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Abstract

Since the introduction of context-aware token
representation techniques such as Embeddings
from Language Models (ELMo) and Bidirec-
tional Encoder Representations from Trans-
formers (BERT), there have been numerous re-
ports on improved performance on a variety
of natural language tasks. Nevertheless, the
degree to which the resulting context-aware
representations can encode information about
morpho-syntactic properties of the tokens in a
sentence remains unclear.

In this paper, we investigate the appli-
cation and impact of state-of-the-art neu-
ral token representations for automatic cue-
conditional speculation and negation scope de-
tection coupled with the independently com-
puted morpho-syntactic information. Through
this work, We establish a new state-of-the-art
for the BioScope and NegPar corpora.

Furthermore, we provide a thorough analy-
sis of neural representations and additional
features interactions, cue-representation for
conditioning, discussing model behavior on
different datasets and, finally, address the
annotation-induced biases in the learned rep-
resentations.

1 Introduction

In 2018, a set of new state-of-the-art results were
established for a variety of Natural Language Pro-
cessing tasks, the majority of which can be at-
tributed to the introduction of context aware to-
ken representations, learned from large amounts of
data with Language-modeling like tasks as a train-
ing goal (Devlin et al., 2018; Peters et al., 2018).
It is, however, unclear to what degree the com-
puted representations capture and encode high-
level morphological/syntactic knowledge about
the usage of a given token in a sentence. One way
of exploring the potential of the learned represen-

tation would be through investigating the perfor-
mance on a task that would require the representa-
tion to acquire some notion of syntactic units such
as phrases and clauses, as well as the relationship
between the syntactic units and other tokens in the
model. An example of such a task is Speculation
or Negation Scope Detection.

The main contributions of this work can be sum-
marized as follows:

• We achieve and report a new state-of-the-art
for the negation and speculation scope detec-
tion on several biomedical and general do-
main datasets, which were created using dif-
ferent definitions of what constitutes a scope
of a given negation/speculation.1

• We investigate different ways of incorporat-
ing additional automatically-generated syn-
tactic features into the model and explore the
potential improvements resulting from the
addition of such features.

• Following Fancellu et al. (2017), we pro-
vide a thorough comparison of our proposed
model with other state-of-the-art models and
analyze their behaviour in the absence of po-
tential “linear clues”, the presence of which
might result in highly accurate predictions
even for syntax-unaware token representa-
tions.

2 The Task

In general, speculation or negation scope detection
can be constructed as the following conditional to-
ken classification task: given a negation or spec-
ulation cue (i.e., a word or phrase that expresses
negation or speculation such as ‘No’ and ‘May’),

1An implementation of our model together with the pre-
trained models for scope detection will be available later.
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identify which tokens are affected by the negation
or represent an event that is speculative in nature
(referred to as the scope of the negation or spec-
ulation). Consider the following example:

(1) These findings that (may be from
an acute pneumonia) include minimal
bronchiectasis as well.

In this case, the speculation cue is “may” and
the string of tokens that contains the speculative
information is “may be from an acute pneumo-
nia”.

Each data point, as such, is a string of tokens
paired with the corresponding negation or specu-
lation cue. Note that nested negations in the same
sentence would be distinguished only by the asso-
ciated cue.

From the syntactic structure point of view, it is
clear that in most cases, the boundaries of a given
scope strongly correlate with the clausal structure
of the sentence (Morante and Sporleder, 2012)
There is also a strong connection between the fine-
grained part-of-speech (POS) of the cue and the
scope boundaries.

Consider the following examples where the type
of possible adjectives (either attributive or predica-
tive) results in different scope boundaries (scope
highlighted as italic):

(2) This is a patient who had possible
pyelonephritis with elevated fever.

(3) Atelectasis in the right mid zone is,
however, possible.

Such a property of the task requires a well-
performing model to be able to determine cue-
types and the corresponding syntactic scope struc-
ture from a learned representation of cue-sentence
pairs. As such, it can be used as an (albeit imper-
fect) proxy for assessing the knowledge about the
structure of the syntax that a sentence aware token
representation potentially learns during training.

2.1 Datasets

There are no universal guidelines on what consti-
tutes a scope of a given negation or speculation;
different definitions might affect a given model’s
performance. To take this ambiguity into account,
we report our results on two different datasets:
BioScope (Vincze et al., 2008) and NegPar (Liu
et al., 2018).

• The BioScope corpus (Vincze et al., 2008)
consists of three different types of text: Bio-
logical publication abstracts from Genia Cor-
pus (1,273 abstracts), Radiology reports from
Cincinnati Children’s Hospital Medical Cen-
ter (1,954 reports), and full scientific articles
in the bioinformatics domain (nine articles in
total). In this work, we focus on two of the
sub-corpora: Abstracts and Clinical reports.
One should note that BioScope corpus does
not allow discontinuous scopes.

• NegPar (Liu et al., 2018) is a corpus of Conan
Doyle stories annotated with negation cues
and the corresponding scopes. The corpus
is available both in English and Chinese. In
this work, we only use the English part of
the corpus. Unlike BioScope, NegPar pro-
vides a canonical split as training (981 nega-
tion instances), development (174 instances)
and test sets (263 negation instances). Neg-
Par annotation guidelines allows for discon-
tinuous scopes.

3 Previous Work

Negation scope detection algorithms can be classi-
fied into two categories: (1) rule-based approaches
that rely on pre-defined rules and grammar; and
(2) statistical machine learning approaches that
utilize surface level features of the input strings to
detect the scope of the negation.

Rule-based approaches Due to the somewhat
restricted nature of clinical texts syntax, a pre-
defined rule-based key-word triggered negation
scope detection system achieves competitive per-
formance on a variety of clinical-notes derived
data-sets (Chapman et al., 2001; Harkema et al.,
2009; Elkin et al., 2005).

Machine learning approaches While rule-
based approaches might achieve high performance
on medical institution specific datasets, they do
not generalize well for other dataset types and they
may require customization of the rules to adapt to
the new corpus and/or domain. By contrast, ma-
chine learning-based systems do not require ac-
tive human expert participation to adapt to a new
dataset/domain. Earlier works utilizing the statis-
tical approaches for negation scope detection in-
clude Support Vector Machines (SVM), Condi-
tional Random Fields based models (CRF) (Agar-
wal and Yu, 2010; Councill et al., 2010) as well
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as hybrid CRF-SVM ensemble models (Zhu et al.,
2010) (Morante and Daelemans, 2009)

Recently, Neural Network-based approaches
have been proposed for such tasks, including Con-
volutional Neural Network (CNN)-based (Qian
et al., 2016) and Long Short Term Memory
(LSTM)-based (Fancellu et al., 2017; Sergeeva
et al., 2019) models.

The work on specifically speculation scope de-
tection is less varied and mainly confined to
CONLL-2010 Shared-Task2 submissions (Farkas
et al., 2010). It is, however, important to note
that due to the similarity in the formulation of the
task, the majority of the negation-specific machine
learning approaches can be directly applied to the
speculation scope detection problem provided the
speculation annotated data is available for training.

We also draw inspiration from a large body of
work (Linzen et al., 2016; Gulordava et al., 2018;
Marvin and Linzen, 2018) examining the nature
of modern context aware representations from a
linguistic perspective.

4 Model Training and Evaluation

4.1 Neural Token Representation
The use of pre-trained continuous word represen-
tations has been ubiquitous in modern statistical
natural language processing. The importance of an
appropriate word-level representation is especially
noticeable in per-token prediction tasks: in such a
set-up the model goal is to fine-tune or modify the
existing input token representation in such a way
that it contains the necessary information to make
a correct classification decision at prediction time.

In this work, we consider the following ap-
proaches for generating the input token represen-
tation:

• Global Vectors (GloVe) (Pennington et al.,
2014): A pre-trained token representation
that relies on the direct matching of tokens
and the corresponding ratios of token co-
occurrences with their neighbours. Note that
the definition of the neighbour in this setup
is static (that is, the ultimate representation
would incorporate an averaged notion of con-
text) and relies on the bag-of-words represen-
tation of the context.

• Embeddings from Language Models
(ELMo) (Peters et al., 2018): A bi-
directional LSTM model-based token

representation, pre-trained on the language
modeling task. Instead of modeling the
bag-of-words neighborhood co-occurrence
probabilities directly, this model approxi-
mates the conditional probability of a token
given the ordered linear context of the token
usage.

• Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al.,
2018): A transformer-based token repre-
sentation trained on the modified language
modeling task together with a broader
context next sentence prediction task. In this
model, the context of a token is continuously
incorporated into the representation of the
token itself as a weighted sum of the neigh-
boring token representations through the
use of the multi-head-attention mechanism.
The linear order of the token information
is provided at input time as an additional
positional embedding, since the unmodified
transformer architecture does not encode any
notion of the linear order.

Despite the performance gains achieved by the
widespread use of contextual word embeddings
like ELMo and BERT, the questions about the na-
ture of the learned representation remain unan-
swered. Both ELMo and BERT were introduced
to incorporate the wider structure of the given in-
put into individual token representation at the time
of training; however, both models only have ac-
cess to the linear order of the context.

The question then arises: To what degree does
the word embedding trained on a language model-
ing like task and computed using the whole linear
context of a sentence encode the broader syntax-
related characteristics of a token used within a
context?

In order to gain insight into the nature of the
learned representations and their potential use for
negation and speculation scope detection, we in-
troduce the following syntax-informed features to
be used together with the token embedding:

POS : Part-Of-Speech of a given token as defined
by the Penn Treebank tagging scheme (Mar-
cus et al., 1993).

DEP : Type of dependency between the token and
its parent, representing limited dependency
tree information of a given token.
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PATH : A string of Google Universal POS tags
(Petrov et al., 2012) of the three direct ances-
tors of the token in the dependency tree; this
feature captures local constituent-like infor-
mation of a given token.

LPATH : Depth of the token in the syntactic de-
pendency tree.

CP : The distance between a given token and the
negation cue in the constituency parse tree
generated using (Kitaev and Klein, 2018). If
a negation cue has multiple tokens, the mini-
mum of the distances is used.

Note that all features were automatically gen-
erated, and as a result, represent a “noisy” source
of information about the syntactic characteristic of
a token. If adding syntactic features as additional
inputs would not affect or would significantly de-
grade the model’s performance, it is reasonable to
assume that the information represented by such
features is already present in the token representa-
tion in some way.

4.2 Modes of Evaluation

To provide a fair comparison of different types of
embeddings, we introduce two different modes of
evaluation. The first mode (referred to as Feature-
based embeddings later in the paper) is designed
to test the embeddings in the same setup as previ-
ously used to get the state-of-the-art performance
on the dataset. The second mode (referred to as
BERT fine-tuning later in the paper) is designed
to test BERT embeddings in their native direct
fine-tuning setting.

Just it , nothing more .

0 0 0 1 0 0

dense layer

cue

additional
features

0 0 0 1 1 0

(contextual)
word embedding

prediction

two-layer bidirectional LSTM

Figure 1: A diagram of the proposed bi-directional
LSTM model for negation and speculation detection
with additional features.

Feature-based Embeddings using Bi-
directional LSTM: Figure 1 demonstrates
the proposed framework for the desired task.
One should note that the factor that differentiates
the two experiments from one another is the
embeddings. The task specific layers (two-layer
Bi-directional LSTM) remains the same across
all experiments. To properly condition each
scope on a given cue, we concatenate a specific
cue embedding to the input embedding, before
computing the final representation for each token.
Additional syntactic information is also provided
by concatenating the input embedding with all of
the syntactic feature embeddings.

BERT Fine-tuning: The original setup for the
use of BERT embedding does not require an elab-
orate task-specific layer; the task specific model
is a copy of the original transformer-based BERT
architecture with the corresponding pre-trained
model-parameters, and the top prediction layer
swapped for a new task specific layer that predicts
the probability of a given label for a token rep-
resentation. Crucially, the token representation is
allowed to change during the fine-tuning. For this
particular setup, it is unclear how to account for
the conditional nature of the scope prediction task.
In other words, a sentence can potentially contain
more than one negation/piece of speculative infor-
mation.

We consider two different testing scenarios to
evaluate the different ways of providing the cue
information to the model:

1. Providing the embedded cue at the top layer
of the model by concatenating it to the
learned token embedding.

2. Providing the embedded cue at the bottom as
a part of the input to the transformer layer be-
fore the fine-tuning by adding the cue embed-
dings (initialized randomly at the fine-tuning
stage) to the initial token representation.

To test if the additional syntactic information
provides any additional benefit to our framework,
we also add the mean of all of the syntactic fea-
ture embeddings to the initial pre-transformer rep-
resentation of the input.

4.3 Hyperparameter Settings
Feature-based Embeddings For the aforemen-
tioned set of experiments, the following architec-
ture parameters have been considered:
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Table 1: Performance of the negation scope detection task on BioScope and NegPar corpora using different ap-
proaches. Results are reported as the percentage of number of predicted scopes that exactly match the golden scope
(PCS)

.

Model BioS Abstracts BioS Clinical NegPar NegPar(CV)

Fancellu et al. (2017) 81.38% 94.21% 68.93 % a N/A
Fancellu et al. (2018) N/A N/A 61.98% b N/A

Bi-LSTMGloVe 63.24%(1.80%) 90.46%(3.64%) 51.48%(4.45%) 49.18%(4.97%)
Bi-LSTMELMo 81.62%(1.87%) 93.10%(2.18%) 71.52%(1.98%) 75.29%(3.35%)
Bi-LSTMBERT 79.29%(3.06%) 91.26%(2.82%) 66.78%(3.50%) 69.45%(3.55%)
Bi-LSTMGloVe + AF 79.00%(2.07%) 94.02%(1.98%) 69.70%(2.81%) 73.11%(3.19%)
Bi-LSTMELMo + AF 83.30%(3.16%) 94.25%(2.86%) 69.96%(2.12%) 75.43%(4.82%)
Bi-LSTMBERT + AF 80.68%(3.23%) 93.10%(2.77%) 67.42%(2.10%) 73.39%(4.12%)
BERT (c-top) 74.63%(3.23%) 92.87%(2.04%) 63.14% (2.08%) —
BERT (c-bottom) 86.97%(2.24%) 93.68%(2.37%) 76.78%(2.04%) 81.91%(3.04%)
BERT (c-bottom) + AF 87.03%(2.38%) 93.45%(1.63%) 79.00%(1.37%) 80.64%(2.57%)

The number in the parenthesis indicates the standard deviation of the score.
a These results are generated using an older version of the corpus annotation.
b Since this work is aimed at cross-lingual negation detection, the reported results are based on using
cross-language word embeddings, which are likely to degrade a single-language model performance.
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Figure 2: A diagram of the proposed BERT-based ar-
chitecture for negation and speculation scope detection
with inclusion of additional features.

• Word embedding dimension: GloVe: 300;
ELMo, BERT: 1024

• Syntactic feature embedding dimension: 10
per feature

• Task-specific LSTM embedding dimension:
400

During training, a dropout rate of 0.5 (Gal and
Ghahramani, 2016) was used to prevent overfit-
ting. The Adam optimizer (Kingma and Ba, 2014)
was used with step size of 10−3 and batch size of
32 for 50 epochs for BioScope and 200 epochs
for NegPar. The reason why we use different
epochs is that there are fewer training examples for

NegPar than BioScope. Therefore, it takes more
epochs for the NegPar models to converge.

BERT Fine-tuning The BERT models have the
following architecture parameters:

• Word embedding dimension: 1024

• BERTLARGE layer transformer configuration
(Devlin et al., 2018)

• Syntactic features embedding dimension:
1024 for each feature

• Cue embedding dimensions: 1024

We perform fine tuning on the nega-
tion/speculation task for 20 epochs. The Adam
optimizer was used with learning rate of 10−5 and
batch size of 2 for 10 epochs for the BioScope
corpus and 50 epochs for the NegPar corpus.

4.4 Evaluation Procedure
We report our results in terms of the percentage
of number of predicted scopes that exactly match
the golden scopes (PCS). Since pre-trained BERT
models use their own tokenization algorithm, it
results in inconsistent final number of tokens in
the dataset across evaluation modes. As a result,
other traditional evaluation metrics such as preci-
sion, recall and F1 are inappropriate to be used in
this study as they depend on the number of tokens.
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Since the BioScope dataset does not have a
canonical training/development/test set split, we
report 10-fold cross-validation results together
with the standard deviation of the resulting scores.

For the NegPar dataset, we report the result on
the test set as well as 10-fold cross-validation re-
sults. To overcome the possible random initializa-
tion influences on the results, we report the aver-
age score for 10 random seeds on the test set to-
gether with the associated standard deviation.

5 Results

The performance of different approaches on Bio-
Scope and NegPar corpora for the negation scope
detection and the speculating scope detection are
shown in Table 1 and Table 2, respectively. Bi-
LSTM-marked entries of the table correspond to
Feature-based and BERT-marked entries corre-
spond to BERT fine-tuning approaches.

5.1 Feature-based Approach

Effect of embedding on performance: Except
for the negation scope detection task on Bio-
Scope clinical notes, ELMo embeddings signif-
icantly outperformed GloVe embeddings as well
as the feature-based use of BERT embeddings,
but not the fined-tuned version of BERT. While
the former is expected, the latter is noteworthy:
for NER task (Devlin et al., 2018), for example,
the difference in performance between the fine-
tuning and feature-based approach results is 1.5%
of the F1 score. For negation scope detection
the difference is a striking 7.68% on BioScope-
abstracts and 10% on a test set of the NegPar
dataset. For speculation scope detection the dif-
ference remains as large (7.93%). We theorize that
this differences comes from the different syntactic
nature of the target strings of tokens: NER sys-
tems are concerned with finding named entities in
text, where the majority of the named entities are
represented by relatively short (token-wise) noun
phrases, negation/speculation scope detection re-
quires recognition of a much more diverse set of
syntactic phenomena. This suggests an impor-
tant difference between the featurized and fine-
tuned approaches for highly syntax-dependent to-
ken classification tasks.

Syntactic features induced gains: In general,
we observe consistent small gains in performance
for all types of embedding on BioScope (both
speculation and negation detection modalities) but

not on the NegPar dataset. The only exception to
this pattern is in non-context aware GloVe embed-
dings. Adding syntactic features embeddings has
inconsistent effects on standard deviations over
modalities and datasets.

5.2 BERT fine-tuning approach

Cue-conditioning influence on the results The
way to condition a given instance on a particu-
lar cue greatly influences the model performance:
providing cue information at the top layer of the
model results in poor performance of the model
for all datasets and both negation and speculation
modalities.

Syntactic features induced gains and the
importance of Cross Validation evaluation:
Adding features to the best performing BERT fine-
tuned models does not result in any significant dif-
ferences on the BioScope dataset. We observe a
significant gain in performance on NegPar: note
that in this case the gain is purely train/test set
split induced and disappears entirely in a cross-
validation mode of evaluation.

Artificial noise and the model performance:
Even though the experimental results suggest no
to minimal contribution of the additional features
to the best model performance, natural questions
to ask are: “Does the feature enriched model
rely on the provided features during the predic-
tion phase?” and “Do the final learned representa-
tions differs significantly for feature-enriched and
featureless inputs?” We introduce noise into the
trained model inputs to check if artificial noise un-
dermines its performance. In particular, we con-
sider the model BERT(cue-bottom) + AF, as it
provides the best performance out of all feature-
enriched models.

With a given probability, which we call the
noise level, we replace a given feature value with a
random value: for categorical features (POS, DEP,
PATH), we replace it with a random category, and
for numerical features (LPATH,CP), we replace it
with a random integer drawn from a uniform dis-
tribution bounded by the feature’s possible mini-
mum and maximum values. We observe a con-
sistent and significant decrease in performance as
the probability of seeing the incorrect features in-
creases (see Figure 3). This suggests that the ad-
ditional features introduced in this paper play an
important role in decision making. This is sup-
ported by the fact that the performance on clini-
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Table 2: Performance of speculation scope detection task on BioScope corpus using different approaches. Results
are reported as the percentage of number of the predicted scopes that exactly match the golden scope (PCS).

Model BioScope Abstracts BioScope Clinical

Qian et al. (2016) 85.75% 73.92%

Bi-LSTMGloVe 47.99%(4.07%) 46.90%(2.87%)
Bi-LSTMELMo 84.62%(2.33%) 81.82%(2.74%)
Bi-LSTMBERT 81.35%(1.95%) 78.75%(3.24%)
Bi-LSTMGloVe + AF 85.07%(2.66%) 80.73%(3.01%)
Bi-LSTMELMo + AF 86.57%(2.65%) 81.55%(2.74%)
Bi-LSTMBERT + AF 84.43%(1.08%) 81.37%(4.32%)
BERT (cue-top) 57.32%(2.14%) 60.49%(4.77%)
BERT (cue-bottom) 89.28%(1.65%) 83.71%(2.77%)
BERT (cue-bottom) + AF 88.91%(1.65%) 82.36%(4.27%)

The number within the parentheses indicates the standard deviation of the score.

cal reports negation detection remains almost un-
affected by the change, since the majority of the
negation scopes in this dataset can be captured by
structure-independent heuristics.
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Figure 3: Performance of the BERT + AF models with
respect to the noise level, averaged for 10 fold CV

5.3 Linear punctuation cues and model
performance

Even though the scope boundaries correlate to the
syntactic structures of the sentence, a good per-
formance on a given dataset does not necessarily
prove the model acquired any kind of a structural
knowledge: as was noted in Fancellu et al. (2017),
the majority of scopes in the BioScope corpus
consist of cases where the punctuation boundaries
match the scope boundaries directly. For those
cases, the model does not have to learn any kinds
of underlying syntactic phenomena: learning a
simple heuristic to mark everything between a cue
and the next punctuation mark as a scope would

produce an illusion of a more complex syntax-
informed performance.

To see if our model’s performance is signifi-
cantly affected by the punctuation clues, we re-
move all the punctuation from the training cor-
pus, re-train all the models on the modified data-
set and evaluate the learned models on the test set.
We also report the performance on “hard” (non-
punctuation bound) instances of scopes separately.

As can be seen in Table 3, removing punctua-
tion affects all models’ behaviour similarly: model
performance degrades by losing 2-3 percent of
PCS on average. Interestingly, the performance on
the non-punctuation boundaries scopes declines
similarly, which suggest that punctuation plays an
important role in computing a given token repre-
sentation, and not only as a direct linear cue that
signifies the scope’s start and end.

5.4 Error overlap

Given the difference in the model architectures, a
natural question to ask is: “Is the best perform-
ing model strictly better than the others, or do
they make different types of errors?” We compute
the error overlap between BERT and ELMo on
the negation detection task as shown in Figure 4.
About half of ELMo and slightly more than a quar-
ter of BERT errors appear to be model specific,
suggesting the potential for ensemble-induced im-
provements.

We also compute the error overlap for the Neg-
Par test set performance for the top 3 performing
models: almost half of the ELMo errors and about
3/4 of BERT fine-tuned and BERT fine-tuned with
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Table 3: Performance on percentage of correct span on BioScope Abstracts sub-corpus trained under different
schemes.

Trained w/ punctuation Trained w/o punctuation
all hard cases all hard cases

Bi-LSTMGloVe 63.24%(1.80%) 51.83%(3.47%) 57.19%(2.48%) 48.82%(3.36%)
Bi-LSTMELMo 81.62%(1.87%) 73.07%(3.60%) 76.90%(2.72%) 69.88%(3.78%)
Bi-LSTMBERT 79.29%(3.06%) 70.37%(6.60%) 77.54%(3.18%) 70.28%(5.41%)
Bi-LSTMGloVe + AF 79.00%(2.07%) 68.79%(4.06%) 76.21%(1.76%) 67.96%(2.64%)
Bi-LSTMELMo + AF 83.30%(3.16%) 75.56%(4.46%) 82.31%(2.95%) 76.58%(3.67%)
Bi-LSTMBERT + AF 80.68%(3.23%) 72.68%(6.71%) 80.45%(3.24%) 73.19%(5.52%)
BERT (c-bottom) 86.97%(2.24%) 82.51%(3.78%) 83.48%(3.22%) 79.42%(4.46%)
BERT (c-bottom +AF) 87.03%(2.38%) 82.38%(4.48%) 84.58%(3.58%) 79.27%(5.82%)

165 151 73

BERT: 224 total

ELMo: 316 total

Figure 4: Distribution of error overlaps: BERT vs.
ELMo on BioScope Abstracts dataset.

features are common for all of the models. It is in-
teresting to note that the the errors of BERT with-
out the features are not a subset of BERT with
the features, suggesting the possibility of a per-
formance trade-off instead of a straight feature-
induced performance improvement.

Qualitatively, on average ELMo tends to pre-
fer longer scopes, sometimes extending the scope
for an additional clause. Both models have trou-
ble with common words that can be encountered
in a variety of different contexts, such as certain
prepositions and personal pronouns.

33

9

86

7

3

29

BERT: 53 total

ELMo: 78 total

BERT + AF: 49 total

Figure 5: Distribution of error overlaps: BERT vs.
BERT with features (BERT + AF) vs. ELMo on Neg-
Par test set.

6 Conclusions and Future Work

This work presents a comparison among different
context-aware neural token representations and the
corresponding performance on the negation and
speculation scope detection tasks. Furthermore,
we introduce a new state-of-the-art BERT-based
cue-conditioned feature-enriched framework for
negation/speculation scope detection. Based on
the empirical results, we are inclined to recom-
mend BERT fine-tuning over using a feature-based
approach with BERT for syntax-dependent tasks.

We used two commonly used publicly avail-
able datasets, BioScope and NegPar for our evalu-
ation. Despite the observed gains on the test set of
the NegPar corpus, the effect of the syntactic fea-
tures on BERT (fine-tuned) performance remains
largely inconclusive.

It is also important to note that the syntactic in-
formation we have been trying to incorporate into
the model was generated automatically; one of the
possible avenues of research would be comparing
the possible golden annotation induced gains with
the imperfect information gain we observe when
incorporating silver syntactic features.

We were unable to find any consistent grammat-
ical explanation for the errors context-aware mod-
els result in on the test data; however, this does not
conclusively mean that such an explanation does
not exist. An appropriate next step would be an-
notating a smaller set of sentences, grouped by the
corresponding syntactic construction and see if a
given token representation yields improved perfor-
mance on such a construction.
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Csirik, and György Szarvas. 2010. The CoNLL-
2010 Shared Task: Learning to Detect Hedges and
their Scope in Natural Language Tex. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning – Shared Task, pages 1–
12. Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Informa-
tion Processing Systems 29, pages 1019–1027. Cur-
ran Associates, Inc.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205. Associ-
ation for Computational Linguistics.

Henk Harkema, John N. Dowling, Tyler Thornblade,
and Wendy W. Chapman. 2009. ConText: An al-
gorithm for determining negation, experiencer, and
temporal status from clinical reports. Journal of
Biomedical Informatics, 42(5):839–851.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2676–2686. Association for Computa-
tional Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521–535.

Qianchu Liu, Federico Fancellu, and Bonnie Webber.
2018. NegPar: a parallel corpus annotated for nega-
tion. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC-2018).

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202.
Association for Computational Linguistics.

Roser Morante and Walter Daelemans. 2009. A met-
alearning approach to processing the scope of nega-
tion. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 21–29. Association for Com-
putational Linguistics.

Roser Morante and Caroline Sporleder. 2012. Modal-
ity and negation: An introduction to the special is-
sue. Computational linguistics, 38(2):223–260.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

https://doi.org/10.1136/jamia.2010.003228
https://doi.org/10.1136/jamia.2010.003228
https://doi.org/10.1136/jamia.2010.003228
https://doi.org/10.1006/jbin.2001.1029
https://doi.org/10.1006/jbin.2001.1029
http://aclweb.org/anthology/W10-3110
http://aclweb.org/anthology/W10-3110
http://aclweb.org/anthology/W10-3110
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1186/1472-6947-5-13
https://doi.org/10.1186/1472-6947-5-13
https://doi.org/10.18653/v1/E17-2010
https://doi.org/10.18653/v1/E17-2010
http://arxiv.org/abs/1810.02156
http://arxiv.org/abs/1810.02156
http://aclweb.org/anthology/W10-3001
http://aclweb.org/anthology/W10-3001
http://aclweb.org/anthology/W10-3001
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.1016/j.jbi.2009.05.002
https://doi.org/10.1016/j.jbi.2009.05.002
https://doi.org/10.1016/j.jbi.2009.05.002
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/P18-1249
http://aclweb.org/anthology/P18-1249
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/D18-1151
http://aclweb.org/anthology/D18-1151
http://aclweb.org/anthology/W09-1105
http://aclweb.org/anthology/W09-1105
http://aclweb.org/anthology/W09-1105
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


187

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceed-
ings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istan-
bul, Turkey. European Language Resources Associ-
ation (ELRA).

Zhong Qian, Peifeng Li, Qiaoming Zhu, Guodong
Zhou, Zhunchen Luo, and Wei Luo. 2016. Specu-
lation and Negation Scope Detection via Convolu-
tional Neural Networks. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 815–825, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Elena Sergeeva, Henghui Zhu, Peter Prinsen, and Tah-
masebi Amir. 2019. Negation scope detection in
clinical notes and scientific abstracts: A feature-
enriched lstm-based approach. AMIA Jt Summits
Transl Sci Proc. 2019, pages 212–221.

Veronika Vincze, György Szarvas, Richárd Farkas,
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