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Abstract

In this paper we address a challenging cross-
lingual name retrieval task. Given an English
named entity query, we aim to find all name
mentions in documents in low-resource lan-
guages. We present a novel method which
relies on zero annotation or resources from
the target language. By leveraging freely
available, cross-lingual resources and a small
amount of training data from another lan-
guage, we are able to perform name re-
trieval on a new language without any ad-
ditional training data. Our method pro-
ceeds in a multi-step process: first, we pre-
train a language-independent orthographic en-
coder using Wikipedia inter-lingual links from
dozens of languages. Next, we gather user
expectations about important entities in an
English comparable document and compare
those expected entities with actual spans of the
target language text in order to perform name
finding. Our method shows 11.6% absolute F-
score improvement over state-of-the-art meth-
ods.

1 Introduction

Disasters happen all over the world, not just in the
places where language experts are readily avail-
able. During these disasters, governments and
aid organizations must be able to rapidly under-
stand what is being said online and reported in
the news. Extracting such information requires
tools that can perform basic Natural Language
Processing (NLP) tasks on all languages without
language-specific annotations.

Finding names in documents is a critical part
of extracting structured information from unstruc-
tured natural language documents. Therefore, it is
an essential component for applications including
Information Retrieval, Question Answering and
Knowledge Base Population. Typical name find-
ing methods rely on supervised learning and re-

quire training data from the target language. This
makes name finding on languages that do not have
annotated data available a useful and challenging
problem.

We propose a novel approach for name finding
that requires no training data from the language
to be tagged. Our approach is based on the ob-
servation that the mentions of named entities of-
ten “look the same” across languages, even when
those languages are not related. This “looks the
same” relation is difficult to capture with tradi-
tional metrics such as edit distance and soundex.
Nevertheless, when combined with user expecta-
tions about which entities will likely appear in a
particular text, this relation provides enough in-
formation to identify named entities across the
world’s languages. To illustrate, let’s consider
the sentence, “Bill Gates and Paul Allen founded
Microsoft in 1975.”, as translated into Hindi and
romanized by Google Translate1: “bil gets aur
pol elan ne 1975 mein maikrosopht kee sthaa-
pana kee.” Even without any knowledge of Hindi,
an English speaker told to identify the entities
“Bill Gates”, “Paul Allen”, and “Microsoft” can
easily match them to the spans “bil gets”, “pol
elan” and “maikrosopht” respectively by relying
on this relation. By leveraging pre-training in
a cross-lingual setting with freely available data
from Wikipedia, we train a Convolutional Neural
Network (CNN) model (Krizhevsky et al., 2012)
that captures the orthographic similarity of names
across languages. This model is trained to encode
name mentions into fixed length vectors such that
names which refer to the same entities across a
large number of languages are close to one another
in the encoding space. Because this cross-lingual
encoder model is trained in a highly multilingual
setting, it can serve as a metric to compare name

1https://translate.google.com/
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similarity across all of the world’s languages, not
just those in the training set. We encourage the
model to learn more general similarity features
across languages by using a large number of train-
ing samples and languages relative to the size of
the model. After learning these general similarity
features, the same encoder model can be applied
to new languages without any additional training.

After learning a cross-lingual model of name
similarity, we ask a user to provide query names
in their native language. We can also extract such
queries automatically when comparable corpora
are available. Using our language-independent en-
coder model, these query names can then be com-
pared to spans of text in any language. When those
spans of text are similar to the queries provided by
the user, we tag them as names. We train a Multi-
layer Perceptron (MLP) to perform this compar-
ison step using annotations from a language for
which we have ground truth name tagging infor-
mation. Once this comparison model is trained, it
can also be applied to find names in new languages
without the need for any additional training data.

2 Approach

2.1 Training the Cross-lingual Encoder

The first component of our method is an encoder
model that captures name similarity across lan-
guages. We first train this model and use it to gen-
erate representations of names as fixed length vec-
tors. To train this model, we employ the method
proposed by (Blissett and Ji, 2019) which is in turn
adapted from (Schroff et al., 2015). In this ap-
proach, a neural network is used to encode names
into vectors such that names referring to the same
entity are close to one another in the vector space.
A triplet loss is employed and the negative exam-
ple in each training instance is sampled dynami-
cally in order to provide consistently challenging
and informative samples to the model.

Our encoder model is trained in a cross-
linguistic setting using data from Wikipedia inter-
lingual links. Wikipedia inter-lingual links are
strings of text in various languages which all re-
fer to a single entity’s Wikipedia page. Clusters of
these strings of text which refer to the same entity
in various languages are easily recoverable using
Wikipedia metadata. Our model is then trained to
minimize the distance between the representations
of names which refer to the same entity.

We make a change from the method employed

by (Blissett and Ji, 2019) by using a convolutional
neural network (CNN) for our encoder rather than
a recurrent model. We use a CNN in this case
rather than an RNN because we find that CNNs
can be trained faster, require fewer parameters,
and provide similar overall performance. We ap-
ply our encoder network to character embeddings
trained jointly with the rest of the encoder. We
then use max pooling to derive a fixed length vec-
tor from the encoder filter values.

2.2 Applying the Encoder to Name Finding

After the language independent encoder module is
trained, we freeze the model and use it as a feature
extractor for encoding strings of text both from a
source language and from a target unknown lan-
guage.

To perform name finding, the user is asked for
a set of names (queries) the system will search for
in the unknown language text. Because we can
use our encoder module to derive representations
of these queries that are comparable across lan-
guages, we can use these encoded queries in or-
der to find their unknown language representation
among the rest of the unknown language text.

Typically Recurrent Neural Networks (RNN)
are used to perform name tagging. However, re-
current networks become sensitive to the word or-
der of the language or languages that they are used
to train them. This makes an RNN unsuitable for
our task since we do not know the word order of
our unknown target language. Instead, we enu-
merate the set S of all spans of tokens of a sen-
tence of length l

S = {(i, j) | 0 < i < l, i ≤ j < l}

These substrings referred to by these spans are
then encoded by our cross-lingual encoder and
compared to the queries. Their similarities are
computed using a simple Multi-layer Perceptron
(MLP). We select an MLP since it is well suited to
comparing pairs of vectors and requires relatively
little training data. This MLP can be trained using
labels from a language for which we have ground
truth annotations. Since the encoding model pro-
viding input vectors to the MLP is language inde-
pendent, the trained MLP can also be effectively
applied to new, previously unseen languages as we
show in our results in Table 1.

A problem arises when converting these simi-
larity scores into a sequence of name tags. This
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Figure 1: Overview figure for the approach. User provided queries are compared against contexts from the target
language. Contexts are broken into individual spans of length 1, 2, etc. for comparison. Both queries and contexts
are fed into the pre-trained cross-lingual name encoder and then their similarity is measured using a Multi-layer
Perceptron.

Train – Test Precision Recall F-Score
Oromo – Oromo 0.280 0.441 0.343
Oromo – Tigrinya 0.236 0.159 0.190
Tigrinya – Tigrinya 0.745 0.590 0.658
Tigrinya – Oromo 0.360 0.211 0.266

Precision Recall F-Score
Tigrinya 0.429 0.002 0.004
Oromo 0.133 0.008 0.015

(a) string match baseline

Precision Recall F-Score
Tigrinya 0.438 0.040 0.074
Oromo 0.190 0.232 0.209

(b) soundex-based baseline

Table 1: Performance statistics for our model (top) and baseline approaches (bottom).

problem is best illustrated with an example. Sup-
pose our query is nur sultan nzarbayyf and our
context sentence is Kazakhstan’s President Nur-
sultan Nazarbayev has led the country since inde-
pendence from the Soviet Union in 1991. Our ex-
pectation is that the spans Nursultan, Nazarbayev,
and Nursultan Nazarbayev will all have a high
similarity to the query, but our model must select
which of the spans is the best match with the query
since each will lead to a different final sequence of
tags (e.g. if we select the first span we will assign
[‘B’, ‘O’] to this subsequence of tags while select-
ing the last will lead to the subsequence [‘B’, ‘I’],
where ‘B’ indicates the beginning of a name, ‘I’
indicates inside a name and ‘O’ indicates outside
of a name ).

When faced with a situation where multiple
overlapping spans have a high similarity to the
query (as calculated by our MLP) we need a tie-
breaker which will tell us which of the spans we
ought to ultimately select. We train our model
to select the correct span automatically by linking
this selection directly to our model’s loss function

during training.
For each token tn in the sentence, we assign a

score representing the probability that tn should be
assigned the tag ‘B’ and a score for the probability
that the token should be tagged ‘I’. To assign a
score for the probability that tn should be assigned
the tag ‘B’, we first collect a subset of spans Bn

from the set of all spans S such that the first word
in the span is tn. That is,

Bn = {si|si ∈ S ∧ si[0] = n}

The score assigned for the probability that tn
should be tagged ‘B’ is the highest score among
the all the scores calculated by comparing the
spans in Bn with each query in Q. That is,

BScoren = max
si∈Bn,qi∈Q

f(tokens(si), qi)

where f represents our trainable similarity func-
tion and tokens retrieves the tokens referred to by
the span si.

Likewise, the score assigned for ‘I’ is the high-
est score among spans which include this token,
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but in which it is not the first token. We turn these
scores into probabilities using a sigmoid function
and then compute the Binary Cross-Entropy Loss
for the ‘B’ tags and the ‘I’ tags separately. For
example,

lB = −wn(yn · logBScoren

+ (1− yn) · log (1−BScoren))

where yn is a label indicating if tn should be as-
signed the tag ‘B’ and wn is a weight such that

wn =

{
1 where yn = 0

r · # ‘O’ labels
# non-‘O’ labels where yn = 1

where r is a parameter of the model which can be
selected to trade off between precision and recall.
The number of non-‘O’ labels is either the number
of ‘B’ or ‘I’ tags depending on which score we
are currently computing. Typical values for r in
our models were 0.3 to 0.5. This weighting factor
allows us to compensate for the fact that positive
labels are rare in the data compared to negative
labels.

These two losses are then averaged together to
provide our final loss for this sentence.

l =
(lB + lI)

2

3 Experiments

We use for our datasets an Oromo and Tigrinya
news corpus from the DARPA LORELEI2 pro-
gram. Both are low-resource languages spoken
primarily in Africa for which we have human an-
notated ground truth annotations for evaluation.
Although the languages are both members of the
Afro-Asiatic language family, they differ signifi-
cantly in phonology, morphology, and vocabulary
and are not mutually intelligible. We will use these
languages as examples of unrelated languages in
order to show that our model transfers well even
without training data in languages closely related
to the target language.

Our dataset includes annotations for the follow-
ing types of entities: person, location, and geo-
political entities. We exclude organizations since
the names of organizations are commonly trans-
lated based on meaning rather than transliterated.
We use the top 30 most common names in the
dataset as queries to simulate a user who only

2LDC2017E57 and LDC2017E58 in the LDC Catalog

knows about the most important entities involved
in some event. The model is trained on one lan-
guage using several hundred sentences from that
language with the top 30 entities of that language’s
dataset as the queries. Since the CNN calculat-
ing cross-lingual encodings is pre-trained sepa-
rately and frozen, model training at this point con-
sists only of training our MLP to calculate span
similarity scores. We then test by running the
model using context sentences from a separate lan-
guage and the top 30 entities from that language’s
dataset. For this experiment, the model is scored
only on how many of the query entities identi-
fied in the context sentences, ignoring other enti-
ties. We only assign credit when the tag perfectly
matches the correct spans including boundaries.
We use simple “BIO” tags in which the first token
of a name is tagged ‘B’, other tokens in the name
are tagged ‘I’, and all other tokens are tagged ‘O’.
Our scores show that the model can transfer across
languages.

We also compare our performance to two base-
lines. The first baseline tags names that are exact
string matches with the query entities. The sec-
ond applies the New York State Identification and
Intelligence System (NYSIIS) phonetic code algo-
rithm to both queries and target language text and
then tags spans of target language text that match
the queries. The NYSIIS approach performs sig-
nificantly better than exact string matching, but
our own method outperforms both. Results are
summarized in Table 1.

4 Related Work

The problem of name tagging in low-resource lan-
guages has had real attention within the last few
years. For example, (Zhang et al., 2016) use a va-
riety of non-traditional linguistic resources in or-
der to train a name tagger for use in low-resource
languages. (Pan et al., 2017) and (Tsai et al., 2016)
both rely on Wikipedia to provide data for training
name tagging models for all Wikipedia languages.
Much work has also been pursued for systems
that rely on very limited silver-standard training
data annotated from the target language by non-
speakers (e.g., (Ji et al., 2017)). Our method dif-
fers from the above in that we do not require our
target language to be present in Wikipedia or any
other additional resources.

Cross-linguistic name tagging systems have
also been pursued. For example, (Curran and
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Clark, 2003) develop a feature-based model us-
ing a maximum entropy tagger to achieve good
results in English, Dutch and German. Because
we do not assume access to capitalization which
does not exist in many languages, many of their
most valuable features are not suitable for our set-
ting. (Bharadwaj et al., 2016) demonstrates cross-
lingual transfer for name tagging using phonologi-
cally grounded word representations. In particular,
the authors demonstrate 0-shot transfer for their
name tagging system between Uzbek and Turk-
ish. While this approach requires monolingual
word embeddings in the target language and ben-
efits greatly from capitalization information, our
method makes no such assumptions.

(Ji et al., 2008) used a phonetically based
method to match English person names in Man-
darin audio segments. This method uses an
English-to-pinyin transliteration model and then
applies fuzzy matching to the transliterated output.
This is similar to our work in that it also exploits
the phonetics underlying the spelling of names in
order to produce matches, but differs in that we
use the underlying learned representation directly
rather than string matching.

Our approach differs primarily from all those
outlined above in that we require no resources or
information about the target unknown language.
We also require no additional time for training our
method in order to tag new languages.

5 Conclusions and Future Work

We propose a method to perform name tagging on
an unknown languages using a pre-trained cross-
lingual name encoder and user expectations about
what names may appear in a given dataset. Our
method requires no resources from the new lan-
guage to be tagged. Future work may include per-
forming graph-based query expansion on the tar-
get entities provided by the user. This could pro-
vide coverage of additional names not specifically
searched for by the user.
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