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Abstract

Entity recognition is a critical first step to
a number of clinical NLP applications, such
as entity linking and relation extraction. We
present the first attempt to apply state-of-the-
art entity recognition approaches on a newly
released dataset, MedMentions. This dataset
contains over 4000 biomedical abstracts, an-
notated for UMLS semantic types. In compar-
ison to existing datasets, MedMentions con-
tains a far greater number of entity types, and
thus represents a more challenging but realistic
scenario in a real-world setting. We explore a
number of relevant dimensions, including the
use of contextual versus non-contextual word
embeddings, general versus domain-specific
unsupervised pre-training, and different deep
learning architectures. We contrast our re-
sults against the well-known i2b2 2010 entity
recognition dataset, and propose a new method
to combine general and domain-specific infor-
mation. While producing a state-of-the-art re-
sult for the i2b2 2010 task (F1 = 0.90), our re-
sults on MedMentions are significantly lower
(F1 = 0.63), suggesting there is still plenty of
opportunity for improvement on this new data.

1 Introduction

Entity recognition is a widely-studied task in clin-
ical NLP, and has been the focus of a number of
shared tasks, including the i2b2 2010 Shared Task
(Uzuner et al., 2011), SemEval 2014 Task 7 (Prad-
han et al., 2014), and SemEval 2015 Task 14 (El-
hadad et al., 2015). Most previous work has fo-
cused on identifying only a few broad types of en-
tities, such as ‘problems’, ‘tests’, and ‘treatments’
in the i2b2 task, and ‘diseases’ in the SemEval
tasks. Even when corpora have been annotated
for more entity types, as in the GENIA corpus of
biological annotations (Ohta et al., 2002), entity
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recognition tasks typically focus on only a small
subset of those (Kim et al., 2004).

However, in some downstream applications it
would be useful to identify all terms in a docu-
ment which exist as concepts in the Unified Med-
ical Language System (UMLS) Metathesaurus
(Bodenreider, 2004). This resource comprises a
much wider range of biomedical entity types than
has previously been considered in clinical entity
recognition. Additionally, the UMLS Metathe-
saurus defines important relationships between en-
tity types (and the lower-level concepts associ-
ated with them) via its Semantic Network. There-
fore, extracting and labelling entities with respect
to their UMLS semantic type, rather than more
generic types such as ‘problem’ or ‘test’, can be
an important first step in many practical clinical
NLP applications.

In this work, we present the first attempt to ap-
ply existing clinical entity recognition approaches
to a new dataset called MedMentions, which is
annotated for all UMLS semantic types (Mohan
and Li, 2019). We compare the effectiveness of
these approaches with reference to a well-known
baseline dataset (i2b2 2010) and analyze the errors
that occur when applying such techniques to new
problems. On the basis of this error analysis, we
propose an adaptation to the BERT architecture to
better combine the general and clinical knowledge
learned in the pre-training phase, and show that
this improves over the more basic approaches.

2 Background

Early successes in clinical/biomedical entity ex-
traction employed approaches such as conditional
random fields (Jonnalagadda et al., 2012; Fu and
Ananiadou, 2014; Boag et al., 2015) and semi-
Markov models (De Bruijn et al., 2011), requir-
ing numerous engineered features. In recent years,
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such approaches have been surpassed in perfor-
mance by deep learning models (Habibi et al.,
2017). However, there is a wide range of variation
possible within this set of techniques. We briefly
discuss some of the parameters of interest in the
following sections.

2.1 General vs. Domain-Specific Word
Embeddings

Since words may have one dominant meaning in
common use, and a different meaning in the medi-
cal domain, some work has explored whether word
embeddings trained on medical text (e.g. clinical
notes, medical journal articles) are more effective
in medical entity recognition than those trained on
general text sources (e.g. news, Wikipedia).

Roberts (2016) examined the effect of train-
ing word embeddings on different corpora for the
task of entity extraction on the i2b2 2010 dataset.
He compared six corpora: the i2b2 dataset it-
self, the clinical notes available in the MIMIC
database (Johnson et al., 2016), MEDLINE arti-
cle abstracts, WebMD forum posts, and generic
text corpora from Wikipedia and Gigaword. It was
found that the best F1 score was obtained by train-
ing on the MIMIC corpus, and that combining cor-
pora also led to strong results. Si et al. (2019) also
compared training embeddings on MIMIC data
versus general domain data, and similarly found
that pre-training on the MIMIC data led to better
performance on both the i2b2 2010 and SemEval
tasks. Alsentzer et al. (2019) trained embeddings
only on the discharge summaries from MIMIC,
and reported a marginal improvement on the i2b2
2010 task over using the entire MIMIC corpus.
Peng et al. (2019) found that pre-training a BERT
model on PubMed abstracts led to better perfor-
mance for biomedical entity extraction, while pre-
training on a combination of PubMed abstracts
and MIMIC notes led to better performance when
extracting entities from patient records.

2.2 Contextual vs. Non-Contextual Word
Embeddings

For many years, word embeddings were non-
contextual; that is, a word would have the same
embedding regardless of the context in which
it occurred. Popular word embeddings of this
type include GloVe (Pennington et al., 2014),
word2vec (Mikolov et al., 2013), and FastText
(Bojanowski et al., 2017). Peters et al. (2018)
popularized the idea of contextualized word em-

beddings, which allowed the same word to have
a different representation, depending on the con-
text. The character-based ELMo word embed-
dings introduced by Peters et al. (2018) can be
used just as the non-contextual word embeddings
were. Sheikhshabbafghi et al. (2018) trained
ELMo word embeddings on a dataset of biomed-
ical papers and achieved a new state of the art
in gene mention detection on the BioCreative II
gene mention shared task. This work showed that
domain-specific contextual embeddings improve
various types of biomedical named entities recog-
nition. Later in 2018, BERT embeddings were
also introduced (Devlin et al., 2019). The BERT
architecture improved over ELMo by using a dif-
ferent training objective to better take into account
both left and right contexts of a word, and made it
possible to make use of the entire pre-trained net-
work in the downstream task, rather than simply
extracting the embedding vectors.

Si et al. (2019) compared word2vec, GloVe,
FastText, ELMo, and BERT embeddings on the
i2b2 2010 dataset. When using the pre-trained
vectors (trained on general-domain corpora),
BERT-large performed the best and word2vec per-
formed the worst, but there was no clear advantage
to the contextualized embeddings (e.g. GloVe per-
formed better than ELMo). When the embeddings
were pre-trained on MIMIC data, the contextual-
ized embeddings did perform appreciably better
than the non-contextualized embeddings.

2.3 Classifier Architecture

Much of the recent work on medical entity extrac-
tion has made use of the Long Short-Term Mem-
ory (LSTM) architecture (Hochreiter and Schmid-
huber, 1997), with some variations and modifica-
tions: (1) most work uses a bi-directional LSTM
(bi-LSTM), so the prediction for any word in the
sequence can take into account information from
both the left and right contexts, (2) some work ad-
ditionally feeds the output of the bi-LSTM layer
into a CRF classifier (Huang et al., 2015a; Cha-
lapathy et al., 2016a; Lample et al., 2016; Habibi
et al., 2017; Tourille et al., 2018), to predict the
most likely sequence of labels, rather than just the
most likely label for each word independently, and
(3) some models incorporate additional informa-
tion (e.g. character embeddings, or traditionally
engineered features) at various points in the model
(Unanue et al., 2017).
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In contrast, the BERT model makes use
of the Transformer architecture, an attention-
based method for sequence-to-sequence mod-
elling (Vaswani et al., 2017). Once the model has
been pre-trained, in the entity extraction stage it
is only necessary to add a simple classification
layer on the output. However, others have also ex-
perimented with feeding the output of the BERT
model to a bi-LSTM (Si et al., 2019).

3 Methods

3.1 Data
We consider three datasets in this study: the i2b2
2010 dataset, the ‘full’ MedMentions dataset, and
the ‘st21pv’ MedMentions dataset. Details are
shown in Table 1.

The i2b2 2010 corpus1 consists of de-identified
clinical notes (discharge summaries), annotated
for three entity types: problems, tests, and treat-
ments (Uzuner et al., 2011). The original shared
task also included subtasks on assertion classifica-
tion and relation extraction, but we focus here on
entity extraction. In the original data release for
the shared task, the training set contained 394 doc-
uments; however, the current release of the dataset
contains only 170 training documents. Therefore,
it is unfortunately not possible to directly com-
pare results across the two versions of the dataset.
However, a majority of the recent works are using
the current release of the dataset (Zhu et al., 2018;
Bhatia et al., 2019; Chalapathy et al., 2016b).

The MedMentions corpus was released ear-
lier this year2, and contains 4,392 abstracts from
PubMed, annotated for concepts and semantic
types from UMLS (2017AA release). UMLS
concepts are fine-grained biomedical terms, with
approximately 3.2 million unique concepts con-
tained in the metathesaurus (Mohan and Li, 2019).
Each concept is linked to a higher-level seman-
tic type, such as ‘Disease or syndrome’, ‘Cell
component’, or ‘Clinical attribute’. In this work
we focus on identifying the semantic type for
each extracted text span, leaving the concept link-
ing/normalization for future work. The creators of
the dataset have defined an official 60%-20%-20%
partitioning of the corpus into training, develop-
ment, and test sets.

There are 127 semantic types in UMLS. Of
these, there is only one (‘Carbohydrate sequence’)

1www.i2b2.org/NLP/DataSets
2github.com/chanzuckerberg/MedMentions

which never appears in the full MedMentions
dataset. Approximately 8% of the concepts in
UMLS can be linked to more than one seman-
tic type (Mohan and Li, 2019); in such cases
the dataset contains a comma-separated list of all
these type IDs corresponding to alphabetical order
of semantic types. Where a text span has been la-
belled with more than one label, we select only the
first one. As a result of this, there is one other type
(‘Enzyme’) which appears in MedMentions, but
only doubly-labelled with ‘Amino acid, peptide,
or protein’, and thus does not occur in our singly-
labelled training or test data. Finally, there is an
extra class (‘UnknownType’), for a total of 126 se-
mantic types or classes in the ‘full’ training data.
Of these, there are three (‘Amphibian’, ‘Drug de-
livery device’, and ‘Vitamin’) which never occur
in the test data.

The full MedMentions dataset suffers from high
class imbalance (e.g. there are 31,485 mentions for
the semantic type ‘Qualitative concept’ and only
two mentions for ‘Fully formed anatomical struc-
ture’). Furthermore, many of the semantic types
are not particularly useful in downstream clinical
NLP tasks, either due to being too broad or too
specialized. As a result, the creators of the Med-
Mentions dataset also released an alternate ver-
sion called ‘st21pv’, which stands for ‘21 seman-
tic types from preferred vocabularies’. The details
of how this subset was constructed are given by
Mohan and Li (2019), but essentially it contains
only 21 semantic types, from specific vocabular-
ies most relevant to biomedical researchers. The
raw abstracts, and partitions into training, devel-
opment, and test sets are the same as in the full
dataset – only the set of annotations differs.

The i2b2 and MedMentions datasets differ
across a number of important dimensions: the dis-
charge summaries in the i2b2 dataset tend to be
hastily written or dictated, with short, incomplete
sentences and numerous acronyms and abbrevia-
tions, compared to the academic writing style of
the MedMentions abstracts. The discharge sum-
maries also tend to be longer, averaging approx-
imately 980 tokens per document, compared to
267 tokens per document in MedMentions. The
semantic content of the documents is also differ-
ent, with the discharge summaries focused exclu-
sively on a single patient and their history, dis-
ease progression, treatment, and outcomes, while
the MedMentions abstracts typically summarize

http://www.i2b2.org/NLP/DataSets
http://github.com/chanzuckerberg/MedMentions
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i2b2 2010 MedMentions (full) MedMentions (st21pv)
Train Test Train Test Train Test

# entity types 3 3 126 123 21 21
# documents 170 256 3513 879 3513 879
# tokens 149,743 267,837 936,247 234,910 936,247 234,910
# entities 16,520 31,161 281,719 70,305 162,908 40,101

Table 1: Properties of the datasets. For MedMentions, we combine the training and validation sets into ‘Train’.

the results of a scientific study, covering a wide
range of biomedical topics. Finally, there are
clearly far more entity types in MedMentions than
in i2b2, and greater imbalance between the differ-
ent classes. Therefore, there is no guarantee that
methods which perform well on the i2b2 data will
also be effective on the MedMentions dataset.

3.2 Entity Recognition

Based on our review of the literature (Section 2)
we experimented with two basic architectures: bi-
LSTM+CRF (with pre-trained contextual and non-
contextual word embeddings as input), and BERT
(with a simple linear classification layer and a bi-
LSTM classification layer). The details of these
classifiers and their training are described below.

3.2.1 Text pre-processing
For the bi-LSTM+CRF models, input text retained
casing information, but all numerical tokens were
normalized to a single NUM token.

BERT uses WordPiece tokenization (Wu et al.,
2016), which breaks longer words into frequently
occurring sub-word units to improve handling of
rare words and morphological variation. This re-
quires additional pre- and post-processing for the
entity recognition task, since the data is labelled
at the word level. Following the recommendation
of Devlin et al. (2019), we first re-tokenize the text
using the WordPiece tokenizer, assign the given la-
bel to the first piece of each word, and assign any
subsequent pieces a padding label.

In all cases, we convert the text and labels to
CoNLL IOB format for input to the classifiers.

3.2.2 bi-LSTM+CRF
We use a standard bi-LSTM+CRF architecture
(e.g., see (Huang et al., 2015b)), implemented
in PyTorch. The bi-LSTM component has 2 bi-
directional layers with hidden size of 1536 nodes.
The 100-dimensional character embeddings are
learned through the training process and concate-
nated with pre-trained GloVe embeddings (Pen-
nington et al., 2014) as proposed by Chalapathy

et al. (2016a). We compare the performance of
general GloVe embeddings, trained on Wikipedia
and Gigaword, and clinical GloVe embeddings,
trained on the MIMIC-III corpus (Johnson et al.,
2016). In both cases the GloVe embeddings have
300 dimensions. For pre-training on MIMIC, we
used a minimum frequency cut-off of 5, and a win-
dow size of 15.

We also experimented with contextual ELMo
embeddings (Peters et al., 2018) and the bi-
LSTM+CRF architecture, comparing general
ELMo embeddings3 with clinical ELMo embed-
dings.4 The clinical ELMo embeddings were
released by Zhu et al. (2018) and trained on
Wikipedia pages whose titles are medical con-
cepts in the SNOMED-CT vocabulary, as well as
MIMIC-III.

The bi-LSTM+CRF models were trained using
the Adam optimizer with a learning rate of 0.001
and a batch size of 32 for 10 epochs.

3.2.3 BERT
The BERT (Bidirectional Encoder Representa-
tions from Transformers) model is described by
Devlin et al. (2019) and proposes to address some
of the limitations observed in LSTM models. In
our experiments, we use the BERT-base architec-
ture, which has 12-layers, hidden size 768, and 12
self-attention heads. To perform the entity recog-
nition, we added a linear layer and a softmax layer
on top of the last BERT layer to determine the
most probable label for each token. While this
is the approach taken by Alsentzer et al. (2019),
others suggest using a more complex classification
model in conjunction with BERT (Si et al., 2019),
and so we also experiment with a bi-LSTM layer
with input and output size of 4× 768 on top of the
concatenation of the last four layers of BERT.

We consider four pre-trained BERT models:

• BERT-base5 General domain BERT model
3github.com/allenai/allennlp/blob/master/tutorials/how to/elmo.md
4github.com/noc-lab/clinical concept extraction
5github.com/google-research/bert

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
https://github.com/noc-lab/clinical_concept_extraction
https://github.com/google-research/bert
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released by Google, pre-trained on Wikipedia
and BookCorpus (Devlin et al., 2019).
• bioBERT (v1.1)6 The bioBERT model is

initialized with BERT-base, and then fur-
ther pre-trained on biomedical abstracts from
PubMed (Lee et al., 2019).
• clinicalBERT7 The clinicalBERT model is

initialized with bioBERT, and then further
pre-trained on clinical notes from the MIMIC
corpus (Alsentzer et al., 2019).
• NCBI BERT8 The NCBI BERT model is

initialized with BERT-base, and then further
pre-trained on PubMed abstracts and MIMIC
notes (Peng et al., 2019).

In the fine-tuning stage, we generally follow
the recommendations in Devlin et al. (2019), and
use an Adam optimizer with β1 = 0.9, β2 =
0.999, L2 weight decay of 0.01, and a dropout
probability of 0.1 on all layers. We use a learn-
ing rate warmup over the first 10% of steps,
and linear decay of the learning rate thereafter.
Before training the final models, we conducted
a series of hyper-parameter optimization experi-
ments using 10-fold cross-validation on the train-
ing set. In this optimization stage we considered
combinations of batch sizes in {16, 32}, learning
rates in {0.00002, 0.00003, 0.00005, 0.0001}, and
number of training epochs in {1...10}. We also
determined that the uncased BERT-base model led
to marginally better results, and so we use that in
our final evaluation (bioBERT and clinicalBERT
are cased, while NCBI BERT is uncased). For
the BERT+bi-LSTM model, we also experimented
with training only the bi-LSTM component and
not fine-tuning the pre-trained layers, but found
that fine-tuning led to better results in develop-
ment.

3.3 Evaluation

To evaluate the systems, we use micro-averaged
strict precision, recall, and F-score. This means
that for any given recognized entity, it is only
counted as a true positive if both the span and the
label match exactly with the gold standard anno-
tation. Note also that these metrics are computed
on the entity-level, not the token level. For exam-
ple, given the following gold and predicted label
sequences:

6github.com/dmis-lab/biobert
7github.com/EmilyAlsentzer/clinicalBERT
8github.com/ncbi-nlp/NCBI BERT

GOLD: O O B-prob I-prob I-prob
PRED: O O B-prob I-prob O

A token-level evaluation would identify two true
positives, but a strict entity-level evaluation iden-
tifies zero true positives.

4 Results

Table 2 shows the results of the entity recognition
experiments for each model and dataset.

4.1 Effect of Contextual vs. Non-Contextual
Word Embeddings

If we first consider the bi-LSTM+CRF results
for the i2b2 dataset, we observe that the con-
textual ELMo embeddings lead to better results
than the non-contextual GloVe embeddings, and
in both cases, better results are obtained by pre-
training the embeddings on domain-specific text.
For MedMentions, however, for both versions of
the dataset we observe that the general-domain
GloVe embeddings outperform the clinical GloVe
embeddings, but the clinical ELMo embeddings
outperform the general ELMo embeddings. Si
et al. (2019) also observed a greater benefit to us-
ing contextual embeddings when pre-training on
domain-specific corpora. Here, this may be due in
part to differences between the training corpora;
for example, clinical GloVe was trained only on
MIMIC notes, while clinical ELMo was trained on
a combination of MIMIC notes and Wikipedia ar-
ticles about medical concepts, which may be more
similar to the biomedical abstracts contained in
MedMentions.

The BERT models offer a substantial improve-
ment in F1 over the models based on Glove or
ELMo embeddings for each of the three datasets.
For the i2b2 dataset, the best results are obtained
using clinicalBERT (F1 = 0.88) and NCBI BERT
(F1 = 0.89), each of which involved pre-training
on clinical notes from MIMIC. This demon-
strates the importance of pre-training on docu-
ments which are similar in nature to those seen
in the labelled dataset. Consistent with this, the
bioBERT model (pre-trained on biomedical ab-
stracts) leads to the best result on both MedMen-
tions datasets.

4.2 Effect of Classifier Structure

Finally, comparing the effectiveness of a simple
linear model versus a bi-LSTM model as the top
BERT layer, we observe that this change makes

https://github.com/dmis-lab/biobert
https://github.com/EmilyAlsentzer/clinicalBERT
https://github.com/ncbi-nlp/NCBI_BERT
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i2b2 2010 MedMentions MedMentions
(full) (st21pv)

Model Domain P R F1 P R F1 P R F1
Glove + bi-LSTM+CRF general 0.81 0.76 0.79 0.54 0.51 0.52 0.60 0.50 0.54
Glove + bi-LSTM+CRF clinical 0.83 0.77 0.80 0.45 0.37 0.41 0.59 0.46 0.52
ELMo + bi-LSTM+CRF general 0.80 0.80 0.80 0.43 0.45 0.44 0.54 0.50 0.52
ELMo + bi-LSTM+CRF clinical 0.86 0.86 0.86 0.47 0.47 0.47 0.58 0.53 0.56
BERT-base + linear general 0.85 0.87 0.86 0.51 0.55 0.53 0.58 0.61 0.59
bioBERT + linear biomed 0.86 0.88 0.87 0.53 0.57 0.55 0.61 0.64 0.62
clinicalBERT + linear biomed + clinical 0.87 0.88 0.88 0.51 0.56 0.53 0.59 0.62 0.61
NCBI BERT + linear biomed + clinical 0.88 0.90 0.89 0.51 0.56 0.53 0.59 0.61 0.60
bioBERT + bi-LSTM biomed 0.86 0.88 0.87 0.53 0.58 0.56 0.61 0.66 0.63
NCBI BERT + bi-LSTM biomed + clinical 0.88 0.90 0.89 0.52 0.57 0.54 0.59 0.62 0.60

Table 2: Results of entity recognition for each dataset and model.

no difference on the i2b2 dataset, but leads to the
best result for both versions of MedMentions. It
may be that the much larger training set in Med-
Mentions is better able to effectively train the
more complex classifier, and respectively that the
greater complexity is necessary to properly model
the large number of classes in MedMentions.

4.3 MedMentions vs i2b2 dataset

Comparing across datasets, it is clear that perfor-
mance is worse on the MedMentions data than
the i2b2 data. One obvious reason for this is that
the MedMentions datasets have many more entity
types, or classes, than the i2b2 dataset. This means
that the number of examples per class seen in the
training data is much lower (in some cases, only a
handful), and also that the classes tend to be more
easily confused. The ambiguity between classes
arises at the level of the training data where, de-
pending on context, the same text span will be as-
sociated with different labels (e.g. neurocognitive
function is sometimes labelled as a ‘biologic func-
tion’ and sometimes as a ‘mental process’; PSA
levels is labelled as both a ‘laboratory procedure’
and a ‘laboratory or test result’; and an even more
highly-ambiguous term such as probe is variously
labelled as a ‘medical device’, ‘indicator reagent
or diagnostic aid’, ‘nucleic acid nucleoside or nu-
cleotide’, ‘functional concept’, ‘diagnostic proce-
dure’, ‘research activity’, and ‘chemical viewed
functionally’). Thus in MedMentions, the context
becomes extremely important, and fine-grained
distinctions between entity types must be learned.

5 Error Analysis

In the following section, we examine the errors
made by the entity recognition systems from two
different perspectives: first, we compare generally

the types of errors made on the two datasets; then,
we consider the role of general versus domain-
specific pre-training and examine some of the spe-
cific errors that occur in each case.

5.1 Types of Errors by Dataset
Depending on the downstream application of en-
tity recognition, different types of errors may be
associated with different costs. For example, if
a company is using this model in practice, the
cost associated with having human annotators ad-
just label boundaries may be different from the
cost associated with having them search for enti-
ties which have been missed altogether. Our eval-
uation metrics, however, do not reflect the differ-
ences among various types of errors. To further
investigate the nature of the errors being made by
the system, we investigated three specific types of
‘partial errors’. These cases are counted as false in
calculating the evaluation metrics, but the model
actually gets at least part of the information cor-
rect:

• Right span, wrong label: the text span as-
sociated with an entity is correctly identified,
but assigned the wrong label.
• Right label, overlapping span: the entity is

correctly labelled, but the text span associ-
ated with the entity is not exactly the same
as that indicated in the gold transcripts.
• Wrong label, overlapping span: the entity

overlaps with one of the gold entities, but is
assigned the wrong label.

In addition to these categories, errors can be
complete false positives (model extracts an entity
which does not overlap at all with any gold en-
tities), or complete false negatives (model com-
pletely misses an entity from the gold transcripts).
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(a) i2b2 2010 (NCBI BERT + linear) (b) MedMentions-st21pv (bioBERT + linear)

Figure 1: Types of errors made on the i2b2 and MedMentions-st21pv datasets.

In the i2b2 dataset, over half of the errors belong
to one of the ‘partial’ error types (Figure 1a), with
the biggest error category overall being right la-
bel, overlapping span. In many cases, the model
identifies the main noun phrase associated with the
entity, but not adjectives or prepositional phrases
that further describe the entity: e.g., patient feeling
weaker than usual, where the model labels weaker
as the problem but the gold entity is weaker than
usual, or her glucose remained somewhat low,
where the model labels low as the problem, but the
gold entity is somewhat low. One of the reasons
that might lead to this kind of error is the incon-
sistency that exists in the human annotations. The
task of identifying the span of entities can be very
subjective and there is always some level of dis-
agreement among human annotators. Also, some-
times annotation guidelines are interpreted differ-
ently by various annotators. As a result of this in-
consistency, in the training stage, the model sees
examples that the spans of the same entities has
been labeled differently. This type of error may
occur more frequently in the i2b2 dataset, due to
the difficulty in annotating hurriedly written notes
compared to academically written abstracts.

For MedMentions-st21pv, we again observe
that roughly half the errors are ‘partial’ errors, but
with a sizable increase in errors that involve the
wrong label, with either a correct or overlapping
span (Figure 1b). As discussed previously, the in-
crease in right span, wrong label is likely due to
the higher ambiguity between entity types in this

dataset. In many cases, errors of the type wrong
label, overlapping span appear to be due to the
inability of the annotation scheme to handle over-
lapping entities. For example, in co-expression
analysis, where the model labels co-expression as
a ‘biologic function’, rather than extracting the en-
tire phrase as a ‘research activity’, or in this region
of the brain, where the model simply labels brain
as an ‘anatomical structure’ rather than region of
the brain as a ‘spatial concept’.

5.2 General vs Domain Knowledge
We then performed an exploratory error analysis
to identify and compare the type of errors made
by models using general and domain-specific em-
beddings. For this analysis, we considered BERT-
base and NCBI BERT. BERT-base is pre-trained
on Wikipedia and the Google Books database,
so it transfers the general knowledge of language
to the model. NCBI BERT starts its training
from BERT-base, and then continues training on
PubMed (biomedical abstracts) and MIMIC (clin-
ical notes). Generally, embeddings like NCBI
BERT are assumed to be more effective since they
transfer both general and domain-specific knowl-
edge. We analyze the errors of the two models to
test this assumption. For simplicity, we concen-
trate our analysis on the i2b2 dataset, although we
observe similar patterns in MedMentions.

NCBI BERT results in a higher overall F1-score
than BERT-base on the i2b2 dataset, and there
are 2027 entities that are correctly recognized by
NCBI BERT and incorrectly recognized by BERT-
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base. However, there are also 1209 entities that
are correctly recognized by BERT-base but incor-
rectly recognized by NCBI BERT. Therefore, it is
not the case that NCBI BERT encodes the same
knowledge as BERT-base, plus more that it has
learned from PubMed and MIMIC; rather, the two
systems have different strengths and weaknesses.

Qualitatively, we observed that some entities
correctly recognized by NCBI BERT and missed
by BERT-base involve common words that have a
specialized meaning in medicine, for example in
the sentence: Suck , root , gag , grasp , and mor-
row were normal . The BERT-base model does not
extract any entities, while the NCBI BERT model
recognizes suck, root, gag, and grasp as standard
tests of infant reflexes. NCBI BERT also appears
to be better at recognizing specialized acronyms
and abbreviations, particularly when there is very
little context, as in Brother died 64 / MI, where
only NCBI BERT recognizes MI as a problem
(myocardial infarction) in this brief family history,
or No CPR / No defib, where NCBI BERT cor-
rectly labels CPR and defib as treatments, while
BERT-base mis-labels them as problems.

In cases where BERT-base does better than
NCBI BERT, it may be partially due to a better
knowledge of well-formed text. We observed sev-
eral examples where BERT-base appeared to be
better at identifying the appropriate qualifiers to
attach to a given entity: e.g., in no interval devel-
opment of effusion, BERT-base correctly extracts
the entire phrase internal development of effusion,
while NCBI BERT only extracts effusion. Simi-
larly, in Right ventricular chamber size and free
wall motion are normal, BERT-base extracts Right
ventricular chamber size as a single entity of the
type ‘test’, while NCBI BERT splits it into Right
ventricular and size.

Of course, these observations are purely anec-
dotal at this point, and will require future work and
annotation to fully quantify the nature of the dif-
ferences between the models. However, given the
fact that the two models make different errors, it is
at least reasonable to assume that predictions from
the two models can be combined in a complemen-
tary fashion to improve the overall performance.
We explore one possible architecture for doing so
in the following section.

6 Concatenated Model

As a result of our error analysis, we propose a
concatenated BERT model, to better combine the
general knowledge from BERT-base and the clin-
ical knowledge from the more specialized BERT
models. To build such a model we concatenate
the last encoding layer of a domain-specific BERT
model with the last encoding layer of the gen-
eral BERT model and feed this concatenation to
a linear or bi-LSTM classification layer. During
training we jointly fine-tune both BERT models
and the classification layer. We implemented this
model with both NCBI BERT and bioBERT mod-
els, since they previously led to the optimal results
for i2b2 and MedMentions, respectively. NCBI
BERT is concatenated with the uncased BERT-
base model and bioBERT is concatenated with the
cased BERT-base model.

Results for the concatenated models are given
in Table 3. For all three datasets, we observe a
small improvement over the best performing mod-
els in Table 2. The best result for i2b2 is achieved
by concatenating the NCBI BERT and BERT-base
models, with either a linear or bi-LSTM classi-
fier on top. The resulting F1 score of 0.90 beats
the previously reported state-of-the-art of 0.89 on
the current release of the dataset with 170 training
documents (Zhu et al., 2018). For MedMentions,
concatenating bioBERT and BERT-base leads to
the best results, with MedMentions-full attain-
ing the best result using a linear classifier and
MedMentions-st21pv attaining the best result with
the bi-LSTM. To our knowledge, there are no prior
results reported on entity (i.e. semantic type) ex-
traction on this dataset.

Regarding the classifier layer, we observe that
replacing a linear classifier layer with a bi-LSTM
does not improve the results on i2b2 dataset.
This is consistent with the results shown in Ta-
ble 2 and indicates that a simple linear classi-
fier is enough to learn the entity recognition task
for i2b2 dataset. In the case of the MedMen-
tions dataset, a bi-LSTM classifier improves the
F1 score on MedMentions-st21pv but worsens it
on MedMentions-full. These results show that
there is room for more rigorous investigation about
the classifier layer for extracting entities in Med-
Mentions dataset. More complex neural structures
with optimized hyperparameters may be needed to
improve these results.

Although the improvements that we see by con-
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i2b2 2010 MedMentions MedMentions
(full) (st21pv)

Model P R F1 P R F1 P R F1
NCBI BERT concat BERT-base +linear 0.89* 0.90 0.90* 0.52 0.57 0.54 0.59 0.62 0.61
bioBERT concat BERT-base +linear 0.85 0.88 0.86 0.54* 0.59* 0.56* 0.60 0.65 0.62
NCBI BERT concat BERT-base +bi-LSTM 0.89* 0.90 0.90* 0.50 0.55 0.53 0.59 0.62 0.61
bioBERT concat BERT-base +bi-LSTM 0.86 0.87 0.87 0.53 0.58 0.55 0.63* 0.65 0.64*

Table 3: Results of entity recognition using concatenated BERT models. An asterisk indicates an improvement
over the best result from Table 2.

catenating the models are relatively small, they
are consistent across the three datasets. This sug-
gests that explicitly inputting both general and
domain-specific information to the entity recog-
nizer, rather than sequentially pre-training on dif-
ferent domains and hoping that the model ‘re-
members’ information from each domain, can be
a promising direction for future research.

7 Conclusion

We have presented the results of a set of medical
entity recognition experiments on a new dataset,
MedMentions. We contrasted these results with
those obtained on the well-studied i2b2 2010
dataset. We explored a number of relevant di-
mensions, including the use of various embed-
ding models (contextual versus non-contextual,
general versus domain-specific, and LSTM versus
attention-based) as well as linear versus bi-LSTM
classifier layers. We also proposed a new modi-
fication to the previous BERT-based named entity
recognition architectures, which allows the classi-
fier to incorporate information from both general
and domain-specific BERT embeddings. Our re-
sults on i2b2 are state-of-the-art, and our results
on MedMentions set a benchmark for future work
on this new dataset.

As popular public datasets become more and
more studied over time, there is a chance that
even if individual researchers follow good train-
validate-test protocols, we eventually overfit to the
datasets as a community, since there is so much
published information available about what works
well to improve performance on the test set. One
goal of this work was to explore the gap in per-
formance between a well-known clinical entity
recognition dataset and a new, unstudied dataset.
The same models and training procedures lead to
significantly lower performance on the MedMen-
tions dataset, for a variety of reasons: greater num-
ber of entity types, more class ambiguity, higher
class imbalance, etc. Ultimately, we find that the

model which performs best on i2b2 2010 is not the
model that performs best on MedMentions, and
that results on MedMentions can be improved by
pre-training on more similar documents (biomed-
ical abstracts), and by using more complex mod-
els (BERT + bi-LSTM rather than BERT + linear).
We hope that other researchers will continue to ad-
vance the state-of-the-art on this new dataset.
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Aurélie Névéol, Nicolas Paris, and Xavier Tannier.
2018. Evaluation of a sequence tagging tool for
biomedical texts. In Proceedings of the Ninth Inter-
national Workshop on Health Text Mining and Infor-
mation Analysis, pages 193–203.

Inigo Jauregi Unanue, Ehsan Zare Borzeshi, and
Massimo Piccardi. 2017. Recurrent neural net-
works with specialized word embeddings for health-
domain named-entity recognition. Journal of
biomedical informatics, 76:102–109.
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