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Abstract

Traditional text classifiers are limited to pre-
dicting over a fixed set of labels. However,
in many real-world applications the label set
is frequently changing. For example, in intent
classification, new intents may be added over
time while others are removed.

We propose to address the problem of dy-
namic text classification by replacing the tra-
ditional, fixed-size output layer with a learned,
semantically meaningful metric space. Here
the distances between textual inputs are opti-
mized to perform nearest-neighbor classifica-
tion across overlapping label sets. Changing
the label set does not involve removing pa-
rameters, but rather simply adding or remov-
ing support points in the metric space. Then
the learned metric can be fine-tuned with only
a few additional training examples.

We demonstrate that this simple strategy is ro-
bust to changes in the label space. Further-
more, our results show that learning a non-
Euclidean metric can improve performance
in the low data regime, suggesting that fur-
ther work on metric spaces may benefit low-
resource research.

1 Introduction

Text classification often assumes a static set of la-
bels. While this assumption holds for tasks such
as sentiment analysis and part-of-speech tagging
(Pang and Lee, 2005; Kim, 2014; Brants, 2000;
Collins, 2002; Toutanova et al., 2003), it is rarely
true for real-world applications. Consider the ex-
ample of news categorization in Figure 1 (a). A
domain expert may decide that the Sports class
should be separated into two distinct Soccer and
Baseball sub-classes, and conversely merge the
two Cars and Motorcycles classes into a single
Auto category. Another example is user intent
classification in task-oriented dialog systems. In
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(a) news topics: (b) user intents:

Figure 1: Examples of dynamic classification. In the
hierarchical setting (left), new labels are created by
splitting and merging old labels. In the flat setting
(right), arbitrary labels can be added or removed.

Figure 1 (b) for example, an intent to redeem a re-
ward can be removed when the option is no longer
available, while a new intent to apply free ship-
ping can be added to the system. In all of these
applications, the classifier must remain applicable
for dynamic classification, a task where the label
set is rapidly evolving.

Several factors make the dynamic classification
problem difficult. First, traditional classifiers are
not suited to changes in the label space. These
classifiers produce a fixed sized output which
aligns each of the dimensions to an existing la-
bel. Thus, adding or removing any label requires
changing the model architecture. Second, while it
is possible to retain some model parameters, such
as in hierarchical classification models, these ar-
chitectures must still learn separate weights for
every new class or sub-class (Cai and Hofmann,
2004; Kowsari et al., 2017). This is problem-
atic because the new class labels often come with
very few training examples, providing insufficient
information for learning accurate model weights.
Furthermore, these models do not leverage infor-
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mation across similar labels, which weakens their
ability to adapt to new target labels (Kowsari et al.,
2017; Tsochantaridis et al., 2005; Cai and Hof-
mann, 2004).

We propose to address these issues by learning
an embedding function which maps input text into
a semantically meaningful metric space. The pa-
rameterized metric space, once trained on an ini-
tial set of labeled data, can be used to perform clas-
sification in a nearest-neighbor fashion (by com-
paring the distance from the input text to reference
texts with known label). As a result, the classifier
becomes agnostic to changes in the label set. One
remaining design challenge, however, is to learn a
representation that best leverages the relationship
between old and new labels. In particular, the la-
bel split example in Figure 1 (b) shows that new
labels are often formed by partitioning an old la-
bel. This suggests that the classifier may bene-
fit from a metric space that can better represent
the structural relationships between labels. Given
the hierarchical relationship between the old and
new labels, we choose a space of negative curva-
ture (hyperbolic), which has been shown to better
embed tree-like structure (Nickel and Kiela, 2017;
Sala et al., 2018; Gu et al., 2019).

Our two main contributions are outlined below:

1. We design an experimental framework for dy-

namic text classification, and propose a clas-
sification strategy based on prototypical net-
works, a simple but powerful metric learning
technique (Snell et al., 2017).

2. We construct a novel prototypical network
adapted to hyperbolic geometry. This re-
quires deriving useful prototypes to represent
a set of points on the negatively curved Rie-
mannian manifold. We state sufficient theo-
retical conditions for the resulting optimiza-
tion problem to converge. To the best of our
knowledge, this is the first application of hy-
perbolic geometry to text classification be-
yond the word level.

We perform a thorough experimental analysis
by considering the model improvements across
several aspects – low-resource fine-tuning, impact
of pretraining, and ability to learn new classes.
We find that the metric learning approach adapts
more gracefully to changes in the label distribu-
tion, and outperforms traditional, fixed size clas-
sifiers in every aspect of the analysis. Further-

more, our proposed hyperbolic prototypical net-
work outperforms its Euclidean counterpart in the
low-resource setting, when fewer than 10 exam-
ples per class are available.

2 Related Work

Prototypical Networks and Manifold Learning:

This paper builds on the prototypical network ar-
chitecture (Snell et al., 2017), which was origi-
nally proposed in the context of few-shot learning.
In both their work and ours, the goal is to embed
training data in a space such that the distance to
prototype centroids of points with the same label
define good decision boundaries for labeling test
data with a nearest neighbor classifier. Building
on earlier work in metric learning (Vinyals et al.,
2016; Ravi and Larochelle, 2017), the authors
show that learned prototype points also help the
network classify inputs into test classes for which
minimal data exists. This architecture has found
success in computer vision applications such as
image and video classification (Weinberger and
Saul, 2009; Ustinova and Lempitsky, 2016; Luo
et al., 2017). Very recently, prototypical network
architectures have shown promising results on re-
lational classification tasks (Han et al., 2018; Gao
et al., 2019). To the best of our knowledge, our
work is the first application of prototypical net-
work architectures to text classification using non-
Euclidean geometry.1

Concurrent with the writing of this paper,
(Khrulkov et al., 2019) applied several hyperbolic
neural networks to few-shot image classification
tasks. However, their prototypical network uses
the Einstein midpoint rather than the Karcher
mean we use in Section 3.3. In (Chen et al., 2019)
the authors embed the labels and data separately,
then predict hierarchical class membership using
an interaction model. Our model directly links
embedding distances to model predictions, and
thus learns an embedded space that is more
amenable to low-resource, dynamic classification
tasks.

Hyperbolic geometry has been deeply ex-
plored in classical works of differential geome-
try (Thurston, 2002; Cannon et al., 1997; Berger,

1Snell et al. (2017) discuss their formulation in the con-
text of Euclidean distance, cosine distance (spherical mani-
fold), and general Bregman divergences; however, classical
Bregman divergence does not easily generalize to hyperbolic
space (Section 3.3).
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2003). More recently, hyperbolic space has been
studied in the context of developing neural net-
works with hyperbolic parameters (Ganea et al.,
2018b). In particular, recent work has success-
fully applied hyperbolic geometry to graph em-
beddings (Sarkar, 2011; Nickel and Kiela, 2017,
2018; Sala et al., 2018; Ganea et al., 2018a; Gu
et al., 2019). In all of these prior works, the
model’s parameters correspond to node vectors
in hyperbolic space that require Riemannian op-
timization. In our case, only the model’s out-
puts live in hyperbolic space—not its parameters,
which avoids propagating gradients in hyperbolic
space and facilitates optimization. This is ex-
plained in more detail in Section 3.3.

Hierarchical or Few-shot Text Classification:

Many classical models for multi-class classi-
fication incorporate a hierarchical label struc-
ture (Tsochantaridis et al., 2005; Cai and Hof-
mann, 2004; Yen et al., 2016; Naik et al., 2013;
Sinha et al., 2018). Most models proceed in a
top-down manner: a separate classifier (logistic re-
gression, SVM, etc.) is trained to predict the cor-
rect child label at each node in the label hierarchy.
For instance, HDLTex (Kowsari et al., 2017) ad-
dresses large hierarchical label sets explicitly by
training a stacked, hierarchical neural network ar-
chitecture. Such approaches do not scale well to
deep and large label hierarchies, while our method
can adapt to more flexible settings, such as adding
or removing labels, without adding extra parame-
ters.

Our work also relates to text classification in a
low-resource setting. While a wide range of meth-
ods improve accuracy by leveraging external data
such as multi-task training (Miyato et al., 2016;
Chen et al., 2018; Yu et al., 2018; Guo et al., 2018),
semi-supervised pretraining (Dai and Le, 2015),
and unsupervised pretraining (Peters et al., 2018;
Devlin et al., 2018), our method makes use of the
structure of the data via metric learning. As a re-
sult, our method can be easily combined with any
of these methods to further improve model perfor-
mance.

3 Model Framework

This section provides the details of each compo-
nent of our framework, starting with a more de-
tailed formulation of dynamic classification. We
then provide some background on prototypical

networks, before introducing our hyperbolic vari-
ant and its theoretical guarantees.

3.1 Dynamic Classification

Mathematically, we formulate dynamic classifica-

tion as the following problem: given access to
an old, labeled training corpus (xi, yi) 2 Xold ⇥
Yold, we are interested in training a classifier h :
Xnew 7! Ynew with a few examples (xj , yj) 2
Xnew ⇥ Ynew. Unlike few-shot learning, the old
and new datasets need not be disjoint (Xold \
Xnew 6= ;, Yold \ Ynew 6= ;).

We consider two different cases: 1) new la-
bels arrive as a consequence of new input data
Xnew \Xold, and 2) during label splitting/merging,
some new examples may be constructed by re-
labeling old examples from yi 2 Yold to yj 2
Ynew \ Yold. This latter case is of particular in-
terest as the classifier may be able to leverage its
knowledge of old labels in learning to classify new
ones.

There are many natural approaches to this prob-
lem. First, a fixed model trained on Xold ⇥ Yold

may be applied directly to classify examples in
Xnew ⇥ Ynew, which we refer to as an un-tuned

model. Alternately, a pretrained model may also
be fine-tuned on Xnew ⇥ Ynew. Finally, it is also
possible to train from scratch on Xnew ⇥ Ynew,
disregarding the model weights trained on the old
data distribution. We compare strategies in Sec-
tions 4–5.

3.2 Episodic Training

The standard prototypical network is trained us-
ing episodic training, as described in (Snell et al.,
2017). We view our model as an embedding func-
tion which takes textual inputs and outputs points
in the metric space. Let d(x, y) denote the dis-
tance between two points x and y in our metric
space, and let f denote our embedding function.
At each iteration, we form a new episode by sam-
pling a set of target labels, as well as support and
query points for each of the sampled labels. Let
NC , NS , and NQ, be the number of classes tested,
the number of support points used, and the number
of query points used in each episode, respectively.

For each episode, we first sample NC classes,
C = {ci|i = 1, . . . , NC}, uniformly across all
training labels. We then build a set of support
points Si = {si,j |j = 1, . . . , NS} for each of
the selected classes by sampling NS training ex-
amples from each selected class. For each support
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set, we compute a prototype vector p⇤i . For the
standard Euclidean prototypical network, we use
the mean of the embedded support set:

p⇤i =
1

NS

NSX

j=1

f(si,j) . (1)

To compute the loss for an episode, we fur-
ther sample NQ query points Q = {xi,j |j =
1, . . . , NQ} which do not appear in the support
set of the episode, for each selected class ci. We
then encode each query sequence and apply a soft-
max function over the negative distances from
the query points to the episode’s class prototypes.
This yields a probability distribution over classes,
and we take the negative log probability of the true
class, averaged over the query points, to get the
loss for the episode.

�1
NCNQ

NCX

i=1

NQX

j=1

log


exp(�d(f(xi,j), p⇤i ))P
k exp(�d(f(xi,j), p⇤k))

�
,

where k in the denominator ranges from 1 to NC .
The steps of a single episode are summarized in
Algorithm 1.

Once episodic training is finished, the prototype
vectors for a class can be computed as the mean
of the embeddings of any number of items in the
class. In our experiments, we use the whole train-
ing set to compute the final class prototypes, but
under lower resources, fewer support points could
also be used.

3.3 Hyperbolic Prototypical Networks

In this section we discuss the hyperbolic prototyp-
ical network which can better model structural re-
lationships between labels. We first review the hy-
perboloid model of hyperbolic space and its dis-
tance formula. Then we describe the main tech-
nical challenge of computing good prototypes in
hyperbolic space. Proofs of our uniqueness and
convergence will be provided in an extended ver-
sion. We also describe a second, distinct method
for computing prototypes which is used to initial-
ize our main method during experiments (a de-
tailed discussion of this point will be provided in
an extended version).

Hyperbolic space can be interpreted as a con-
tinuous analogue of a tree (Cannon et al., 1997;
Krioukov et al., 2010). While trees on n ver-
tices can be embedded in Euclidean space with
log(n) dimensions, hyperbolic space needs only

Algorithm 1 Prototypical Training Episode

Input: D – set of (x, y) pairs
Di – all pairs with y = i
NC – number of classes sampled each episode
NS – number of support points
NQ – number of query points

1: procedure EPISODE(D, NC ,NS , NQ)
2: C  SAMPLE(D,NC)
3: for i 2 C do

4: Si SAMPLE(Di, NS)
5: Qi SAMPLE(Di \ Si, NQ)
6: ci PROTOTYPE(Si)

7: P  CONCAT(c0; c1; ...; cNC )
8: Loss 0
9: for each Qi do

10: di  PAIRWISEDIST(Qi, P )

11: Loss Loss� 1
NCNQ

log


e�diP
j e

�dj

�

2 dimensions. Additionally, the circumference of
a hyperbolic disk grows exponentially with its ra-
dius. Therefore, hyperbolic models have room to
place many prototypes equidistant from a common
parent while maintaining separability from other
classes. We argue that this property helps text clas-
sification with latent hierarchical structures (e.g.
dynamic label splitting).

The reader is referred to Section 2.6
of (Thurston, 2002) for a detailed introduc-
tion to hyperbolic geometry, and to (Cannon
et al., 1997) for a more gentle introduction. In
this section we have adopted the sign convention
of (Sala et al., 2018).

Hyperbolic space in d dimensions is the unique,
simply connected, d-dimensional, Riemannian
manifold with constant curvature �1. The hyper-
boloid (or Lorentz) model realizes d-dimensional
hyperbolic space as an isometric embedding in-
side R

d+1 endowed with a signature (1, d) bilin-
ear form. Specifically, let the coordinates of any
a 2 R

d+1 be a = (a0, a1, ..., ad). Then we can
define a bilinear form on R

d+1 by

B(x, y) = x0y0 �
dX

j=1

xjyj , (2)
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which allows us to define the hyperboloid to be
the set {x 2 R

d+1|B(x, x) = 1 and x0 > 0}. We
induce a Riemannian metric on the hyperboloid
by restricting B(·, ·) to the hyperboloid’s tangent
space. The resulting Riemannian manifold is hy-
perbolic space H

d. For x, y 2 H
d the hyperbolic

distance is given by

dH(x, y) = arccosh(B(x, y)). (3)

There are several equivalent ways of defining
hyperbolic space. We choose to work primarily
in the hyperboloid model over other models (e.g.

Poincaré disk model) for improved numerical sta-
bility. We use the d-dimensional output vector h
of our network and project it on the hyperboloid
embedded in d+ 1 dimensions:

h0 =

vuut
dX

i=1

h2i + 1 , h̄ = [h0;h] . (4)

A key algorithmic difference between the Eu-
clidean and the hyperbolic model is the computa-
tion of prototype vectors. There are multiple defi-
nitions that generalize the notion of a mean to gen-
eral Riemannian manifolds. One sensible mean
p?X of a set X is given by the point which mini-
mizes the sum of squared distances to each point
in X .

p?X = argmin
p2Hd

�X(p)

= argmin
p2Hd

X

x2X
dHd(p, x)2 .

(5)

A proof for the following proposition will be pro-
vided in an extended version. We note that concur-
rent with the writing of this paper, a generalized
version of our result appeared in (Gu et al., 2019)
as Lemma 2.
Proposition 1. Every finite collection of points X
in H

d
has a unique mean p?X . Furthermore, solv-

ing the optimization problem (5) with Riemannian

gradient descent will converge to p?X .

In an effort to derive a closed form for p?X
(rather than solve a Riemannian optimization
problem), we conjecture that the following expres-
sion is a good approximation. It is computed by
averaging the vectors in X and scaling them by
the constant which projects this average back to
the hyperboloid:

p̂ =
1

|X|
X

x2X
x, p̃ =

p̂p
B(p̂, p̂)

. (6)

p?X 6= p̃ can be shown to differ through a sim-
ple counterexample, although in practice we find
little difference between their values during exper-
iments. The proof will be provided in an extended
version.

3.4 Implementation and Stability

Our final hyperbolic prototypical model combines
both definitions with the following heuristic: ini-
tialize problem (5) with p̃ and then run several it-
erations of Riemannian gradient descent. We find
that it is possible to backpropagate through a few
steps of the gradient descent procedure described
above during prototypical model training. How-
ever, we also find that the model can be trained
successfully when detaching the gradients with re-
spect to the support points. This suggests that pro-
totypical models can be trained in metric spaces
where the mean or its gradient cannot be computed
efficiently. Further experimental details are pro-
vided in the next section.

Our prototypical network loss function uses
both squared Euclidean distance and squared hy-
perbolic distance for similar reasons. Namely, the
distance between two close points is much less nu-
merically stable than the squared distance. In the
Euclidean case, the derivative of

p
s is undefined

at zero. In the hyperbolic case, the derivative of
arccosh(s) at 1 is undefined, and B(x, x) = 1 for
points on the hyperboloid. If we instead use the
squared hyperbolic distance, L’Hôpital’s rule im-
plies that the derivative of arccosh(b)2 as b! 1+
is 2, allowing gradients to backpropagate through
the squared hyperbolic distance without issue.

4 Experiments

We evaluate the performance of our framework
on several text classification benchmarks, two of
which exhibit a hierarchical label set. We only
use the label hierarchy to simulate the label split-
ting discussed in Figure 1 (a). The models are not
trained with explicit knowledge of the hierarchy,
as we assume that the full hierarchy is not known
a priori in the dynamic classification setting. A
description of the datasets is provided below:

• 20 Newsgroups (NEWS): This dataset is
composed of nearly 20,000 documents, dis-
tributed across 20 news categories. We use
the provided label hierarchy to form the depth
3 tree used throughout our experiments. We
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use 9,044 documents for training, 2,668 for
validation, and 7,531 for testing.

• Web of Science (WOS): This dataset was
used in two previous works on hierarchical
text classification (Kowsari et al., 2017; Sinha
et al., 2018). It contains 134 topics, split
across 7 parent categories. It contains 46,985
documents collected from the Web of Science
citation index. We use 25,182 documents for
training, 6,295 for validation, and 15,503 for
testing.

• Twitter Airline Sentiment (SENT): This
dataset consists of public tweets from cus-
tomers to American-based airlines labeled
with one of 10 reasons for negative sentiment
(e.g. Late Flight, Lost Luggage).2 We pre-
process the data by keeping only the nega-
tive tweets with confidence over 60%. This
dataset is non-hierarchical and composed of
nearly 7500 documents. We use 5,975 doc-
uments for training, 742 for validation, and
754 for testing.

Dynamic Setup: We construct training data for
the task of dynamic classification as follows. First,
we split our training data in half. The first half is
used for pretraining and the second for fine-tuning.
To simulate a change in the label space, we ran-
domly remove p > 0 fraction of labels in the pre-
training data. This procedure yields two label sets,
with Yold (pretraining) ⇢ Ynew (fine-tuning). In
our experiments, we further vary the amount of
data available in the fine-tuning set. For the flat
dataset, the labels to be removed are sampled uni-
formly. In the hierarchical case, we create Yold by
randomly collapsing leaf labels into their parent
classes, as shown previously in Figure 1.

Hyperparameters and Implementation Details:

We apply the same encoder architecture through-
out all experiments. We use a 4 layer recurrent
neural network, with SRU cells (Lei et al., 2018)
and a hidden size of 128. We use pretrained GloVe
embeddings (Pennington et al., 2014), which are
fixed during training. A sequence level embedding
is computed by passing a sequence of word em-
beddings through the recurrent encoder, and tak-
ing the embedding for the last token to represent

2https://www.kaggle.com/crowdflower/
twitter-airline-sentiment

the sequence. We use the ADAM optimizer with
default learning of 0.001, and train for 100 epochs
for the baseline models and 10,000 episodes for
the prototypical models, with early stopping. In
our experiments, we use NS = 4, NQ = 64. We
use the full label set every episode for all datasets
except WOS, for which we use NC = 50. We use
a dropout rate of 0.5 on NEWS and SENT, and 0.3
for the larger WOS dataset. We tuned the learn-
ing rate and dropout for each model on a held-out
validation set.

For the hyperbolic prototypical network, we fol-
low the initialization and update procedure out-
lined at the end of Section 3.3 with 5 iterations of
Riemannian gradient descent during training and
100 iterations during evaluation. We utilize neg-
ative squared distance in the softmax computa-
tion in order to improve numerical stability. The
means are computed via (5) during both training
and model inference. However, this computation
is treated as a constant during backpropagation as
described in Section 3.3.

Baseline: Our baseline model consists of the
same recurrent encoder and an extra linear output
layer which computes the final probabilities over
the target classes. In order to fine-tune this multi-
layer perceptron (MLP) model on a new label on-
tology, we reuse the encoder, and learn a new out-
put layer. This differs from the prototypical mod-
els for which the architecture is kept unchanged.

Evaluation: We evaluate the performance of our
models using accuracy with respect to the new
label set Ynew. We also highlight accuracy on
only the classes introduced during label addi-
tion/splitting, i.e. Ynew \ Yold. All results are av-
eraged over 5 random label splits with p = 0.3.

Results: Table 1 shows the accuracy of the fine
tuned models for all three methods. The SENT
dataset shows performance in the case where com-
pletely new labels are added during fine tuning. In
the NEWS and WOS datasets new labels originate
from the splits of old labels.

In all cases, the prototypical models outperform
the baseline MLP model significantly, especially
when the data in the new label distribution is in
the low-resource regime (+5–15% accuracy). We
also see an increase in performance in the high
data regime of up to 5%.

Table 1 further shows that the hyperbolic model
outperforms its Euclidean counterpart in the low

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
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Dataset Model nfine = 5 nfine = 10 nfine = 20 nfine = 100
MLP 37.3± 2.9 43.8± 3.5 45.7± 3.8 57.4± 3.5

SENT EUC 39.6± 6.4 45.5± 1.8 47.7± 4.7 62.7± 2.1
HYP 42.2± 3.5 47.1± 4.8 53.0± 2.3 62.7± 2.2
MLP 49.2± 1.0 55.9± 2.5 68.5± 1.1 76.3± 0.5

NEWS EUC 56.5± 0.4 65.6± 1.0 74.2± 0.6 79.8± 0.2
HYP 64.8± 2.8 69.7± 1.0 72.9± 0.5 78.8± 0.4
MLP 36.6± 1.1 46.8± 1.2 62.8± 0.6 68.9± 0.5

WOS EUC 49.4± 1.0 59.2± 0.4 70.4± 0.4 73.3± 0.2
HYP 54.5± 1.4 60.7± 0.9 70.2± 0.7 73.5± 0.5

Table 1: Test accuracy for each dataset and method. Columns indicate the number of examples per label nfine

used in the fine tuning stage. In all cases, the prototypical models outperform the baseline. The hyperbolic model
performs best in the low data regime, but both metrics perform comparably when data is abundant.

data regime on the NEWS and WOS datasets.
This is consistent with our hypothesis (and previ-
ous work) that hyperbolic geometry is well suited
for hierarchical data. Interestingly, the hyperbolic
model also performs better on the non-hierarchical
SENT dataset when given few examples, which
implies that certain metric spaces may be gener-
ally stronger in the low-resource setting. In the
high data regime, however, both prototypical mod-
els perform comparably.

5 Analysis

In this section, we examine several aspects of
our experimental setup more closely, and use the
SENT and NEWS datasets for this analysis.

Benefits of Pretraining We wish to isolate the
effect of pretraining on an older label set by mea-
suring the performance of our models on the new
label distribution with and without pretraining.
Figure 2 shows accuracy without pretraining as
solid bars, with the gains due to pretraining shown
as translucent bars above them. In the low-data
regime without pretraining, all models often per-
form similarly. Nevertheless, our models do im-
prove substantially over the baseline once pre-
training is introduced.

With only a few new examples, our models bet-
ter leverage knowledge gained from old pretrain-
ing data. On the NEWS dataset in particular, with
only 5 fine-tune examples per class, the relative re-
duction in classification error for metric learning
models exceeds 53% (Euclidean) and 62% (hy-
perbolic), while the baseline only reduces relative
error by about 45%. This shows that the proto-
typical network, and particularly the hyperbolic
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Figure 2: Accuracy gains from pretraining as a func-
tion of the number of examples per class available in
the new label distribution. While the models are com-
parable in the pretraining stage (solid bards), the proto-
typical models make better use of pretraining, showing
higher gain during fine-tuning in both the low and high
data data regimes (translucent bars).

model can adapt more quickly to dynamic label
shifts. Furthermore, the prototypical models con-
serve their advantage over the baseline in the high
data regime, though the margins become smaller.

Benefits of Fine-tuning An important advan-
tage of the prototypical model is its ability to
predict classes that were unseen during training
with as few as a single support point for the new
class. A natural question is whether fine-tuning on
these new class labels immediately improves per-
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Model 5 10 20 100
MLP (un-tuned) 38.2 46.7 42.4 46.3
EUC 39.6 45.5 47.7 62.7

EUC (un-tuned) 43.4 51.2 47.6 55.8
HYP 42.2 47.1 53.0 62.7

HYP (un-tuned) 45.7 52.4 53.3 53.1

(a) SENT

Model 5 10 50 500
MLP (un-tuned) 29.5 34.6 40.3 42.7
EUC 56.5 65.6 74.2 79.8

EUC (un-tuned) 53.2 56.5 59.6 60.8
HYP 64.8 69.7 72.9 78.8
HYP (un-tuned) 60.1 62.9 65.4 66.7

(b) NEWS

Table 2: Test accuracy for each dataset and method.
Columns indicate the number of examples per label
used for fine-tuning and/or creating prototype vectors.

formance, or whether fine-tuning should only be
done once a significant amount of data has been
obtained from the new distribution. We study this
question by comparing the performance of tuned
and un-tuned models on the new label distribution.

Table 2 compares the accuracy of two types
of pretrained prototypical models provided with
a variable number of new examples. The fine-
tuned model uses this data for both additional
training and for constructing new prototypes. The
un-tuned model constructs prototypes using the
pretrained model’s representations without addi-
tional training. We also construct an un-tuned
MLP baseline by fitting a nearest neighbor clas-
sifier (KNN) on the encodings of the penultimate
layer of the network. We experimented with fitting
the KNN on the output predictions but found that
using the penultimate layer was more effective.

We find that the models generally benefit from
fine-tuning once a significant amount of data for
the new classes is provided (> 20). In the low data
regime, however, the results are less consistent,
and suggests that the performance may be very
dataset dependant. We note however that all met-
ric learning models significantly outperform the
MLP-KNN baseline in both the low and high data
regimes. This shows that regardless of fine-tuning,
our approach is more robust on previously unseen
classes.
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Figure 3: Accuracy on the NEWS Dataset against num-
ber of fine tune examples: (a) all classes and (b) newly
introduced classes only. The mean is taken over 5 ran-
dom label splits, and error bars are given at ±1 standard
deviation. The gap between the hyperbolic models and
the others is even larger on the new classes.

Learning New Classes An important factor in
the dynamic classification setup is the ability for
the model to not only keep performing well on
the old classes, but also to smoothly adapt to new
ones. We highlight the performance of the models
on the newly introduced labels in Figure 3, where
we see that the improvement in accuracy is domi-
nated by the performance on the new classes.

6 Conclusions

We propose a framework for dynamic text classifi-
cation in which the label space is considered flex-
ible and subject to frequent changes. We apply a
metric learning method, namely prototypical net-
work, and demonstrate its robustness for this task
in a variety of data regimes. Motivated by the idea
that new labels often originate from label splits,
we extend prototypical networks to hyperbolic ge-
ometry, derive expressions for hyperbolic proto-
types, and demonstrate the effectiveness of our
model in the low-resource setting. Our experimen-
tal findings suggest that metric learning improves
dynamic text classification models, and offer in-
sights on how to combine low-resource training
data from overlapping label sets. In the future we
hope to explore other applications of metric learn-
ing to low-resource research, possibly in combina-
tion with explicit models for label entailment (tree
learning, fuzzy sets), and/or Wasserstein distance.



151

References

Marcel Berger. 2003. A Panoramic View of Rieman-

nian Geometry. Springer-Verlag Berlin Heidelberg,
Heidelberg, Germany.

Thorsten Brants. 2000. Tnt: a statistical part-of-speech
tagger. In Proceedings of the sixth conference on

Applied natural language processing, pages 224–
231. Association for Computational Linguistics.

Lijuan Cai and Thomas Hofmann. 2004. Hierarchi-
cal document categorization with support vector ma-
chines. In CKIM, pages 78–87.

James Cannon, William Floyd, Richard Kenyon,
and Walter Parry. 1997. Hyperbolic geome-
try. http://library.msri.org/books/
Book31/files/cannon.pdf.

Boli Chen, Xin Huang, Lin Xiao, Zixin Cai, and Lip-
ing Jing. 2019. Hyperbolic interaction model for
hierarchical multi-label classification. https://
arxiv.org/pdf/1905.10802.pdf.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Com-

putational Linguistics, 6.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In EMNLP,
pages 1–8. Association for Computational Linguis-
tics.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NeurIPS, pages 3079–3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas
Hofmann. 2018a. Hyperbolic entailment cones for
learning hierarchical embeddings. In ICML.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas
Hofmann. 2018b. Hyperbolic neural networks. In
NeurIPS.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In AAAI.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher
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