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Abstract

Multi-task learning and self-training are two
common ways to improve a machine learn-
ing model’s performance in settings with lim-
ited training data. Drawing heavily on ideas
from those two approaches, we suggest trans-
ductive auxiliary task self-training: training a
multi-task model on (i) a combination of main
and auxiliary task training data, and (ii) test
instances with auxiliary task labels which a
single-task version of the model has previously
generated. We perform extensive experiments
on 86 combinations of languages and tasks.
Our results are that, on average, transductive
auxiliary task self-training improves absolute
accuracy by up to 9.56% over the pure multi-
task model for dependency relation tagging
and by up to 13.03% for semantic tagging.

1 Introduction

When data for certain tasks or languages is not
readily available, different approaches exist to
leverage other resources for the training of ma-
chine learning models. Those are commonly
either instances from a related task or unla-
belled data: During multi-task training (Caru-
ana, 1993), a model learns from examples of mul-
tiple related tasks at the same time and can there-
fore benefit from a larger overall number of train-
ing instances. Self-training (Yarowsky, 1995;
Riloff et al., 2003), in contrast, denotes the pro-
cess of iteratively training a model, using it to la-
bel new examples, and adding the most confident
ones to the training set before repeating the train-
ing. As data without gold standard annotations is
used, self-training can be considered a special case
of semi-supervised training.

In this work, we propose transductive aux-
iliary task self-training, based on a combina-
tion of multi-task training and self-training: We

use the available auxiliary task data to obtain a
high-performing single-task model for the auxil-
iary task, which we then use to label the main task
test set with auxiliary task labels. Subsequently,
we train a multi-task model on both tasks, while
including instances with the newly generated sil-
ver standard auxiliary task labels.

Transductive auxiliary task self-training is an
extremely cheap procedure, requiring only small
amounts of additional computing time, compared
to the obvious alternative of manually produc-
ing more labels. Our approach is transductive
since the model generalises from specific train-
ing examples to specific test examples. In partic-
ular, training on auxiliary task labels for the test
set, which have been produced by the single-task
model, yields a final multi-task model, which sat-
isfies the defining criterion of transductive infer-
ence that predictions depend on the test data (Vap-
nik, 1998). Note that we do not require gold stan-
dard test labels for either task.

In addition to presenting our method, we inves-
tigate three research questions (RQs):

RQ 1: For which tasks and dataset sizes does
transductive auxiliary task self-training help most?

RQ 2: Can a model trained with our cost-free
transductive auxiliary task self-training perform
similarly to or better than a model trained on addi-
tional manual annotations for the auxiliary task?

RQ 3: Even without considering reduced costs,
are there scenarios where it is better to per-
form transductive auxiliary task self-training than
adding more main task examples?

In order to find generalisable answers to these
research questions, we experiment with several
tasks, languages and numbers of training sam-
ples. We consider the low-level auxiliary task of
part-of-speech tagging and two main tasks: depen-
dency relation (DepRel) tagging and semantic tag-
ging. We furthermore compare with an unsuper-
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We must draw attention to the distribution of this form in those dialects Sentence

PRON AUX VERB NOUN ADP DET NOUN ADP DET NOUN ADP DET NOUN POS

nsubj aux root obj case det obl case det nmod case det obl DepRel

PRO NEC EXS CON REL DEF CON AND PRX CON REL DST CON SemTag

Figure 1: POS tags, DepRel labels and semantic tags for an example sentence.

vised auxiliary task baseline, to show that our re-
sults are not simply a result of domain adaptation
effects. We experiment on 41 languages, yielding
a total of 86 unique language–task combinations.
We find that, on average, transductive auxiliary
task self-training improves absolute accuracy by
up to 9.56% and 13.03% over the pure multi-task
model for DepRel tagging and semantic tagging,
respectively.

2 Neural Sequence Labelling

2.1 Tasks
Figure 1 shows a sentence with annotations for
the three linguistic tasks considered in this paper,
which we will describe in the following.1

Part-of-speech (POS) tagging is the task of as-
signing morpho-syntactic tags to each word in a
sentence. We use it as an auxiliary task, since re-
spective datasets are available for many languages.
It is also a relatively easy task, with state-of-the-
art models typically achieving over 95% accuracy
(Plank et al., 2016). We use the Universal Depen-
dencies (UD) POS tag set (Nivre et al., 2016).

Dependency relation (DepRel) labelling is the
task of assigning dependency labels to each word
in a sentence. In our experiments, we use the Uni-
versal Dependencies labels (Nivre et al., 2016).
We use this task as a main task. Both this task
and POS tagging are morpho-syntactic tasks.

Semantic Tagging (SemTag) is the task of as-
signing a semantic tag to each word in a sen-
tence. We use the labels from the Parallel Meaning
Bank (PMB, Abzianidze et al. (2017); Bjerva et al.
(2016)). This tag set was designed for multilin-
gual semantic parsing and, therefore, to generalise
across languages. As this task is relatively chal-
lenging, we use it as a main task. While the UD
data is available for 41 languages, the PMB data
is only available for four (English, Italian, Dutch,
and German).

FreqBin is the task of predicting the binned fre-
quency of a word, as introduced by Plank et al.

1The example is taken from PMB document 01/3421,
which has gold standard SemTags. The UD POS and DepRel
tags were obtained using UD-Pipe (Straka et al., 2016).

(2016). We use this task as an unsupervised auxil-
iary baseline, with frequencies obtained from our
training data.

2.2 Model Architecture

We approach sequence labelling by using a variant
of a bidirectional recurrent neural network, which
uses both preceding and succeeding context when
predicting the label of a word. This choice was
made as such models at the same time obtain high
performance on all three tasks and lend themselves
nicely to multi-task training via hard parameter
sharing. This system is based on the hierarchi-
cal bi-LSTM of Plank et al. (2016) and is imple-
mented using DyNet (Neubig et al., 2017). On the
subword-level, the LSTM is bi-directional and op-
erates on characters (Ballesteros et al., 2015; Ling
et al., 2015). Second, a context bi-LSTM operates
on the word level, from which output is passed on
to a classification layer.

Multi-task training is approached using hard pa-
rameter sharing (Caruana, 1993). We consider T
datasets, each containing pairs of input-output se-
quences (w1:n, y

t
1:n), wi ∈ V , yti ∈ Lt. The input

vocabulary V is shared across tasks, but the out-
puts (tagsets) Lt are task dependent. At each step
in the training process we choose a random task t,
followed by a randomly chosen batch of training
instance. Each task is associated with an indepen-
dent classification function, but all tasks share the
hidden layers. We train using the Adam optimisa-
tion algorithm (Kingma and Ba, 2014) over a max-
imum of 10 epochs together with early stopping.

3 Transductive Auxiliary Task
Self-Training

Manual annotation of data for main or auxiliary
tasks is time-consuming and expensive. Instead,
we propose to use a preliminary single-task model
to label the main task test data with auxiliary task
labels which can then be leveraged to train an im-
proved multi-task model.

Transductive auxiliary task self-training is
based on two main ideas. First, we assume that
the auxiliary task is easier than the main task, such
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that a high performance can be achieved on it.
Hence, the model will be confident about the aux-
iliary task labels, as is required for self-training.
Second, we choose a transductive approach, be-
cause we assume that not all auxiliary task exam-
ples will lead to equal improvements on the main
task. In particular, we expect auxiliary task labels
for the test instances to be most useful, since in-
formation about those instances is most relevant
for the prediction of the main task labels on this
data. Similarly to contextualised word represen-
tations, this offers an additional signal for the test
set instances, as we obtain this through predicted
auxiliary labels rather than direct encoding of the
context (Devlin et al., 2018; Peters et al., 2018).

3.1 Algorithm

Our proposed algorithm is shown in Algorithm 1.
We start by first training a single-task model on the
available auxiliary task training data, which then
predicts labels for the raw input sentences from
the main task test set. Note that we neither ob-
serve nor require any labels for this test set, neither
for the auxiliary nor for the main task. The labels
which the preliminary single-task model predicts
are then added to the train set of the auxiliary task
for training of the final multi-task model.

Although a transductive approach requires
training a new model for each test set, sequence-
labelling models such as bi-LSTMs are usually
quick to train even on single CPUs, with a full
self-training iteration in this paper completing in
a matter of hours.

Algorithm 1 Transductive auxiliary task self-
training

1: trainaux ← aux. task train data
2: trainmain ← main task train data
3: testinpmain ← main task test input
4: modelaux ← train(trainaux)
5: for sentence ∈ testinpmain do
6: l← label(sentence,modelaux)
7: trainaux = trainaux + l

8: modelmtl ← trainmtl(trainaux, trainmain)

4 Experiments

The experiments described in this section aim at
answering the research questions raised in §1, con-
cerned with the best settings for transductive aux-
iliary task self-training, as well as the theoretical

question how it compares to adding additional (ex-
pensive) gold-standard annotations for the main
and the auxiliary tasks. To ensure that our find-
ings are generalisable, we use a large sample of 56
treebanks, covering 41 languages and several do-
mains. Although this experimental set-up would
allow us to run multilingual experiments, we only
train monolingual models, and aggregate results
across languages and treebanks. We investigate
three tasks; two of them being morpho-syntactic
(POS tagging and DepRel tagging) and one being
semantic (semantic tagging). In all cases, POS is
the auxiliary task, and either POS tagging or De-
pRel tagging is the main task. Experiments are
run in several low-resource settings, varying the
amount of main task data.

We run experiments under four conditions, in
addition to using an MTL baseline. We compare
(i) adding gold standard test annotations for the
auxiliary task only (Aux-ST ceiling), (ii) trans-
ductive auxiliary task self-training, as described in
Algorithm 1 (Aux-ST), (iii) adding gold standard
train annotations for the auxiliary task only (Extra
Aux), or (iv) adding gold standard train annota-
tions for the main task only (Extra Main). We
expect (iii) and (iv) to constitute challenging con-
ditions to beat, as we are in effect giving our model
more annotated data, which is normally expensive
to come by.

4.1 Data

We run experiments on the task-combinations
DepRel–POS and Semtag–POS for all available
languages and datasets. Additionally, we reduce
our training sets to 10k, 1k, 0.5k, and 0.1k sen-
tences in order to investigate various low-resource
scenarios. For semantic tagging, the 10k setting is
omitted as we do not have enough training data.

Slavic Finno-Ugric
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Figure 2: Results for UD treebanks.



256

N Main MTL Aux-ST ceiling Aux-ST Extra Aux Extra Main

10k 86.39 *3.79% *1.97% -0.30% 0.19%
1k 79.19 *7.42% *5.39% *1.74% *7.01%

0.5k 75.77 *8.69% *6.85% *2.64% *10.17%
0.1k 66.31 *11.32% *9.56% *4.97% *18.15%

1k 67.82 n/a *1.74% 0.05% 0.64%
0.5k 63.32 n/a *4.60% 0.83% *2.31%
0.1k 50.44 n/a *13.03% *4.93% *11.58%

Table 1: Macro-averaged changes in accuracy from the
MTL baseline for DepRel – POS (top), SemTag – POS
(bottom). We compare adding gold standard test an-
notations for the aux task (Aux-ST ceiling), transduc-
tive aux task self-training (Aux-ST), adding gold stan-
dard train annotations for the aux task (Extra Aux), or
for the main task (Extra Main) randomly. Significant
(p < 0.05) differences from the baseline are marked
with *.

4.2 Results and Discussion

Table 1 contains results of the experiments macro-
averaged across all languages and treebanks in the
UD and across all languages in the PMB. Figure 2
contains results for two typologically distinct lan-
guage families, Slavic and Finno-Ugric.

Across all data sizes, self-training on the aux-
iliary task is significantly better than the baseline
multi-task model without self-training. The results
on DepRel tagging show that, when the main task
data is sufficiently large, it is more beneficial to
do transductive auxiliary task self-training than it
is to further increase the size of the main dataset.
For semantic tagging, we find this to hold for all
of our training data size settings. Our comparison
with the FreqBin task does not yield substantial
improvements, with mean differences compared to
standard MTL at -0.001% (stdev. 0.022).

To rule out that any gains in the self-training
conditions are not due to increased vocabulary,
we ran experiments with pre-trained word embed-
dings which included the raw text from the test
set and found no significant differences. This can
be explained by the fact that, although out-of-
vocabulary rate is reduced to zero in this condition,
the test set is still relatively small. Thus, the word
embeddings do not have much distributional infor-
mation with which to arrive at good word repre-
sentations for previously out-of-vocabulary words.

In RQ1, we asked for which task and dataset
sizes transductive auxiliary task self-training is
most beneficial. We found benefits across the
board, with larger effects when the main task train-
ing set is small.

In RQ2, we asked whether using transductive
auxiliary task self-training might even be better
than the costly process of manually expanding the
data with gold standard auxiliary data for random
samples. We found that this depends on the main
task and the size of its training set. For DepRels,
with a low amount of main task data, the largest in-
crease in accuracy is found by adding more main
task data. However, given sufficient main task
data, adding highly relevant auxiliary task sam-
ples, even ones which are potentially erroneous, is
more beneficial. In the case of semantic tagging,
however, transductive auxiliary task self-training
is always more beneficial. As expected, the use-
fulness of self-training as well as adding extra aux-
iliary or main task data decreases with increasing
dataset size.

In RQ3, we asked whether there are cases in
which using auxiliary task data is preferable to an-
notating and adding more main task samples. We
found that this is the case when using our proposed
method of transductive auxiliary task self-training
for all training set sizes for semantic tagging, and
in the 10k setting for DepRel tagging.

5 Related Work

Self-training has been shown to be a successful
learning approach (Nigam and Ghani, 2000), e.g.,
for word sense disambiguation (Yarowsky, 1995)
or AMR parsing (Konstas et al., 2017). Sam-
ples in self-training are typically selected accord-
ing to confidence (Zhu, 2005) which requires a
proxy to measure it. This can be the confidence
of the model (Yarowsky, 1995; Riloff et al., 2003)
or the agreement of different models, as used in
tri-training (Zhou and Li, 2005). Another option
is curriculum learning, where selection is based
on learning difficulty, increasing the difficulty dur-
ing learning (Bengio et al., 2009). In contrast, we
build upon the assumption that the auxiliary task
examples are ones a model can be certain about.

In multi-task learning, most research focuses
on understanding which auxiliary tasks to select,
or on how to share between tasks (Søgaard and
Goldberg, 2016a; Lin et al., 2019; Ruder and
Plank, 2017; Augenstein et al., 2018; Ruder et al.,
2019). For instance, Ruder and Plank (2017) find
that similarity as well as diversity measures ap-
plied to the main vs. auxiliary task datasets as a
whole are useful in selecting auxiliary tasks. In the
context of sequence labelling, many combinations



257

of tasks have been explored (Søgaard and Gold-
berg, 2016b; Martı́nez Alonso and Plank, 2017;
Bjerva, 2017). Ruder et al. (2019) present a flex-
ible architecture, which learns which parameters
to share between a main and an auxiliary task.
One of the few examples where multi-task learn-
ing is combined with other methods is the semi-
supervised approach by Chao and Sun (2012),
where main task labels are assigned to unlabelled
instances which are then added to the main task
dataset. However, to the best of our knowledge,
no one has applied self-training to label additional
instances with auxiliary task labels.

6 Conclusion

We introduced transductive auxiliary task self-
training, a straightforward way to improve the per-
formance of multi-task models. Concretely, we
applied the idea of self-training to auxiliary tasks,
in order to automatically label the main task test
data with auxiliary task labels which we subse-
quently included into the training set for multi-task
learning. In experiments on 41 different languages
we obtained improvements of up to 9.56% abso-
lute accuracy over the pure multi-task model for
DepRel tagging and up to 13.03% absolute accu-
racy for semantic tagging. We further showed that
transductive auxiliary task self-training is more
effective than randomly choosing additional gold
standard auxiliary task data. In some settings, in
addition to not needing additional annotation, it
even led to a better performing model than adding
a comparable amount of extra gold standard main
task data.
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