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Abstract

Many architectures for multi-task learning
(MTL) have been proposed to take advantage
of transfer among tasks, often involving com-
plex models and training procedures. In this
paper, we ask if the sentence-level represen-
tations learned in previous approaches pro-
vide significant benefit beyond that provided
by simply improving word-based representa-
tions. To investigate this question, we consider
three techniques that ignore sequence infor-
mation: a syntactically-oblivious pooling en-
coder, pre-trained non-contextual word embed-
dings, and unigram generative regularization.
Compared to a state-of-the-art MTL approach
to textual inference, the simple techniques we
use yield similar performance on a universe
of task combinations while reducing training
time and model size.1

1 Introduction

Multi-task learning (MTL) is usually framed as a
discriminative learning problem in which predic-
tors are learned jointly for multiple related tasks,
under the premise that jointly optimizing related
tasks will yield more robust parameter estimates.

In this work, we consider a collection of two-
sequence classification tasks covering sentiment
analysis and textual entailment. Previous work has
shown that for these kinds of tasks, models incorpo-
rating only bag-of-words (BOW) features are com-
petitive with models based on sequence encoders
such as recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) that build com-
positional sequence representations (Iyyer et al.,
2015; Wieting et al., 2016; Arora et al., 2017).
Arora et al. (2017) suggest that BOW models better
exploit the semantics of a sequence than RNNs do.

∗Work done while at Johns Hopkins University.
1Our code is available at https://github.com/

felicitywang/tfmtl.

Arora et al. (2017) show that improving context-
independent word-level representations may be suf-
ficient for good performance on particular kinds of
tasks. Here we ask if those findings extend to the
MTL setting, and in particular how well the BOW
techniques capture transfer among tasks.

We additionally observe that the standard MTL
framing does not make full use of the available la-
beled data, as it ignores an important type of related
task: generative reconstruction of the observations
(§2.3). The MTL framework naturally accommo-
dates reconstruction simply as additional tasks.

In this paper, we: (1) consider bag-of-words
techniques including pooling encoders, pre-trained
word embeddings, and unigram generative regular-
ization, and (2) demonstrate that bag-of-words tech-
niques are competitive with sequence-level tech-
niques in MTL for sentiment analysis and textual
inference (§3).

2 Bag-of-Words Techniques

We employ three approaches that use only bag-
of-words representations: pooling (aggregation)
encoders, pre-trained word embeddings, and uni-
gram generative regularization. These approaches
do not model sequence-level interactions. We do
not use contextualized encoders such as ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019)
because they incorporate sequence-level and posi-
tional representations.

2.1 Pooling Encoders

We first consider a variant of the deep averaging
network (DAN) encoder (Iyyer et al., 2015). The
DAN encoder is a syntactically-oblivious encoder
that consists of three steps: average (mean-pool) a
sequence’s non-contextual word embeddings, pass
the average through feed-forward layers, and then
perform linear classification on the final layer’s

https://github.com/felicitywang/tfmtl
https://github.com/felicitywang/tfmtl
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representation. We concatenate a max-pooling op-
eration to the mean-pooling used in the first step
of the original DAN encoder2 and use a non-linear
transformation in the final layer3.

Pooling encoders such as DAN and PARAGRAM-
PHRASE (which has no parameters) are much faster
to train than LSTMs and CNNs, and have been
shown to have competitive performance on textual
similarity, textual entailment, and sentiment clas-
sification tasks (Iyyer et al., 2015; Wieting et al.,
2016; Arora et al., 2017).

2.2 Pre-Trained Word Embeddings

A popular way to improve performance over the
use of randomly initialized word embeddings is to
use pre-trained word embeddings that have been
learned from large corpora. The use of pre-trained
embeddings is an example of transfer learning,
which unlike MTL typically involves a pipeline
of tasks rather than a joint training objective. Word
embeddings are usually learned by fitting a lan-
guage model (or other word prediction objective)
on an out-of-domain text corpus (Mikolov et al.,
2013; Pennington et al., 2014).

Although pre-trained word embeddings are
learned in context and can thereby capture distri-
butional syntactic information, good performance
using pre-trained word embeddings would be ev-
idence that sequence-aware models may not be
necessary for MTL for the tasks we consider here.

Because we restrict our models to use only bag-
of-words features, we seek to avoid any syntactic or
sequential information that could be derived from
our inputs. Any syntactic information present in
pre-trained word embeddings comes from the se-
quences used in pre-training, not from the data in
our tasks. By using pre-trained word embeddings,
we seek only to determine what benefit is provided
by initializing the corresponding parameters with
the pre-trained embeddings rather than with ran-
dom embeddings.

Additionally, contextualized encoders would
capture sequential or positional information in our
data inputs, so we do not use them. By not using
contextualized encoders, each word has only one
embedding, which is used regardless of its context.

2We tried combinations of mean-pooling, max-pooling,
and min-pooling, and found mean-pooling + max-pooling
performed the best based on held-out dev-set performance.

3We tried ELU, ReLU, sigmoid, and tanh, and chose ReLU
based on held-out dev-set performance.

2.3 Unigram Generative Regularization

We examine the incorporation of unigram gener-
ative regularization (UGR) for all tasks, in which
we reconstruct the input sequence using a condi-
tional unigram language model pθ(x | h).4 Intu-
itively, generative regularization provides signal
that addresses the question, “What do inputs with
a particular label tend to look like?” For example,
we wish to capture information about inputs that
express positive sentiment separately from informa-
tion about inputs that express negative sentiment.

We explore multi-task UGR in this work because
we found that single-task UGR can improve per-
formance (see Table 3). Additionally, multi-task
UGR uses no additional data, so we get it “for free.”
UGR is inherently related to a dataset t’s corre-
sponding discriminative task that learns qφt(y | x),
and it can be viewed as simply another task in the
set of auxiliary tasks because it is realized as an
auxiliary loss term.

For arbitrary networks qφt(y | x) and pθ(x | h),
our loss function, LGMTL, on a single example is:

−[αt log qφt(y
(t)
i | x

(t)
i ) + βt log pθ(x

(t)
i | h

(t)
i )]

for input x(t)i and its label y(t)i drawn from dataset
t. The conditioning vector for the example, h(t)i ,
may include information about y(t)i . The discrimi-
native and reconstruction task weights are αt and
βt, respectively.

3 Experiments

As an external baseline, we compare our approach
to methods proposed by Augenstein et al. (2018),
herein referred to as ARS. ARS achieve state-of-
the-art performance on topic-based sentiment anal-
ysis. We reimplement their baseline model as an
additional comparison in our results (Table 3).

The main contributions of ARS are additional ar-
chitectural components called the label embedding
layer (LEL) and the label transfer network (LTN).
In the baseline model, an example’s two input se-
quences, x1 and x2, are encoded using a two-stage
bi-directional RNN and then passed into a task-
specific classification layer. In the LEL model, the
task-specific classification layers are replaced by a
label embedding matrix shared by all tasks. By em-
bedding all the tasks’ labels into a shared space, the
LEL learns correlations among the tasks’ labels.

4The conditioning vector h is described in §3.2.
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The LTN sits on top of the LEL and induces
“pseudo-labels” for main task examples based on
predicted distributions over labels made by each of
the auxiliary tasks. The LTN is added to the main
model after a pre-training step.

We note that ARS deliberately avoid pre-trained
word embeddings in order to highlight their model-
ing contributions. We would expect their results to
improve if pre-trained embeddings were used.

3.1 Datasets

We use the same two-sequence text classification
datasets covering textual entailment and sentiment
analysis used by ARS5: MultiNLI (Williams et al.,
2018), ABSA-L/ABSA-R (Pontiki et al., 2016),
Target (Dong et al., 2014), Stance (Mohammad
et al., 2016), Topic-2/Topic-5 (Nakov et al., 2016),
and FNC-1.6 All of the inputs have two sequences
(x1, x2), the second of which (usually a longer
text, such as a Tweet or a news document) is read
in the context of the first sequence (which is usually
shorter, such as the topic/target/aspect of a Tweet,
or a news headline). Detailed information about
each dataset is shown in Table 1.

For each of our main tasks, we use the best-
performing set of auxiliary tasks found by ARS
(Table 2). To maintain comparability, we follow
the same steps as ARS for preprocessing the data.
In particular, MultiNLI was downsampled to the
same 10K training examples (2.5%) as ARS, and
so we refer to it as MultiNLI2.5%.7

3.2 Training Procedure

In all experiments, we seek to optimize perfor-
mance on the main task, rather than optimize an
aggregate metric across main and auxiliary tasks.

We set the discriminative task weights αt =
α = 1 for all discriminative tasks, and we fix the
reconstruction task weights βt = β across all re-
construction tasks for a given set of main and aux-
iliary tasks. We found performance improves when
β � α, which is consistent with the treatment of
reconstruction as a regularizing task.8 In general,

5We do not include results for FNC-1 as a main task be-
cause the FNC-1 development set of ARS consists of examples
of only a single label type, making model selection (the intent
of a dev-set) problematic.

6http://www.fakenewschallenge.org/
7p.c. with Isabelle Augenstein.
8In preliminary experiments, the hyperparameter β was

swept from 10−5 to 105 in powers of 10. Because of poor per-
formance for large β, for subsequent experiments we reduced
the range to 10−5 to 101 in powers of 10.

αt and βt may be tuned separately for each task.
We use 100-dimensional GloVe 6B9 word em-

beddings and initialize the embeddings of words
that appear in the GloVe vocabulary with their
pre-trained embeddings (Pennington et al., 2014).
Other words’ embeddings are initialized randomly.
All embeddings are fine-tuned during training.

Because we want to see if good performance
can be attained without sequence-level informa-
tion, we reconstruct x2 using a unigram decoder,
which projects the conditioning information h into
a distribution over the vocabulary.

The conditioning vector decomposes as h :=
[t,y′,π1], which consists of: (1) a one-hot encod-
ing t of the task index t; this allows the language
model to adapt to different tasks (Daumé III, 2007);
(2) a task-specific projection y′ = Lty of the one-
hot label vector y, where Lt ∈ Rl×|Yt| are trainable
task-specific parameters; this projection transforms
labels from potentially disparate label spaces Yt of
different sizes to the same space; and (3) the input
encoding π1, which conveys information about x1,
on which we condition the reading of x2.10

Together, the elements of the conditioning vector
h provide for controllable text generation, in which
the task, label, and context x1 together influence
the distribution over words of x2 parametrized by
pθ (Hu et al., 2017).11

4 Discussion

Our experimental results are presented in Table 3.
For the sake of comparison, we keep with the set
of auxiliary tasks used by ARS, which are listed
in Table 2. Other combinations of tasks may give
better performance for the techniques we examine.

Using just bag-of-words features, our best mod-
els outperform the reimplementation of ARS’s
baseline bi-directional RNN model in 4 of 7 cases
and achieve competitive results in the other 3 cases.
Our results are also competitive with ARS’s best-
performing models, which may use the label em-
bedding layer and label transfer network.

The DAN encoder in the single-task learning
(STL) setting is competitive with ARS’s STL re-
sults and with our STL and MTL reimplementa-

9http://nlp.stanford.edu/data/glove.6B.
zip

10Single-sequence tasks would not condition on π1.
11Here, the decoder pθ is coupled with the encoder qφt

both in the representation π1 and in the word embeddings. In
principle, pθ may be decoupled from qφt entirely except for
the word embeddings.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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Dataset # Labels # Train Seq 1 Seq 2 Task

MultiNLI2.5% 3 10,001 Hypothesis Premise Natural language inference
ABSA-L 3 2,618 Aspect Review Aspect-based sentiment analysis, laptop domain
ABSA-R 3 2,256 Aspect Review Aspect-based sentiment analysis, restaurant domain
Target 3 5,623 Target Text Target-dependent sentiment analysis
Stance 3 3,209 Target Tweet Stance detection
Topic-2 2 5,177 Topic Tweet Topic-based sentiment analysis, binary
Topic-5 5 7,236 Topic Tweet Topic-based sentiment analysis, fine-grained
FNC-1 4 39,741 Headline Document Fake News Detection

Table 1: Size of label set, number of training examples, content of sequences, and task description of each dataset.

Main task Auxiliary tasks

MultiNLI2.5% Topic-5
ABSA-L Topic-5
ABSA-R Topic-5, ABSA-L, Target
Target FNC-1, MultiNLI2.5%, Topic-5
Stance FNC-1, MultiNLI2.5%, Target
Topic-2 FNC-1, MultiNLI2.5%, Target
Topic-5 FNC-1, MultiNLI2.5%, ABSA-L, Target

Table 2: Main tasks and their corresponding auxiliary
tasks as used here and by Augenstein et al. (2018).

tions, confirming the findings of previous work
discussed in §2.1.

The inclusion of unigram generative regulariza-
tion (UGR) improves STL DAN performance in 5
of 7 cases (GSTL), motivating its use in the MTL
setting. If GSTL performance achieves desired per-
formance, then one saves a search over auxiliary
tasks, such as those in (Liu et al., 2016; Augen-
stein et al., 2018). However, UGR hurts MTL per-
formance in 6 of 7 cases (GMTL). Furthermore,
GMTL performance is worse than GSTL perfor-
mance in all cases, while MTL outperforms GSTL
in 5 of 7 cases. These trends suggest that UGR
is not needed once the regularization from incor-
porating auxiliary discriminative tasks takes effect.
In other words, the parameter updates resulting
from UGR are not as informative as the parameter
updates resulting from having additional training
examples from similar datasets. However, UGR
may still be helpful when auxiliary training sets are
not available.

Comparing STL to MTL results, we see that
the DAN encoder often facilitates transfer across
tasks. The best-performing MTL DAN model out-
performs or equals the best-performing STL DAN
model in 6 of 7 cases (all but Stance). The use of
GloVe embeddings in MTL and GMTL improves
performance over the use of randomly initialized
embeddings because the task-independent informa-

tion captured by the pre-trained word embeddings
serves as good initialization.

Comparisons in training time, model size, and
performance between the reimplemented ARS
baseline model and the DAN model are given in
Table 4 for MultiNLI2.5% and Topic-5, the largest
dataset and the dataset with the most auxiliary tasks,
respectively. The DAN model is 33.4% smaller and
7.7x faster than the ARS model for MultiNLI2.5%

but achieves lower accuracy. DAN (run on a CPU)
is 1.2x faster and 14.4% smaller than the ARS
model (run on a GPU) for Topic-5 and achieves
better performance.12 As expected based on prior
work, the training speed of the DAN encoder is sub-
stantially faster than that of the bi-RNN encoder,
especially for MultiNLI2.5%.

Although the competitive results of the bag-of-
words models are somewhat expected given prior
work, we find the magnitude of the gains over the
MTL bi-RNN reimplementation surprising, espe-
cially on Stance and Topic-2. Overall, our results
extend the findings of prior work on simple sen-
tence encoders for sentiment analysis and textual
inference to the MTL setting.

5 Related Work

Prior work has shown that bag-of-words pooling
encoders compete with sequence encoders on sen-
timent analysis, textual entailment, and textual sim-
ilarity for single-task learning (Iyyer et al., 2015;
Wieting et al., 2016; Arora et al., 2017). In this
work, we explore these tasks in the MTL setting
and ask if transfer among the tasks can be captured
by bag-of-words features.

Recent work in MTL has explored different pa-
rameter sharing schemes in shared neural archi-
tectures. Some models incorporate inductive bias
by imposing hierarchies over tasks (Søgaard and

12We would expect the time contrast for Topic-5 to be more
pronounced if the DAN and ARS models were run on the
same hardware.
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MultiNLI2.5%↑ ABSA-L↑ ABSA-R↑ Target↑ Stance↑ Topic-2↑ Topic-5↓

Metric Acc Acc Acc FM
1 FFA

1 ρPN MAEM

ARS STL (baseline) 49.25 76.74 67.47 64.01 41.1 63.92 0.919
ARS MTL (baseline) 49.39 74.94 82.25 65.73 44.12 80.74 0.859
ARS MTL (best) 49.94* 75.66*† 83.71*† 66.42* 46.26* 80.74 0.803*†

ARS STL (r) 47.71 73.16 72.99 62.44 25.05 63.91 0.903
ARS MTL (r) 49.20 75.03 79.39 63.61 29.30 61.26 0.914

STL DAN (w) 38.82 74.03 80.79 63.35 34.31 64.15 0.907
GSTL DAN (w) 41.70 73.53 78.58 63.45 35.17 65.09 0.906
MTL DAN (w) 47.69 74.03 79.86 61.44 31.77 65.42 0.900
MTL DAN + GloVe (w) 43.04 68.91 81.84 63.53 30.96 67.85 0.856
GMTL DAN (w) 39.35 69.29 78.23 61.95 25.70 59.88 0.927
GMTL DAN + GloVe (w) 40.41 69.29 80.21 63.01 26.36 61.17 0.958

Table 3: Test results. Acc: accuracy; FM
1 : macro-averaged F1; FFA

1 : macro-averaged F1 of “favour” and “against”
classes; ρPN : macro-averaged recall, averaged across topics; MAEM : macro-averaged mean absolute error,
averaged across topics. ↑/↓ next to each task name indicates that higher/lower score is better. “STL”: single-task
setting; “MTL”: multi-task setting; “(r)”: reimplementation of baseline bi-directional RNN model from ARS (no
Label Embedding Layer or Label Transfer Network). *: model uses LEL; †: model uses LTN. Models using only
BOW representations are marked with (w). Best results from BOW experiments (bottom section) are bolded.

Dataset Model Epoch # Params. Metric

MNLI2.5%
ARS (r) 268 s 362,608 49.20
DAN 35 s 241,408 47.69

Topic-5 ARS (r) 93 s (G) 423,918 0.914
DAN 75 s 362,718 0.900

Table 4: Comparisons of mean training epoch time,
number of trainable architecture parameters (i.e., train-
able non-word-embedding parameters), and perfor-
mance of the reimplemented (r) ARS model and the
DAN model in the MTL setting for the MultiNLI2.5%

and Topic-5 datasets. (G) denotes the model was run
on a GPU, otherwise the model was run on a CPU.

Goldberg, 2016; Hashimoto et al., 2017; Sanh
et al., 2019). Ruder et al. (2017) and Liu and
Huang (2018) incorporate orthogonality constraints
to learn which parameters tasks should share. Previ-
ous work in MTL has also lead to non-trivial train-
ing procedures. For example, Liu et al. (2017) and
Chen and Cardie (2018) use adversarial training,
and Ruder and Plank (2018) explore tri-training.
The focus of this paper is a collection of BOW
tools that form strong baselines upon which archi-
tectural or training improvements can be shown.

Ando and Zhang (2005) motivate the inclusion
of auxiliary tasks for MTL. They automatically
annotate unlabeled data to create a new labeled
dataset that is related to the main task. In this work,
our auxiliary tasks are pre-existing labeled datasets
for which we include discriminative and reconstruc-
tion objectives. Criteria and heuristics for the se-
lection of auxiliary tasks are discussed by Alonso

and Plank (2017) and Bingel and Søgaard (2017).
For a given task, it is well-established that the ad-

dition of auxiliary word prediction objective terms
may help regularize the representations used for
prediction (Dai and Le, 2015; Kiros et al., 2015;
Rei, 2017). Rei (2017) proposes a semi-supervised
MTL framework for sequence tagging that incor-
porates a secondary language modeling objective.
Like that approach, our unigram generative regu-
larization (§2.3) requires no additional data. Our
approach differs from Rei (2017) in three ways: we
employ a conditional language model instead of an
unconditional language model, allowing our model
to learn in a supervised way from signal derived
from the labels; we do not use semi-supervised
learning; and we train in a multi-task setting in-
volving both multiple datasets and a compound ob-
jective, whereas Rei (2017) optimizes a compound
objective on a single dataset for each task (similar
to GSTL in Table 3 of this work). To the best of
our knowledge, our use of (unigram) generative
regularization in the multi-task setting is novel.

6 Conclusion

We showed that bag-of-words techniques such as
pooling encoders and non-contextual pre-trained
word embeddings can capture transfer among senti-
ment analysis and textual entailment tasks in multi-
task learning. We additionally showed that unigram
generative regularization often improved single-
task learning performance but not multi-task learn-
ing performance, suggesting that generative reg-
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ularization is not needed once the regularization
from incorporating auxiliary discriminative tasks
takes effect. The bag-of-words techniques are com-
petitive with a state-of-the-art model, thereby ex-
tending the findings of prior work on bag-of-words
approaches to sentiment analysis and textual entail-
ment to the multi-task setting.
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