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Abstract

Short Answer Grading (SAG) is a task of scor-
ing students’ answers in examinations. Most
existing SAG systems predict scores based
only on the answers, including the model (Ri-
ordan et al., 2017) used as baseline in this
paper, which gives the-state-of-the-art perfor-
mance. But they ignore important evaluation
criteria such as rubrics, which play a crucial
role for evaluating answers in real-world situ-
ations. In this paper, we present a method to
inject information from rubrics into SAG sys-
tems. We implement our approach on top of
word-level attention mechanism to introduce
the rubric information, in order to locate infor-
mation in each answer that are highly related
to the score. Our experimental results demon-
strate that injecting rubric information effec-
tively contributes to the performance improve-
ment and that our proposed model outperforms
the state-of-the-art SAG model on the widely
used ASAP-SAS dataset under low-resource
settings.

1 Introduction

Short Answer Grading (SAG) is the task of
automatically evaluating the correctness of stu-
dents’ answers to a given prompt in an examina-
tion (Mohler et al., 2011). It would be beneficial
particularly in an educational context where teach-
ers’ availability is limited (Mohler and Mihalcea,
2009). Motivated by this background, SAG has
been studied mainly with machine learning-based
approaches, where the task is considered as in-
ducing a regression model from a given set of
manually scored sample answers (i.e., training in-
stances). As observed in a variety of other NLP
tasks, recently proposed neural models have been
yielding strong results (Riordan et al., 2017).

In general, a prompt is provided along with a
scoring rubric. Figure 1 shows a typical example.
Students are required to answer the steps involved

Prompt
Starting with mRNA leaving the nucleus, list and describe 
four major steps involved in protein synthesis.

Rubric
3 points: 4 key elements 2 points: 3 key elements
1 point: 1 or 2 key elements 0 points: Other

Key elements
1. mRNA exits nucleus via nuclear pore.
2. mRNA travels through the cytoplasm to the ribosome 
or enters the rough endoplasmic reticulum.
3. mRNA bases are read in triplets called codons (by rRNA).
4. …

Answer (1 point)
When the mRNA leaves the nucleus, it travels through 
the cell.  It moves to a ribosome.  The ribosome makes 
tRNA.  Then, protein is synthesized.

Figure 1: Example prompt and rubric from the ASAP-
SAS dataset.

in protein synthesis. Each answer is scored based
on a rubric, which contains several scoring criteria
called key elements. Each of them stipulates dif-
ferent aspects of the conditions for an answer to
gain a score. Based on the number of the key el-
ements mentioned in an answer, its final score is
determined. In Figure 1, the answer mentions two
key elements, so it gains 1 point. Thus, rubrics and
key elements play an essential role in SAG. Few
previous studies, however, use information from
rubrics for SAG.

In this paper, we present a method to incorpo-
rate rubric information into neural SAG models.
Our idea is to enable neural models to capture
alignments between an answer and each key ele-
ment. Specifically, we use a word-level attention
mechanism to compute alignments and generate
an attentional feature vector for each pair of an an-
swer and a key element.

The contributions of this study is summarized
as follows:

• This is the first study that explores how to in-
corporate rubric information into neural SAG
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models.
• We propose a general framework to extend

existing neural SAG models with a compo-
nent for exploiting rubric information.
• Our empirical evaluation shows that our

proposed model achieves a significant per-
formance improvement particularly in low-
resource settings.

2 Related Work

A lot of existing SAG studies have a main inter-
est in exploring better representations of answers
and similarity measures between student answers
and reference answers. A wide variety of meth-
ods have been explored so far, ranging from Latent
Semantic Analysis (LSA) (Mohler et al., 2011),
edit distance-based similarity, and knowledge-
based similarity using WordNet (Pedersen et al.,
2004) (Magooda et al., 2016) to word embedding-
based similarity (Sultan et al., 2016). Recently,
Riordan et al. (2017) report that neural network-
based feature representation learning (Taghipour
and Ng, 2016) is effective for SAG.

In contrast to the popularity of learning answer
representations, the use of rubric information for
SAG has been gained little attention so far. In Sak-
aguchi et al. (2015), the authors compute similar-
ities, such as BLEU (Papineni et al., 2002), be-
tween an answer and each key element in a rubric,
and use them as features in a support vector regres-
sion (SVR) model. Ramachandran et al. (2015).
Ramachandran et al. (2015) generates text patterns
from top answers and rubrics, and reports the au-
tomatically generated pattern performances better
than manually generated regex pattern. Neverthe-
less, it still remains an open issue (i) whether a
rubric is effective or not even in the context of a
neural representation learning paradigm (Riordan
et al., 2017), and (ii) what kinds of neural archi-
tectures should be employed for the efficient use
of rubrics.

Another issue in SAG is on low-resource set-
tings. Heilman and Madnani (2015) investigate
the importance of the training data size on non-
neural SAG models with discrete features. Hor-
bach and Palmer (2016) show that active learning
is effective for increasing useful training instances.
This is orthogonal to our approach: combining ac-
tive learning with our rubric-aware SAG model is
an interesting future direction.
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Figure 2: The proposed rubric-aware SAG architecture,
consisting of base component and rubric component.

3 Proposed model

3.1 Overall architecture
Figure 2 illustrates our proposed model, which
consists of (i) base component and (ii) rubric com-
ponent.

We assume the base component encodes an an-
swer into a feature vector fa. We also assume that
a given rubric stipulates a set of key elements in
natural language. We build a rubric component
to encode rubric information, based on the rele-
vance between the answer a and each key element
k ∈ {k1, k2, · · · , kK} provided in the rubric.

The rubric component first encodes each
key element that consists of m words, k =
(w1, w2, · · · , wm), into its feature vector k and the
answer a into a. Then, it computes the relevance
between the given answer a and each key element
k ∈ {k1, k2, · · · , kK} using a word-level attention
mechanism, and generates attentional feature vec-
tors f r

1 , · · · ,f r
K , which represent the aggregated

information of each key element. A rubric fea-
ture f r is generated based on the obtained K at-
tentional feature vectors. Finally, fa and f r are
merged into one vector f , which is used for scor-
ing:

score(a) = β sigmoid(w · f + b), (1)

where w is a parameter vector, β is a prompt-
specific scaling constant, and b is a bias term.

Note that the model does not require explicit
annotation of key elements on the training an-
swer samples because the model implicitly esti-
mates which key elements are included in each
student answer in the course of training. It is also
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Embeddings Bi-LSTM Pooling

Figure 3: The base component.

important to note that our framework is encoder-
agnostic; namely, any answer encoder that pro-
duces a fixed-length feature vector can be used as
the base component.

3.2 Base component
As the base component, we employ the neural
SAG model proposed by Riordan et al. (2017),
which is the state-of-the-art SAG system among
published methods. As shown in Figure 3, this
model consists of three layers, namely (i) the
embedding layer, (ii) the BiLSTM (bidirectional
Long Short-Term Memory (Schuster and Paliwal,
1997)) layer and (iii) the pooling layer.

Given an answer a = (w1, w2, ..., wn), the em-
bedding layer outputs a vector eai ∈ Rd for each
word wi. Taking a sequence of these vectors
(ea1, e

a
2, · · · , ean) as input, the BiLSTM layer then

produces a contextualized vector fa
i = [

−→
hi;
←−
hi]

for each word, where
−→
hi ∈ Rh,

←−
hi ∈ Rh are the

hidden states of the forward and backward LSTM,
respectively. Finally, the pooling layer averages
these contextualized vectors to obtain a feature
vector for the answer as follows:

fa =
1

n

n∑
i=1

fa
i (2)

3.3 Rubric component
Inspired by Chen et al. (2016), we compute word-
level attention between each key element and an
given answer as illustrated in Figure 4. The rubric
component captures how relevant a key element is
to the given answer in this way.

Given word embedding sequences of an
answer (ea1, e

a
2, · · · , ean) and a key element

(ek1, e
k
2, · · · , ekm), the rubric component first cal-

culates the word-level attention between eki and
eaj :

• Calculate the inner-products between word
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Figure 4: Calculation of rubric feature based on word-
level attention. Words of answers lay on x-axes, and
words of the key elements lay on y-axes.

embeddings from the answer and key ele-
ment: zi,j = eki · eaj
• Calculate softmax of zi,j over the rows and

columns respectively:

αk
i = softmax(zi,1, zi,2, · · · , zi,n) (3)

αa
j = softmax(z1,j , z2,j , · · · , zm,j)(4)

Note that αk
i ∈ Rn stands for the attention from

the i-th word of a key element to each word in the
answer a. Similarly, αa

j ∈ Rm stands for the at-
tention from the j-th word of answer to each word
in the key element k.

Next, attentional vectors of key-to-answer (v)
and answer-to-key (u) are calculated by the sum
of word embeddings weighted by αa and αk as
follows:

u =
1

m

m∑
i=1

n∑
j=1

αk
i,je

a
j (5)

v =
1

n

n∑
j=1

m∑
i=1

αa
j,ie

k
i (6)

Intuitively, vectors u and v are the aggregation
of answer tokens that are highly relevant to a key
element, and tokens in the key elements that are
highly relevant to the answer. We then concatenate
u,v to obtain a feature vector for the key element.
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Finally, we generate feature vectors f r
1 , · · · ,f r

K

for all key elements in this manner, and then gen-
erate rubric feature f r based on them.

3.4 Merge features

We introduce two methodologies to merge fa and
f r into one single feature f .

Concatenation We concatenate fa and f r:

f r = [f r
1 ;f

r
2 ; ...;f

r
K ] (7)

f = [fa;f r],f ∈ R2h+2dK (8)

In this case, we expect the regression layer learns
weights for the two feature space at the same time.

Weighted Sum Besides, we introduce a train-
able parameter λ, which represents the influence
of the rubric component. We then generate a
rubric-aware answer feature as follows:

f r =
1

K

K∑
i=1

f r
i (9)

f = λfa + (1− λ)(f rM),f ∈ R2h,(10)

where M ∈ R2d×2h is a transformation matrix to
learn, projecting f r to the space of fa. To reduce
parameters to learn, we compute f r by average
instead of concatenation. λ is initialized with 0.5
in our experiments.

Finally, the answer a is scored as follows:
score(a) = βsigmoid(w · f + b), where w ∈
R2h+2dK (or w ∈ R2h for ‘weighted sum’ strat-
egy) is a model parameter, β is a prompt-specific
scaling constant, and b is a bias term.

4 Experiments

4.1 Settings

We apply the proposed model on a widely-used,
rubric-rich ASAP-SAS dataset2, which includes
10 prompts, with 2,226 answers for each prompt
on average, including around 1,704 training data
and 522 test data. In this paper, we choose the
prompts 1, 2, 5, 6 and 10, where key elements
are explicitly provided in their rubric, and we ran-
domly take 20% of answers from the training data
as the development data. On average, we have
1,308 answers as training data, 327 answers as de-
velopment data and 545 answers as test data.

2https://www.kaggle.com/c/asap-sas/
data
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Base +Rubric (concat) +Rubric (weighted sum)

Figure 5: Mean performance across different size of
training data. The performance is shown in average
QWK over all prompts.

For both the base and rubric components,
we use 300-dimensional GloVe embeddings pre-
trained on Wikipedia and Gigaword5 (Pennington
et al., 2014) to initialize the word embedding layer
(d = 300), and update them during the training
phase.

For the bi-LSTM layer of base component, we
set h = 256, set the dropout probability for linear
transformation as 0.5, and set the dropout proba-
bility for recurrent state as 0.1, following the set-
ting of (Riordan et al., 2017).

Mean Squared Error (MSE) is used as the loss
function, and optimized by RMSprop optimizer
with a learning rate of 0.001. The batch size is
set to 32.

The model is trained on each prompt. We first
train the base component, then fix the base com-
ponent and train the whole model, and run the
training phase for 50 epochs to choose the best
model on the development data. For each prompt,
we repeat the experiments 5 times with differ-
ent random seeds from 0 to 4 for initialization,
and evaluate the model with Quadratic Weighted
Kappa (QWK) independently, then we take aver-
age QWK over all the random seeds as the final
performance of the model on the corresponding
prompt.

To evaluate the robustness of our model in low-
resource settings, we train our model on various
sizes of the training data (12.5%, 25%, 50%, 75%
and 100%).

4.2 Results
The experimental results under different sizes of
training data are shown in Figure 5. The perfor-
mance of the base component (‘Base‘) with 100%
training data was 0.770, which is comparable to

https://www.kaggle.com/c/asap-sas/data
https://www.kaggle.com/c/asap-sas/data
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Table 1: Performance across different sizes of training data. ∗ indicates a statistically significant improvement by
Wilcoxon’s signed-rank test (p < 0.05).1 ‘B’ indicates baseline, and ‘+R’ indicates our model (base component +
rubric component)

(a) Merge base feature and rubric feature by concatenation.

Prompt 1 2 5 6 10 mean

12.5%
B .588 .331 .617 .611 .618 .553

+R
.579∗ .408∗ .723∗ .721∗ .582∗ .603
-.009 +.077. +.107. +.110 -.036 +.050

25%
B .656 .473 .641 .627 .719 .623

+R
.652∗ .544∗ .719∗ .743∗ .712∗ .674
-.004 +.072 +.078 +.116 -.007 +.051

50%
B .748 .637 .748 .718 .705 .711

+R
.745∗ .641 .790∗ .756∗ .700∗ .726
-.003 +.004 +.042 +.038 -.005 +.015

75%
B .776 .700 .798 .748 .744 .753

+R
.780∗ .696 .803∗ .759∗ .755∗ .759
+.004 -.004 +.005 -.011 +.011 +.006

100%
B .792 .713 .804 .788 .753 .770

+R
.784 .714∗ .797∗ .793∗ .751 .768
-.008 +.001 -.008 +.005 -.002 -.002

(b) Merge base feature and rubric feature by weighted sum.

Prompt 1 2 5 6 10 mean

12.5%
B .588 .331 .617 .611 .618 .553

+R
.599∗ .424∗ .689∗ .679∗ .617 .602
+.012 +.093 +.073 +.068 -.001 +.049

25%
B .656 .473 .641 .627 .719 .623

+R
.661∗ .529∗ .687∗ .697∗ .698 .654
+.005 +.056 +.046 +.070 -.020 +.031

50%
B .748 .637 .748 .718 .705 .711

+R
.747∗ .643 .784∗ .723∗ .702∗ .720
+.000 +.006 +.036 +.006 -.004 +.009

75%
B .776 .700 .798 .748 .744 .753

+R
.783∗ .704 .787∗ .750∗ .784∗ .762
+.007 +.004 -.010 +.002 +.040 +.009

100%
B .792 .713 .804 .788 .753 .770

+R
.789 .695∗ .786∗ .790∗ .748 .762
-.003 -.018 -.018 +.002 -.005 -.008

the best performance of QWK 0.773 on the cor-
responding 5 prompts reported in (Riordan et al.,
2017). This indicates that we successfully repli-
cated their best performing model.

Also, by adding the rubric component
(‘+Rubric’), the performance was improved
especially when less training data is available.
This suggests that the rubric component compen-
sates the lack of training data. This is consistent
with (Sakaguchi et al., 2015), a non-neural
counter-part of our study.

Performance on each prompt is shown in Ta-
ble 1. The results indicate that the benefit we ob-
tain from rubric component varies with prompts.
For instance, we achieve more improvements on
prompt 2, 5 and 6 compared to the others. One of
the reasons is that the rubrics vary on prompts. For
instance in prompt 5 and 6, all key elements with
which an answer can get points are listed, while
in prompt 10 only four example answers are pro-
vided.

4.3 Analysis

Contribution of components Figure 5 demon-
strates that when trained with full training data,
our rubric-aware model (‘+Rubric’) achieved a
comparable performance to the base component.
To reveal reasons for this, we conduct two analy-

ses.
First, for ‘+Rubric (concat)’, we investigate the

distribution of the learned weights of regression
layer corresponding to the base and rubric compo-
nents following the idea from Meftah et al. (2019).
The distribution is shown in Figure 6. When
the model was trained on 100% training data, the
weights for the rubric component were closer to
0, while the weights for the base component were
more dispersed (Figure 6b), compared to the dis-
tribution for 12.5% training data (Figure 6a).

Second, for ‘+Rubric (weighted sum)’, we plot
the values of trained λ in Figure 7, representing
the weights of base component. Generally, the val-
ues of λ grow with data size, which is consistent
with Figure 6. This means that as training data
increases, the rubric component makes less contri-
bution to the performance, thus little improvement
was obtained from the rubric component. Ad-
dressing this issue is an interesting direction of our
future research.

Word-level attention To get further insights on
the rubric component, we analyzed 1-point an-
swers in the test set. We show two typical exam-
ples of 1-point answers in Table 2, where each an-
swer is graded (a) correctly and (b) incorrectly by
the system trained with 12.5% training data. Both
the two answers are graded incorrectly as 0-points
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Table 2: Instance 1-point answers.

ID Answer Score Base +Rubric

13278
the mRNA gets transcribed, it leaves the nucleus by the ribosomes, then
it travels on the Endocplasmic reticulum, and goes to the lysomes and
gets translated to proteins.

1 0 1

13174 mRNA leaves the nulceus, travels to the endoplasmic reticulum, then
to cell membrane and exits the cell 1 0 0

(a) Training data size: 12.5%

(b) Training data size: 100%

Figure 6: Value distribution of learned weights of re-
gression layer corresponding to base and rubric com-
ponent for prompt 5.

by the baseline.
The corresponding prompt and its rubric are

shown in Figure 1. Both the answers only con-
tain the first key element provided in rubric. The
first answer is graded as 1-point correctly while
the second is graded as 0-points.

The word-level attention shown in Figure 8 in-
dicates how the proposed model identified the rel-
evancy of the answer towards the key element.
Figure 8a shows that the model successfully found
words and phrases most related to the key element,
helping the model improve the performance. On
the other hand, Figure 8b shows that the model
incorrectly aligned words in the answer and key
element. Specifically, the model aligned exists in

0.5

0.6

0.7

0.8

0.9

12.5% 25% 50% 75% 100%
la

m
bd

a

prompt 1 prompt 2 prompt 5
prompt 6 prompt 10

Figure 7: Values of λ trained by various of data size.

the answer with exists in the key element. How-
ever, these two verbs should not be aligned be-
cause their objects are different from each other
(i.e. the cell in the answer, but nucleus in the key
element). Because the attention is calculated on
word-level, the model tends to simply find similar
words that appear in the key element, ignoring the
context around the words.

5 Conclusion

Rubrics play a crucial role for SAG but have at-
tracted little attention in the SAG community. In
this paper, we present an approach for incorporat-
ing rubrics into neural SAG models. We replicated
a state-of-the-art neural SAG model as the base
component, and injected rubrics (key elements)
through the rubric component as an extension. In
the low-resource setting where the base compo-
nent had difficulty learning key elements directly
from answers, our experimental results showed
that the rubric component significantly improved
the performance of SAG. When all training data
was used, the rubric component did not have a
negative effect on the overall performance.

Overall, the proposed model still has much
room for improvement. For example, the approach
to calculate the alignment between answers and
key elements could be improved by taking con-
text into account, instead of using word-level at-
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…

(a) Attention for answer 13278

(b) Attention for answer 13174

Figure 8: Word-level attention. Words of answers lay
on x-axes, and words of the key element lay on y-axes.

tention. Moreover, other types of rubrics could be
explored in the SAG task, especially for prompts
where key elements are not provided explicitly.
We also expect to obtain a further improvement
when full training data is available, by increasing
the weights of rubric component feature, as dis-
cussed in Figure 6. Beyond SAG, we would like to
explore approaches for generating feedback based
on the computed attention to key elements.
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