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Abstract

We present a system for automatically extract-
ing pertinent medical information from dia-
logues between clinicians and patients. The
system parses each dialogue and extracts en-
tities such as medications and symptoms, us-
ing context to predict which entities are rele-
vant. We also classify the primary diagnosis
for each conversation. In addition, we extract
topic information and identify relevant utter-
ances. This serves as a baseline for a system
that extracts information from dialogues and
automatically generates a patient note, which
can be reviewed and edited by the clinician.

1 Introduction

In recent years, electronic medical record (EMR)
data have become central to clinical care. How-
ever, entering data into EMRs is currently slow
and error-prone, and clinicians can spend up to
50% of their time on data entry (Sinsky et al.,
2016). In addition, this results in inconsistent
and widely variable clinical documentation, which
present challenges to machine learning models.

Most existing work on information extraction
from clinical conversations does not differentiate
between entities that are relevant to the patient
(such as experienced symptoms and current med-
ications), and entities that are not relevant (such
as medications that the patient says were taken by
someone else).

In this work, we extract clinically relevant infor-
mation from the transcript of a conversation be-
tween a physician and patient (and sometimes a
caregiver), and use that information to automati-
cally generate a clinical note, which can then be
edited by the physician. This automated note-
taking will save clinicians valuable time and al-
low them to focus on interacting with their patients

rather than the EMR interface. We focus on lin-
guistic context and time information to determine
which parts of the conversation are medically rel-
evant, in order to increase the accuracy of the gen-
erated patient note. In addition, the automatically
generated notes can provide cleaner and more con-
sistent data for downstream machine learning ap-
plications, such as automated coding and clinical
decision support.

Figure 1 shows a synthetic example of the kind
of medical conversation where context and time
information are important.

DR: Are you currently taking [Adderall]Med.?
PT: No, but I took it [a few years ago]TIMEX3.
DR: And when was that?
PT: Um, around [2015 to 2016]TIMEX3.
DR: And did you ever take [Ritalin]Med.?
PT: I dont think so.

Typical output: Adderall, Ritalin.
Expected output:

Medications: Adderall (2015-2016), no Ritalin

Figure 1: Synthetic conversation example.

2 Related Work

Previous studies have shown that current EMR
data are difficult to use in automated systems
because of variable data quality (Weiskopf and
Weng, 2013; Thiru et al., 2003; Roth et al., 2003).
Weiskopf and Weng (2013) showed that EMR data
is frequently incomplete, and is often not evalu-
ated for quality. In addition, the variance in doc-
umentation style, abbreviations, acryonyms, etc.
make it difficult for algorithms to interpret the text.

Some recent work on machine learning meth-
ods for EMR data includes predicting mortality
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and discharge diagnoses (Rajkomar et al., 2018),
predicting unplanned hospital readmissions for 5k
patients by encoding EMR data with a convolu-
tional neural network (Nguyen et al., 2018), and
predicting diagnosis codes along with text expla-
nations (Mullenbach et al., 2018).

Although there is some existing work on gener-
ating text from structured data (Dou et al., 2018;
Lebret et al., 2016), very little work has been done
in the clinical domain. Liu (2018) generated pa-
tient note templates with a language model, which
was able to approximate the organization of the
note, but no new information from the patient en-
counter was used.

Du et al. (2019) introduced a system for ex-
tracting symptoms and their status (experienced or
not) from clinical conversations using a multi-task
learning model trained on 3,000 annotated conver-
sations. However, their model was trained on a
limited set of 186 symptoms and did not address
other medically relevant entities.

A latent Dirichlet allocation (LDA) model (Blei
et al., 2003) is a topic modeling technique and has
been applied to clinical text to extract underlying
useful information. For example, Bhattacharya
et al. (2017) applied LDA on structured EMR data
such as age, gender, and lab results, showing that
the relevance of topics obtained for each medical
diagnosis aligns with the co-occurring conditions.
Chan et al. (2013) applied topic modeling on EMR
data including clinical notes and provided an em-
pirical analysis of data for correlating disease top-
ics with genetic mutations.

3 Dataset

Primary diagnosis Dyads

ADHD 100
Depression 100
COPD 101
Influenza 100
Osteoporosis 87
Type II diabetes 86
Other 226

Table 1: Data distribution (ADHD: Attention Deficit
Hyperactivity Disorder; COPD: Chronic Obstructive
Pulmonary Disorder)

For training and testing our models, we use a
dataset of 800 patient-clinician dialogues (dyads)

purchased from Verilogue Inc.1, which includes
demographic information about the patient as well
as the primary diagnosis. The data consist of audio
files and human-generated transcripts with speaker
labels. Table 1 shows the distribution of diagnoses
in the dataset.

Since these data are proprietary, we also use a
few transcripts of staged clinical interviews from
YouTube as examples. 2

4 Annotation

First, the conversation transcripts are automati-
cally annotated for time phrases using Heidel-
Time, a freely available rule-based time phrase
tagger (Strötgen and Gertz, 2010), as well as a lim-
ited set of common medical terms.

Two physicians then conduct manual annota-
tion by correcting the automatic annotations and
making any necessary additions, using a custom-
developed annotation interface. The following
types of entities are annotated: anatomical loca-
tions, diagnoses, symptoms, medications, reasons
for visit, referrals, investigations/therapies, and
time phrases. A total of 476 conversations are an-
notated by a unique physician, and inter-annotator
agreement is calculated using DKPro Statistics3

on 30 conversations which were annotated by both
physicians. The agreement across all entity types
is 0.53 Krippendorffs alpha (Krippendorff, 2004)
and 0.80 F1 (partial match).

We developed a custom annotation interface for
labeling entities and their attributes in the tran-
scripts, shown in Figure 3. The software includes
the ability to add new annotation types and at-
tributes, edit and delete previous annotations, and
view the entire conversation for context.

1http://www.verilogue.com
2YouTube videos of simulated patient encounters were

sourced by searching for the following terms: “medical
history”, “patient interview”, and “clinical assessment”. Our
clinician team member watched potential videos in the search
list and selected only the ones that met the following criteria:
1) clinician asking a patient questions in simulated clinical
scenarios; 2) a subjective perception of adequate fidelity to
real clinical encounters. The audio for these dialogues were
transcribed by a professional transcriptionist. Examples used
in this paper:
1: https://www.youtube.com/watch?v=
O2qYU8n4VsA, 2: https://www.youtube.
com/watch?v=CUSxC-XHT2A, 3: https:
//www.youtube.com/watch?v=5_jIcAk1XeA

3https://dkpro.github.io/
dkpro-statistics

http://www.verilogue.com
https://www.youtube.com/watch?v=O2qYU8n4VsA
https://www.youtube.com/watch?v=O2qYU8n4VsA
https://www.youtube.com/watch?v=CUSxC-XHT2A
https://www.youtube.com/watch?v=CUSxC-XHT2A
https://www.youtube.com/watch?v=5_jIcAk1XeA
https://www.youtube.com/watch?v=5_jIcAk1XeA
https://dkpro.github.io/dkpro-statistics
https://dkpro.github.io/dkpro-statistics
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Figure 2: Example dialogue: (Left) Human annotation, (Right) automatic annotation. In both tables, highlight
indicates the annotated entities; darker highlights indicate overlap between human and automatic annotations.
Subscripts indicate the entity type.

5 Methods and experiments

The automated pipeline currently includes the fol-
lowing components: preprocessing, utterance type
classification (questions, answers, statements,
etc.), entity extraction (medications, symptoms,
diagnoses, etc.), attribute classification (modality
and pertinence), primary diagnosis classification,
SOAP classification, and note generation. In this
section we discuss each component in detail, in-
cluding methods and results. See Figure 4 for a
diagram of the system components.

5.1 Preprocessing and data splitting

Before passing the data to our models, the text of
the transcripts is lowercased, and punctuation is
separated from words using WordPunctTokenizer
from NLTK (Steven Bird and Loper, 2009). For
the utterance type and attribute classification tasks,
each word in an utterance is represented as a
word embedding. In this work, we use publicly
available ELMo embeddings (Peters et al., 2018)
trained on PubMed abstracts, as well as word2vec
embeddings trained on PubMed4.

Of the 476 annotated conversations, we ran-
domly select 50 to use as a test set for entity ex-
traction and attribute classification.

5.2 Utterance type classification

In order to understand the conversational context,
it may be useful to know whether an utterance is

4http://evexdb.org/pmresources/
vec-space-models/

a question or answer. To this end, we classify
each utterance as one of the following types: ques-
tion, statement, positive answer, negative answer,
backchannel (such as ‘uh-huh’ or ‘yeah’) or ex-
cluded (incomplete or vague utterance).

The utterance type classification model is a
two-layer bidirectional gated recurrent unit (GRU)
neural network (Cho et al., 2014), implemented in
PyTorch, with the architecture shown in Figure 5.
We augment the training data with two external,
publicly available datasets: the Switchboard cor-
pus (Calhoun et al., 2010), and the AMI corpus5.
We map the utterance labels from the AMI and
Switchboard corpora to our set of labels, and add
these data to our training set.

We evaluate the utterance type classifier on a set
of 20 conversations, annotated independently by 2
annotators with inter-annotator agreement of 0.77
(Cohen’s kappa).

Table 2 shows the classification results by utter-
ance type. As the most frequent type, statements
are the easiest for the model to identify. The low
performance of infrequent classes indicates that
we could potentially improve performance by us-
ing an oversampling or regularization method.

5.3 Entity extraction
5.3.1 Time phrase extraction
In order to determine clinical relevance, it is im-
portant to know the time and duration of events in
the patient history. We use HeidelTime to identify

5http://groups.inf.ed.ac.uk/ami/
corpus/

http://evexdb.org/pmresources/vec-space-models/
http://evexdb.org/pmresources/vec-space-models/
http://groups.inf.ed.ac.uk/ami/corpus/
http://groups.inf.ed.ac.uk/ami/corpus/
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Figure 3: Annotation interface

ASR data
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Utterance
type classifier

Entity identifier (Time
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Topic
modeling

Relevant utter-
ance extractor

Figure 4: System components and data flow

time phrases in the transcripts, including times,
dates, durations, frequencies, and quantities.

5.3.2 Clinical entity extraction

In addition to time phrases, we identify the follow-
ing clinical concept types: anatomical locations,
signs and symptoms, diagnoses, medications, re-
ferrals, investigations and therapies, and reasons

Figure 5: Utterance type classification model

for visit. To identify these entities, we search the
transcript text for entities from a variety of med-
ical lexicons, including the BioPortal Symptom
lexicon 6, SNOMED-CT 7, the Consumer Health
Vocabulary (CHV) 8, and RxNorm (a database of

6https://bioportal.bioontology.org/
ontologies

7http://www.snomed.org/
8https://www.nlm.nih.gov/research/

umls/sourcereleasedocs/current/CHV/

https://bioportal.bioontology.org/ontologies
https://bioportal.bioontology.org/ontologies
http://www.snomed.org/
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
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Type Instances P R F1

Question 539 0.72 0.49 0.59
Statement 2,347 0.82 0.83 0.82
AnswerPositive 195 0.36 0.41 0.38
AnswerNegative 82 0.74 0.34 0.47
Backchannel 494 0.56 0.76 0.64
Excluded 131 0.20 0.16 0.18

Average 3,788 0.72 0.72 0.71

Table 2: Utterance type classification results

normalized medication names) 9.
Entity identification is currently limited to the

terms present in our reference lists, which are large
but cannot cover all possible expressions of rel-
evant entities. There may be many valid varia-
tions of these entities that we hope to be able to
identify in the future, potentially using a more so-
phisticated tagging method such as named entity
recognition (NER).

Type Instances P R F1

Anatomical
locations

328 0.79 0.45 0.57

Diagnosis 346 0.88 0.62 0.72
Investigation
or therapy

239 0.42 0.24 0.31

Medication 579 0.55 0.79 0.65
Referral 61 0.11 0.11 0.11
Sign/symptom 650 0.82 0.38 0.52
Time expres-
sion

1286 0.98 0.64 0.77

Average 3489 0.80 0.56 0.64

Table 3: Entity extraction results

5.3.3 Attribute classification
After extracting relevant entities, we classify them
according to several attributes, including modality
(i.e., whether the events were actually experienced
or not) and pertinence (i.e., to which disease the
entities are relevant, if any). For example, a patient
might mention a medication that they have not ac-
tually taken, so we would not want to record that
medication as part of the patient’s history. In these

index.html
9https://www.nlm.nih.gov/research/

umls/rxnorm/

Type Instances P R F1

Actual 504 0.87 0.80 0.83
Negative 144 0.63 0.64 0.64
Possible 5 0.09 0.40 0.14
None 91 0.59 0.71 0.65

Average 744 0.78 0.76 0.77

Table 4: Modality classification results

Type Instances P R F1

ADHD 126 0.54 0.41 0.28
COPD 22 0.20 0.45 0.28
Depression 32 0.27 0.81 0.41
Influenza 246 0.72 0.83 0.77
Other 312 0.79 0.51 0.62
None 6 0.32 1.00 0.48

Average 744 0.68 0.61 0.62

Table 5: Pertinence classification results

cases, the context of the conversation, as well as
time information, is crucial to recording the pa-
tient’s information accurately.

The attribute classifier is a support vector ma-
chine (SVM) trained with stochastic gradient de-
scent using scikit-learn (Pedregosa et al., 2011).
Each entity is represented as the average word em-
bedding, concatenated with the word embeddings
for the previous and next 5 words. We also include
the speaker code of the utterance in which the en-
tity appears. We train the model on 252 conver-
sations and test on 50 for which we have human-
assigned modality and pertinence labels.

We classify entities into the following modality
categories: actual, negative, possible, or none. Ta-
ble 4 shows the results of modality classification
on the test set of 50 conversations. Since the ma-
jority of entities have a modality of ‘actual’, the
model performs the best on this class. Entities
are also classified as pertinent to one of the dis-
ease categories, or none. Table 5 shows the re-
sults of pertinence classification. Again we see
that the classifier performs the best on the classes
with more examples.

Modality classification performs fairly well
with a context window of 5, likely because the rel-
evant information can be found nearby in the text.
However, pertinence classification is not as accu-

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/CHV/index.html
https://www.nlm.nih.gov/research/umls/rxnorm/
https://www.nlm.nih.gov/research/umls/rxnorm/
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rate, perhaps because it requires more global infor-
mation about what conditions the patient has. In
some cases, pertinence may be purely determined
by a clinicians medical knowledge, not the infor-
mation present in the text.

In the future we hope to have more annotated
data on which to train, which should improve
the overall performance, especially for the smaller
classes.

5.4 Clinical note generation

In the note generation phase, we convert the struc-
tured data from the previous steps (i.e., entities and
their attributes) into a free text clinical note that
resembles what a physician would have written.
This involves organizing the entities according to
a structured note organization and, finally, gener-
ating the text of the note.

5.4.1 SOAP entity classification

After extracting clinical entities, we classify them
according to the traditional four sections of a clini-
cal note: subjective (S), objective (O), assessment
(A), plan (P) (Bickley and Szilagyi, 2013). We
also add a ‘none’ category, which means that the
given entity should not be included in the note.

The SOAP classifier is a neural network trained
on each word of the entity, the previous and next
five words, the speaker code of the corresponding
utterance, and the type of entity. The text and con-
text are represented as word embeddings using the
PubMed word2vec model. Since the note genera-
tion requires special annotations, we currenly only
have 58 conversations for training, and 20 for test.

Table 6 shows the results of SOAP classifica-
tion. The model is the most accurate at determin-
ing which information to exclude from the note.

Type Instances P R F1

S 299 0.52 0.56 0.54
O 51 0.44 0.43 0.44
A 55 0.35 0.16 0.22
P 66 0.22 0.15 0.18
None 708 0.69 0.72 0.70

Average 1189 0.59 0.61 0.60

Table 6: SOAP classification results

Class P R F1

ADHD 0.84 0.84 0.83± 0.05
Depression 0.80 0.64 0.71 ± 0.08
Osteoporosis 0.81 0.78 0.78 ± 0.04
Influenza 0.91 0.95 0.93 ± 0.04
COPD 0.75 0.65 0.68 ± 0.14
Type II Diabetes 0.81 0.75 0.76± 0.05
Other 0.71 0.82 0.76± 0.05

Average 0.79 0.78 0.78± 0.04

Table 7: Primary diagnosis classification results. 800
dyads using 5-fold cross-validation (Train: 80%, Test:
20%). F1 score is the mean ± variance.

5.4.2 SOAP note generation
Our current note generation step organizes the en-
tities into the SOAP sections, and lists them along
with their attributes. Actually generating full sen-
tences that more closely resemble a physician-
generated note is the next step for our future work.

5.5 Primary diagnosis classification

We classify the primary diagnosis for each con-
versation. The purpose of this task is to automati-
cally identify the main diagnosis for billing codes.
We train and test the models on a 5-fold cross
validation of the 800 dyads. We apply tf-idf on
the cleaned text of each dyad and then use logis-
tic regression, SVMs with various parameter set-
tings, and random forest models for classification.
The F1 score is calculated based on the human-
assigned labels available in the transcription.

The primary diagnosis classifier performs rea-
sonably well even without labeled entity features.
The results for influenza achieve almost 0.90 F1
score, while the results for COPD and depression
obtain an F1 score of approximately 0.70. By in-
specting the conversations, we find that visits with
a primary diagnosis of depression mostly con-
sist of general discussions related to daily routine,
family life, and mood changes, which often result
in misclassification probably because no medical
terms are mentioned. By contrast, in patient vis-
its where the primary diagnosis is influenza, the
discussion is more focused on the disease.

The top words used by the classifier were H1N1,
ache, temperature, sore, sick, symptom, swine,
body, and strep, which possibly makes it easier to
classify. On the other hand, COPD is misclassi-
fied mostly as the category ‘other’, which includes
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diseases such as asthma, CHF (Congestive heart
failure), hypercholesterolemia, atopic dermatitis,
HIV/AIDS, prenatal visit, hypercholesterolemia.
That is, the COPD dyads may be misclassified be-
cause of the presence of other respiratory diseases
in the ‘other’ category. We plan to extend the di-
agnosis classifier to multi-label classification.

5.6 Topic modeling
Topic modeling is an unsupervised machine learn-
ing technique used to form k topics (i.e., clusters
of words) occurring together, where k is usually
chosen empirically. We perform topic modeling
with LDA using the open-source gensim package
(Řehůřek and Sojka, 2010) with varying numbers
of topics k =(5, 10, 12, 15, 20, 25, 30, and 40).

Due to their colloquial nature, patient-clinician
conversations contain many informal words and
non-medical terms. We remove common words,
including stop words from NLTK (Steven Bird and
Loper, 2009), backchannel words (like ‘uh-huh’),
and words with frequencies above 0.05% of the to-
tal number words in all the documents (to reduce
the influence of more generic words).

The topic modeling results are shown in Table
8; we choose k=12 topics because they provided
the best topic distribution and coherence score.
The words in each topic are reported in decreas-
ing order of importance.

A manual analysis shows that topic 0 captures
words related to ADHD and depression, while
topic 1 is related to asthma and flu, and topic 3 is
related to women’s health, and so on. This qualita-
tive evaluation of topics shows that topic modeling
can be helpful in extracting important information
and identifying the dominant topic of a conversa-
tion. In our future work, we also plan to do a quan-
titative evaluation of topic modeling results using
state-of-the-art methods such as the methodology
proposed by Wallach et al. (2009).

We see the potential use of topic modeling to
keep track of the focus of each visit, the distribu-
tion of word usage, categorization, and to group
patients together using similarity measures. We
also use it for relevant text extraction in the next
section.

5.7 Relevant utterance extraction
Identifying the key parts of the doctor-patient con-
versation can be helpful in finding the relevant in-
formation. In the previous section, we observe that
topic modeling can be helpful in identifying the

Topic# Topic words
0 focus, sleeping, depressed, asleep,

attention, mind, cymbalta, appetite,
psychiatrist, energy

1 ache, h1n1, treat, asthma, temper-
ature, diarrhea, anybody, mucinex,
chill, allergic

2 period, knee, birth, heavy, ultrasound,
iron, metoprolol, pregnancy, preg-
nant, history,

3 meal, diabetic, lose, unit, mail, deal,
crazy, card, swelling, pound

4 cymbalta, lantus, cool, cancer, crazy,
allergy, sister, attack, nurse, wow

5 referral, trazodone, asked, shingle,
woman, medicare, med, friend, clinic,
form

6 breo, cream, puff, rash, smoking, al-
buterol, skin, allergy, proair, allergic

7 fosamax, allergy, tramadol, covered,
plan, calcium, bladder, kept, alcohol,
ache

8 metformin, x-ray, nerve, knee, lasix,
bottle, lantus, hurting, referral, switch

9 lantus, looked, injection, botox,
changed, flare, happening, cream,
salt, sweating

10 generic, triumeq, cost, farxiga, phys-
ical, therapy, gosh, fracture, increase,
invokana

11 unit, list, appreciate, therapy, differ-
ence, counter, report, lasix, lantus, en-
docrinologist

Table 8: Topic Modeling: Top 10 words for 12 topics.

underlying topics of the dyads. We also use topic
modeling to extract the utterances relevant to the
primary disease diagnosis.

We apply the following steps adapted from a
publicly available text summarization method10:

1. Fit the LDA model to all dyads.
2. Pass the dyads for each class to the LDA

model to determine the class-wise topic dis-
tribution.

3. Select the dominant topics for each class us-
ing the topic weight matrix.

4. For each dyad within this subset:
10https://github.com/g-deoliveira/

TextSummarization

https://github.com/g-deoliveira/TextSummarization
https://github.com/g-deoliveira/TextSummarization
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Figure 6: (Left) Presenting problem: Cough and rib pain. (Right) Presenting problem: Women’s health and
contraception. Extracted utterances are highlighted.

Figure 7: Presenting problem: Anxiety. Extracted ut-
terances are highlighted.

(a) Split the conversation into sentences, us-
ing the NLTK (Steven Bird and Loper,
2009) sentence tokenizer.

(b) Determine the topic distribution of each
sentence using LDA.

(c) Filter out the sentences whose dominant
topic is not equal to the dominant topic
of that dyad. What is left is a subset of
sentences that reflect the given topic.

We conduct experiments on all 800 dyads and
the 11 dyads from YouTube. Topic modeling is
performed exactly as described in the previous
section, with 12 topics. The results are shown in
Table 6 and 7. The three dyads shown are from
open-source YouTube data focusing on (a) cough
and rib pain, (b) women’s health and contracep-
tion, and (c) anxiety, respectively.
The results indicate a reasonable quality of rel-
evant text extraction despite the limited amount
of data. We can see that many of the utterances
discussing the presenting problem are extracted.
Since we do not have labels for the true relevance
of the sentences to the disease, we are unable to
provide any quantitative metrics, which is the sub-
ject of future work.

6 Conclusion & future work

The cumulative output of these models consti-
tutes the initial automated system. Although for
these experiments we used manual transcriptions,
in practice the input would be from automatic
speech recognition (ASR). Future research will in-
clude using ASR to record transcripts in real time,
as well as expanding the types of entities we ex-
tract, identifying quantity, quality, and severity.

Diagnosis classification currently handles 6
classes only, and does not account for conditions
other than the primary diagnosis that may be dis-
cussed in the conversation. We will also expand
diagnosis classification to handle more classes,
and to predict multiple diagnoses.
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We have presented a system for extracting clin-
ically relevant entities from physician-patient dia-
logues using linguistic context. The results show
that clinical note-taking can be at least partially
automated, saving clinicians valuable time. This
system can result in a streamlined data entry pro-
cess and a cleaner EMR note that can be used for
analytics and automated decision making.
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