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Abstract

We investigate whether off-the-shelf deep
bidirectional sentence representations (Devlin
et al., 2018) trained on a massively multilin-
gual corpus (multilingual BERT) enable the
development of an unsupervised universal de-
pendency parser. This approach only lever-
ages a mix of monolingual corpora in many
languages and does not require any translation
data making it applicable to low-resource lan-
guages. In our experiments we outperform the
best CoNLL 2018 language-specific systems in
all of the shared task’s six truly low-resource
languages while using a single system. How-
ever, we also find that (i) parsing accuracy still
varies dramatically when changing the train-
ing languages and (ii) in some target languages
zero-shot transfer fails under all tested condi-
tions, raising concerns on the ‘universality’ of
the whole approach.

1 Introduction

Pretrained sentence representations (Howard and
Ruder, 2018; Radford et al., 2018; Peters et al.,
2018; Devlin et al., 2018) have recently set the new
state of the art in many language understanding
tasks (Wang et al., 2018). An appealing avenue
for this line of work is to use a mix of training data
in several languages and a shared subword vocabu-
lary leading to general-purpose multilingual repre-
sentations. In turn, this opens the way to a number
of promising cross-lingual transfer techniques that
can address the lack of annotated data in the large
majority of world languages.

In this paper, we investigate whether deep bidi-

rectional sentence representations (Devlin et al.,

2018) trained on a massively multilingual corpus
*Work done prior to joining Amazon.

fWork done while at Leiden University. Both authors
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(m-BERT) allow for the development of a univer-
sal dependency parser that is able to parse sen-
tences in a diverse range of languages without re-
ceiving any supervision in those language. Our
parser is fully lexicalized, in contrast to a success-
ful approach based on delexicalized parsers (Ze-
man and Resnik, 2008; McDonald et al., 2011).
Building on the delexicalized approach, previous
work employed additional features such as typo-
logical properties (Naseem et al., 2012), syntac-
tic embeddings (Duong et al., 2015), and cross-
lingual word clusters (Tackstrom et al., 2012) to
boost parsing performance. More recent work by
Ammar et al. (2016); Guo et al. (2016) requires
translation data for projecting word embeddings
into a shared multilingual space.

Among lexicalized systems in CoNLL18, the top
system (Che et al., 2018) utilizes contextualized
vectors from ELMo. However, they train each
ELMo for each language in the shared task. While
their approach achieves the best LAS score on av-
erage, for low resource languages, the performance
of their parser lags behind other systems that do not
use pre-trained models (Zeman et al., 2018). By
contrast, we build our dependency parser on top
of general-purpose context-dependent word rep-
resentations pretrained on a multilingual corpus.
This approach does not require any translation data
making it applicable to truly low-resource lan-
guages (§3.3). While m-BERT’s training objec-
tive is inherently monolingual (predict a word in
language /¢ given its sentence context, also in lan-
guage ¢), we hypothesize that cross-lingual syntac-
tic transfer occurs via the shared subword vocabu-
lary and hidden layer parameters. Indeed, on the
challenging task of universal dependency parsing
from raw text, we outperform by a large margin the
best CoONLL18 language-specific systems (Zeman
et al., 2018) on the shared task’s truly low-resource
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languages while using a single system.

The effectiveness of m-BERT for cross-lingual
transfer of UD parsers has also been demonstrated
in concurrent work by Wu and Dredze (2019) and
Kondratyuk (2019). While the former utilizes only
English as the training language, the latter trains on
a concatentation of all available UD treebanks. We
additionally experiment with three different sets of
training languages beyond English-only and make
interesting observations on the resulting large, and
sometimes unexplicable, variation of performance
among test languages.

2 Model

We use the representations produced by BERT
(Devlin et al.,, 2018) which is a self-attentive
deep bidirectional network (Vaswani et al., 2017)
trained with a masked language model objective.
Specifically we use BERT’ s multilingual cased ver-
sion! which was trained on the 100 languages with
the largest available Wikipedias. Exponentially
smoothed weighting was applied to prevent high-
resource languages from dominating the training
data, and a shared vocabulary of 110k shared
WordPieces (Wu et al., 2016) was used. For
parsing we employ a modification of the graph-
based dependency parser of Dozat and Manning
(2016). We use deep biaffine attention to score
arcs and their label from the head to its depen-
dent. While our label prediction model is similar to
that of Dozat and Manning (2016), our arc predic-
tion model is a globally normalized model which
computes partition functions of non-projective de-
pendency structures using Kirchhoff’s Matrix-Tree
Theorem (Koo et al., 2007).

Let x = wy, w2, . .., w, be an input sentence of n
tokens, which are given by the gold segmentation
in training or by an automatic tokenizer in testing
(§3.1). To obtain the m-BERT representation of
x, we first obtain a sequence t = ti1,...,t,, of
m > n subwords from x using the WordPiece al-
gorithm. Then we feed t to m-BERT and extract
the representations ey, . . ., e,, from the last layer.
If word wj is tokenized into (¢;,...,%;) then the
representation h; of w; is computed as the mean
of (ej,...,ex).

'https://github.com/google-research/bert/
blob/master/multilingual.md

The arc score is computed similar to Dozat and
Manning (2016):

S(arc) _ DeepBiaffihe(H(arc_head)7 H(arc—dep)) (1)

The log probability of the dependency tree y of x
is given by

logp(y |x) = > s®h,d —logZ(x) (2)
(hvc)ey

where Z (x) is the partition function. Our objective
function for predicting dependency arcs therefore
is globally normalized. We compute Z(x) via ma-
trix determinant (Koo et al., 2007). In our experi-
ments, we find that training with a global objective
is more stable if the score s@[h, ¢] is locally nor-
malized” such that ), exp(s®[h, c]) = 1. Dur-
ing training, we update both m-BERT and parsing
layer parameters.

3 Experiments

While most previous work on parser transfer, in-
cluding the closely related (Duong et al., 2015) re-
lies on gold tokenization and POS tags, we adopt
the more realistic scenario of parsing from raw text
(Zeman et al., 2018) and adopt the automatic sen-
tence segmenter and tokenizer provided as base-
lines by the shared task organizers.

3.1 Data

We use the UDpipe-tokenized test data® (Straka
and Strakova, 2017) and the CoNLL18 official
script for evaluation. Gold tokenization is only
used for the training data, while POS information is
never used. All of our experiments are carried out
on the Universal Dependencies (UD) corpus ver-
sion 2.2 (Nivre et al., 2018) for a fair comparison
with previous work.

While our sentence representations are always ini-
tialized from m-BERT, we experiment with four
sets of parser training (i.e. fine-tuning) languages,
namely: expEn only English (200K words); ex-
pLatin a mix of four Latin-script European lan-
guages: English, Italian, Norwegian, Czech (50K
each, 200K in total); expSOV a mix of two

2We use log_softmax(s®®) in place of s@
tion 2.
3Preprocessed data available at http://hdl.handle.

net/11234/1-2899

in equa-
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SOV languages: Hindi and Korean (100K each,
200K in total); expMix a larger mix of eight lan-
guages including different language families and
scripts: English, Italian, Norwegian, Czech, Rus-
sian, Hindi, Korean, Arabic (50K each, 400K in
total). For high resource languages that have more
than one treebank, we choose the treebank that has
the best LAS score in ConLLL.18 for training and the
lowest LAS score for zero-shot evaluation.

3.2 Training details

Similar to Dozat et al. (2017), we use a neural net-
work output size of 400 for arc prediction and 100
for label prediction. We use the Adam optimizer
with learning rate 5¢~% to update the parameters
of our models. The model is evaluated every 500
updates and we stop training if the score LAS does
not increase in ten consecutive validations.

3.3 Results

To put our results into perspective, we report the
accuracy of the best CONLL18 system for each lan-
guage and that of the Stanford system submitted at
the same evaluation (Qi et al., 2018). The latter
is also based on the deep biaffine parser of Dozat
and Manning (2016), it does not use ensembles and
was ranked 2" on official evaluation metric LAS*.
Both these parsers receive supervision in most of
the languages, therefore comparison to our parser
is only fair for the low-resource languages where
training data is not available (or negligible, i.e. less
than 1K tokens).

Results for a subset of UD languages are presented
in Table 1. Beside common European languages,
we choose languages with different writing scripts
than those presented in the parser training data. We
also include SOV (e.g., Korean, Persian) and VSO
(e.g., Arabic, Breton) languages. Parser training
languages for each experiment are highlighted in
grey in Table 1.

In the high resource setting, there is a consider-
able gap between zero-shot and supervised parsers
with Swedish as an exception (slightly better than
Stanford’s parser and 2 points below CoNLL18).
By contrast, the benefit of multilingual transfer be-
comes evident in the low resource setting. Here,

“Updated results at https://stanfordnlp.github.
io/stanfordnlp/per formance.html March, 2018

most CoNLL18 systems including Stanford’s use
knowledge of each target language to customize
the parser, e.g., to choose the optimal training lan-
guage(s). Nevertheless, our single parser trained
on the largest mix of languages (expMix) beats the
best CoNLL18 language-specific systems on all six
languages, even though three of these languages
are not represented in m-BERT’s training data’.
This result highlights the advantage of multilin-
gual pre-trained model in the truly low resource
scenario.

We notice the poor performance of our parser on
spoken French in comparison to other European
languages. While there is sufficient amount of
Wikipedia text for French, it seems that zero-shot
parsing on a different domain remains a challenge
even with a large pre-trained model.

4 Analysis

By varying the set of parser training languages
we analyze our results with respect to two factors:
parser training language diversity and word order
similarity.

4.1 Training language diversity

Increasing language diversity (expEn—expLatin
and expLatin—expMix) leads to improvements in
most test languages, even when the total amount
of training data is fixed (expEn—expLatin). The
only exceptions are the languages for which train-
ing data is reduced (English in expLatin) or be-
comes a smaller proportion of the total training
data (Czech, Italian, Norwegian in expMix), which
confirms previous findings (Ammar et al., 2016).
Swedish and Upper Sorbian being related to Nor-
wegian and Czech respectively also lose some ac-
curacy in expMix. On the other hand, newly in-
cluded languages (Czech, Italian, Norwegian in ex-
pLatin and Arabic, Hindi, Korean, Russian in exp-
Mix) show the biggest improvements, which was
also expected.

More interestingly, some large gains are reported
for languages that are unrelated from all train-
ing languages of expLatin. We hypothesize that
such languages (Arabic, Armenian, Hungarian)
may benefit from an exposure of the parser to a

5This is possible because their sub-words are in BERT’s
vocabulary due other similar languages in training data.
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m-BERT based

State of the art

target tbk-code expEn  expLatin  expSOV  expMix Stanford CoNLL18  #TrWrds
Russian ru_syntagrus  59.53 73.13 34.44 81.91 91.20 92.48 872 K
Hindi hi_hdtb 32.94 33.75 88.51 85.66 91.65 92.41 281K
Italian it_isdt 75.45 89.59 25.95 89.44 90.51 92.00 276 K
Norwegian no_nynorsk 72.09 86.01 33.93 85.11 89.58 90.99 245 K
Czech cs_pdt 59.97 84.91 34.31 84.36 89.63 89.63 1,173 K
Finnish fi_tdt 50.65 61.13 40.12 62.29 86.33 88.73 163 K
Persian fa_seraji 44.34 56.39 24.77 56.92 86.55 88.11 121 K
Korean ko_kaist 33.67 38.87 84.39 81.73 86.58 86.91 296 K
English en_ewt 84.64 82.38 30.03 81.65 83.80 84.57 205K
Urdu ur_udtb 23.46 23.94 65.21 63.06 82.58 83.39 109 K
Japanese ja_gsd 12.92 12.65 19.25 24.10 78.48 83.11 162K
Hungarian hu_szeged 52.72 61.11 39.65 61.11 78.58 82.66 20K
German de_gsd 68.30 70.93 36.30 70.93 79.17 80.36 264 K
Swedish sv_pud 76.02 78.71 37.58 78.70 78.39 80.35 -K
Arabic ar_padt 34.55 50.20 12.26 68.20 76.99 77.06 224K
French fr_spoken 54.12 59.70 16.06 59.54 69.56 75.78 15K
Vietnamese vi_vtb 29.72 30.09 14.13 29.71 47.56 55.22 20K
Tamil ta_ttb 18.09 25.79 29.64 32.78 - - 5K
Telugu te_mtg 54.47 63.06 61.68 64.03 - - 5K
Faroese* fo_oft 58.28 61.71 36.27 61.98 41.54 49.43 0K
Upper Sorbian*  hsb_ufal 36.66 49.90 23.90 49.74 23.61 46.42 0K
Breton br_keb 45.16 51.85 22.49 52.62 11.25 38.64 0K
Armenian hy_armtdp 40.20 55.44 4191 58.95 31.47 37.01 1K
Kazakh kk_ktb 33.56 40.18 40.18 44.56 26.25 31.93 1K
Buryat* bxr_bdt 19.19 20.90 22.94 23.11 12.47 19.53 0K
avg(lowRes) 39.41 47.26 31.28 48.45 2443 37.16

Table 1: LAS scores of our parser in the raw text setup. Languages not in m-BERT’s training corpus are marked
with *. SVO and SOV languages are indicated by purple and green respectively. Stanford and CoNLL18’s best
submitted systems are provided as representative state-of-the-art supervised systems. #TrWrds = Total training
data made available at CoONLL18. The amount of training used in each experiment is specified in §3.1. Training

languages for each experiment are highlighted in grey.

more diverse set of word orders (§4.2). For in-
stance, Arabic being head initial is closer to Italian
than to English in terms of word order.

Actual language relatedness does not always play
a clear role: For instance, Upper Sorbian seems to
benefit largely from its closeness to Czech in ex-
pLatin and expMix, while Faroese (related to Nor-
wegian) does not improve as much.

In summary, language diversity in training is
clearly a great asset. However, there is a large vari-
ation in gains among test languages, for which lan-
guage family relatedness can only offer a partial
explanation.

4.2 Training language typology

Training on languages with similar typological fea-
tures has been shown beneficial for parsing target
languages in the delexicalized setup. In particular,
word order similarities have been proved benefi-
cial to select source languages for parsing model
transfer (Naseem et al., 2012; Duong et al., 2015).

Indeed, when Hindi and Korean are presented in
expSOV, we report better LAS scores in various
SOV languages (Japanese, Tamil, Urdu, Buryat)
however some other SOV languages (Persian and
Armenian) perform much worse than in expLatin
showing that word order is not a reliable criterion
for training language selection.

Given these observations, we construct our largest
training data (expMix) by merging all the lan-
guages of expEn, expLatin, and expSOV and
adding two more languages with diverse word or-
der profiles for which large treebanks exist, namely
Russian and Arabic.

Concurrently to this work, Lin et al. (2019) have
proposed an automatic method to choose the op-
timal transfer languages in various tasks includ-
ing parsing, based on a variety of typological but
also data-dependent features. We leave adoption
of their method to future work.°

Unfortunately at the time of writing we have not yet man-
aged to use their released implementation.
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4.3 Towards explaining transfer
performance

Even when keeping the training languages fixed,
for instance in expMix, we observe a large varia-
tion of zero-shot parsing transfer accuracy among
test languages which does not often correlate with
supervised parsing accuracy. As an attempt to ex-
plain this variation we look at the overlap of test
vocabulary with (i) parser’s training data vocabu-
lary 7 and (ii) m-BERT’s training data vocabulary.
Because m-BERT uses a subword vocabulary that
also includes characters we resort to measuring the
unsegmented word score 7:

7 =100 x |type—W(Dlesl)mtype—W(Dtrain)‘/|type_w(Dtm)\
n= 100 x |t°ken_9(Dtesl)‘/\token_w(Dm[)\

where type_w(D) and token_w(D) are sets of
WordPieces types and tokens in dataset D respec-
tively, and token_g(D) is the set of gold tokens

in D before applying WordPieces. A higher 7 in-
dicates a less segmented text.

To account for typological features, we also plot
the average syntactic similarity & of each test lan-
guage to the eight expSOV training languages as
computed by the URIEL database’ (Littell et al.,
2017).

80
60
40

20

bxr ja vi ta kk br fa hy hu fo fi tehsb fr ur de sv

Figure 1: Relationship between parsing accuracy
(expMix), parser training-test vocabulary overlap T,
m-BERT unsegmented word score 7, and average typo-
logical syntactic similarity &. Purple bar indicates there
is no language that belongs to the same family presented
in training data. Languages in the training set of expMix
are not shown.

We observe a correlation between LAS, 7 and 7
for test languages that have a relative in the train-
ing data, like Urdu and Hindi. For test languages

"Specifically, we compute 1 — d where d is the pre-
computed syntactic distance in lang2vec.
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that belong to a different family than all training
languages, no correlation appears. A similar ob-
servation is also reported by Pires et al. (2019):
namely, they find that the performance of cross-
lingual named entity recognition with m-BERT is
largely independent of vocabulary overlap.

Although typological features have been shown
to be useful when incorporated into the parser
(Naseem et al., 2012; Ammar et al., 2016), we do
not find a clear correlation between ¢ and LAS in
our setup. Thus none of our investigated factors
can explain transfer performance in a systematic
way.

4.4 Language outliers

While massively pre-trained language models
promise a more inclusive future for NLP, we find
it important to note that cross-lingual transfer per-
forms very badly for some languages.

For instance, in our experiments, Japanese and
Vietnamese stand out as strikingly negative out-
liers. Wu and Dredze (2019) also report a very low
performance on Japanese in their zero-shot depen-
dency parsing experiments.® In (Lin et al., 2019)
Japanese is completely excluded from the parsing
experiments because of unstable results. Japanese
and Vietnamese are language isolates in an NLP
sense, meaning that they do not enjoy the pres-
ence of a closely related language among the high-
resourced training languages.” For this class of
languages, transfer performance is overall very in-
consistent and hard to explain.

UDpipe Gold
ko—ja 1496 20.04
ja—ko 3744 3745

Table 2: LAS scores when transferring between Ko-
rean and Japanese in two tokenization conditions.

The case of Japanese is particularly interesting for
its relation to Korean. Family relatedness between
these two languages is very controversial but their
syntactic features are extremely similar. To put our

8They do not report parsing results for Vietnamese.

°The original definition of language isolate in linguistics
is actually stronger: “a language that has no known relatives,
that is, that has no demonstrable phylogenetic relationship
with any other language” (Campbell, 2017)



parser in optimal transfer conditions, we perform
one last experiment by training only on Korean (all
available data) and testing on Japanese, and vice
versa. As shown in Table 2, Japanese performance
becomes even lower in this setup. We can also see
that transferring in the opposite direction leads to
a much better result, despite the fact that state-of-
the-art supervised systems in these two languages
achieve similar results (Japanese: 83.11, Korean:
86.92 by the best CoNLL18 systems). To rule out
the impact of unsupervised sentence and token seg-
mentation, which may be performing particularly
poorly on some languages, we retrain the parser
with gold segmentation and find that it explains
only a small part of the gap.

While Pires et al. (2019) hypothesize word or-
der is the main culprit for the poor zero-shot per-
formance for Japanese when transferring a POS-
tagger from English, our experiments with Korean
and Japanese show a different picture.

5 Conclusions

We have built a Universal Dependency parser on
top of deep bidirectional sentence representations
pre-trained on a massively multilingual corpus (m-
BERT) without any need for parallel data, tree-
banks or other linguistic resources in the test lan-
guages.

Evaluated in the challenging scenario of pars-
ing from raw text, our best parser trained on
a mix of languages representing both language
family and word order diversity outperforms the
best CoNLL18 language-specific systems on the
six truly low-resource languages presented at the
shared task.

Our experiments show that language diversity in
the training treebank is a great asset for transfer to
low-resource languages. Moreover, the massively
multilingual nature of m-BERT does not neutralize
the impact of transfer languages on parsing accu-
racy, which is only partially explained by language
relatedness and word order similarity.

Finally we have raised the issue of language out-
liers that perform very poorly in all our tested con-
ditions and that, given our analysis, are unlikely
to benefit even from automatic methods of trans-
fer language selection (Lin et al., 2019).
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