al., 2016)
and Video Captioning evaluation (Graham et al.,
2017).

5.3 Correlation of metrics with human
assessment

Table 10 shows the Pearson correlation of BLEU,
NIST and DIST scores with human assessment for
systems in tasks for which we ran human evalua-
tions this year. These were computed on the aver-
age z scores. While BLEU is the metric that corre-
lates best with the human judgements in general,
NIST and DIST are more erratic.

None of the automatic metrics correlate well
with human judgements of Readability on the En-
glish Deep Track data (‘English T2’ in the tables),
in particular NIST with only 0.15. This contrasts
with corresponding correlations for Meaning Sim-
ilarity which do not appear to be affected. Com-
bined with the fact that human assessment scores
the deep systems higher for Readability than the
metrics, this indicates that some deep systems are
producing fluent text that is however dissimilar to
the reference texts. The correlations for T2 should
be interpreted cautiously since only four T2 sys-
tems are being evaluated, which possibly distorts
the numbers.

6 Conclusion

The 2019 edition of the SR task (SR’19) saw in-
creased language coverage (11 languages from 9

language families, up from 10 languages in 5 fam-
ilies), as well as increased participation (33 team
registrations from 17 countries, up from 21 regis-
trations for SR’18), with 14 teams submitting sys-
tems to SR’19 (up from 8 in SR’18). Datasets,
evaluation scripts, system outputs and more about
the task can be found on the GenChal repository.18

Among the notable trends we can observe in
evaluations are the following: (i) the best Shal-
low Track English systems are closing the gap to
human-written texts in terms of human evaluation
of Readability; (ii) there is a notable gap between
human assessment (higher) and metric assessment
(lower) of deep track systems, in particular for the
best deep track systems; and (iii) the correlation
between BLEU and human evaluations of both
Readability and Meaning Similarity is consistently
above 0.9 for outputs for the gold-standard shal-
low track datasets, but substantially lower for deep
track systems (NIST and DIST are both more er-
ratic).

The biggest progress has been made in SR’19
for deep track systems: not only did we have mul-
tiple Deep Track systems to evaluate (compared to
just one in 2018), but the best Deep Track system
performed equally well or better than most Shal-
low Track systems for both Readability and Mean-
ing similarity.

Another notable development has been the in-
troduction of silver-standard data. Even though
the quality of the texts obtained when generating
from automatically parsed data is lower than when
using gold-standard data, the high scores accord-
ing to human evaluations suggest that the shallow
inputs could be used as pivot representations in
text-to-text systems such as paraphrasing, simpli-
fication or summarisation applications.

Overall, the SR tasks have clearly demonstrated
that generation from structured meaning represen-
tations can be done with impressive success by
current neural methods. Given the increased in-
terest and progress we have been able to report for
SR’19, we plan to continue with a third shared task
in 2020, as part of which we plan to investigate
ways of linking up to earlier stages of automatic
language generation.

18https://sites.google.com/site/
genchalrepository/surface-realisation/
sr-19-multilingual

https://sites.google.com/site/genchalrepository/surface-realisation/sr-19-multilingual
https://sites.google.com/site/genchalrepository/surface-realisation/sr-19-multilingual
https://sites.google.com/site/genchalrepository/surface-realisation/sr-19-multilingual
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Correlation of Metrics with Readability

BLEU NIST DIST Mean. Sim.

English T1 0.899 0.813 0.874 0.959
English T2 0.53 0.15 0.66 0.892
Russian 0.994 0.981 0.836 0.992
Chinese 0.932 0.587 0.976 0.801
Spanish UD 0.983 0.938 0.794 0.974
Spanish Pred 0.973 0.911 0.801 0.978

Correlation of Metrics with Meaning Similarity

BLEU NIST DIST Read.

English T1 0.975 0.896 0.966 0.959
English T2 0.994 0.867 0.999 0.892
Russian 0.990 0.985 0.806 0.992
Chinese 0.926 0.948 0.866 0.801
Spanish UD 0.971 0.906 0.863 0.974
Spanish Pred 0.994 0.943 0.81 0.978

Table 10: Pearson correlation of BLEU, NIST and DIST scores with human assessment of Readability (left) and
Meaning Similarity (right).

Acknowledgments

SR’19 is endorsed by SIGGEN. The work on
its organisation, realisation, and evaluation was
supported in part by (1) Science Foundation Ire-
land (sfi.ie) under the SFI Research Centres Pro-
gramme co-funded under the European Regional
Development Fund, grant number 13/RC/2106
(ADAPT Centre for Digital Content Technology,
www.adaptcentre.ie) at Dublin City University;
(2) the Applied Data Analytics Research & Enter-
prise Group, University of Brighton, UK; and (3)
the European Commission under the H2020 via
contracts to UPF, with the numbers 779962-RIA,
700475-IA, 7000024-RIA, and 645012RIA.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192, Sofia, Bulgaria.
Association for Computational Linguistics.

Loc Barrault, Ondej Bojar, Marta R. Costa-juss, Chris-
tian Federmann, Mark Fishel, Yvette Graham, Barry
Haddow, Matthias Huck, Philipp Koehn, Shervin
Malmasi, Christof Monz, Mathias Mller, Santanu
Pal, Matt Post, and Marcos Zampieri. 2019. Find-
ings of the 2019 conference on machine translation
(wmt19). In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Pa-
pers, Day 1), pages 1–61, Florence, Italy. Associa-
tion for Computational Linguistics.

Anja Belz and Eric Kow. 2011. Discrete vs. contin-
uous rating scales for language evaluation in NLP.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL-
HLT’11).

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011. The
first surface realisation shared task: Overview and
evaluation results. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation,

ENLG ’11, pages 217–226, Stroudsburg, PA, USA.
Association for Computational Linguistics.
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