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Abstract

Understanding common sense is important for
effective natural language reasoning. One type
of common sense is how two objects com-
pare on physical properties such as size and
weight: e.g., ‘is a house bigger than a per-
son?’. We probe whether pre-trained repre-
sentations capture comparisons and find they,
in fact, have higher accuracy than previous ap-
proaches. They also generalize to comparisons
involving objects not seen during training. We
investigate how such comparisons are made:
models learn a consistent ordering over all the
objects in the comparisons. Probing models
have significantly higher accuracy than those
baseline models which use dataset artifacts:
e.g., memorizing some words are larger than
any other word.

1 Introduction

Pre-trained word representations or embeddings
(Mikolov et al., 2013) such as GloVe (Penning-
ton et al., 2014) underpin modern NLP. To un-
derstand what information is encoded, supervised
models probe (Adi et al., 2016; Linzen et al.,
2016; Conneau et al., 2018) a particular prop-
erty, for example, part-of-speech (Belinkov et al.,
2017), morphology (Peters et al., 2018a), etc. in
these representations. With the advent of con-
textualized word embeddings such as ELMo (Pe-
ters et al., 2018a) and BERT (Devlin et al., 2018),
efforts to understand the information encoded in
representations learned by neural model have in-
creased (Peters et al., 2018b; Tenney et al., 2019;
Liu et al., 2019). Apart from linguistic proper-
ties, what do these representations learn about the
world? Commonsense reasoning over language
that incorporates world knowledge such as ‘an ele-
phant is heavier than a person’ can help agents
make better decisions and understand ‘complex’
phenomena like humor and irony. However, ex-

tracting common sense from text corpora is chal-
lenging since we rarely state obvious things di-
rectly (Van Durme, 2010; Gordon and Van Durme,
2013; Misra et al., 2016; Zhang et al., 2017).

This paper asks if pre-trained representations
encode a specific type of common sense: phys-
ical comparisons between objects.1 The super-
vised classification task takes a pair of words being
compared on a physical attribute such as size or
speed, with the system’s objective to decide which
is ‘bigger’ or ‘faster’ (§ 2.1). We use a linear or
a one-layer fully-connected neural network prob-
ing model with only a combination (concatena-
tion or subtraction) of the frozen pre-trained em-
beddings for the words to be compared as input
(§ 2.2). This probing model achieves better ac-
curacy than previous approaches (§ 2.3) which
use extra information other than the words (such
as the verbs connecting the words) on the Verb
Physics dataset (Forbes and Choi, 2017) (§ 3): it
encodes physical commonsense comparisons.2 It
generalizes to objects not present in the training
set (§ 3.1) with higher accuracy than baselines ex-
ploiting dataset artifacts (§ 4). We use a ‘simple’
probing model since more complex models make
it difficult to disentangle the major contributing
factor to results - model or embeddings (as in other
probing studies like Liu et al. (2019)). Our other
major contribution is analyzing how models com-
pare objects. The output logits for labels (indicat-
ing model confidence) order objects consistently
across orderings or rankings built around different
objects (§ 4.1.1). Models also learn an ordering
over all the objects and use this learned ordering
for comparisons (§ 4.1.2).

1Note: Concurrent work by Forbes et al. (2019) also
finds neural representations are proficient at capturing physi-
cal properties of objects (focus of this work) but not at tack-
ling the relationship with actions applicable to objects.

2This work aims to probe representations for physical
commonsense comparisons; better accuracy is a byproduct.



131

2 Experimental Setup

2.1 Probing Task & Data

We use Verb Physics (Forbes and Choi, 2017) and
follow their setup. Given a pair of words or ob-
jects, a system predicts if word1 </>/≈ word2
when compared on an attribute, for example,
bed >weight hand or mouth ≈size fist. Verb
Physics consists of five different datasets compar-
ing objects on size, weight, strength, rigidness, and
speed.3 The train:dev:test split is 5:45:50 resulting
in about 100 and 1000 comparisons in the train-
ing and dev sets respectively, with similar statis-
tics for all attributes. This is the split used in the
previous works and hence we use the same split in
order to benchmark results. To test generalization
to words not seen during training, we also use a
different evaluation set released by Bagherinezhad
et al. (2016) with 486 size-based comparisons of
objects (§ 3.1).4

2.2 Our Probing Model

The probing model is a simple setup to assess
if pre-trained representations capture physical ob-
ject comparisons. We concatenate or subtract the
word embeddings for the two words and pass it
to a fully-connected neural network with zero (in
which case, linear) or one hidden layer. Our pri-
mary experiments use GloVe (Pennington et al.,
2014), ELMo (Peters et al., 2018a), and BERT
(Devlin et al., 2018) embeddings. Training de-
tails (including the specific pre-trained models and
training parameters) are presented in Appendix A.
Following Yang et al. (2018), we pass the reversed
combination of the two embeddings through the
network, and align and combine the outputs for
both input pairs (word1 − word2 and word2 −
word1) for the final output. If word1 < word2
then word1 > word2 as well. Unlike Yang et al.
(2018), we pass the reversed pair at training. This
‘reversal’ trick is visualized in Figure 2, and the
empirical results showing its effect in increasing
accuracy are discussed in Appendix B.

2.3 Baselines

Majority Class: This baseline predicts the la-
bel for a comparison on the dev set based on the
highest-frequency label for both the words as per
training set. If the two labels agree, e.g., word1

3https://github.com/uwnlp/verbphysics
4http://grail.cs.washington.edu/projects/size/

Figure 1: The Probing Model: We combine the pre-
trained word embeddings of the two words being com-
pared (via concatenation or subtraction) and pass it
though zero (linear) or one hidden layer.

is ‘bigger’ and word2 is ‘smaller’ in most train-
ing comparisons, this baseline predicts word1 >
word2. If the two majority labels disagree (both
words tend to be ‘bigger’ most of the times), this
baseline uses the ratio of frequency of the majority
label with the total number of comparisons involv-
ing the word to decide.

We also compare with the previous state-of-the-
art approaches on the Verb Physics dataset:

Verb-centric Frame Semantics: (Forbes and
Choi, 2017, F&C) use probabilistic graphical
modeling for joint inference over objects as well
as actions/verbs that can imply physical relation-
ship their arguments (for example, ‘x entered y’
implies y is bigger than x).

Property Comparisons from Embeddings:
(Yang et al., 2018, PCE) use a one-layer neural
network over concatenated word embeddings and
compare the projection with the embeddings of
‘poles’: words exemplifying a physical relation
(‘big’, ‘small’ for size; ‘fast’, ‘slow’ for speed,
etc.). Classification is the closest ‘pole’. This use
of poles is the main difference with our approach.

Apart from these baseline models, we devise ad-
ditional baselines to test for possible artifacts in
the dataset, such as using only one of the words as
input to the model, in Section 4.

3 Results and Discussion

The probing model (Figure 1) with pre-trained
representations has better accuracy than previous
approaches which use extra information in addi-
tion to the words being compared (Table 1). This
indicates that representations themselves capture
physical commonsense comparisons.

GloVe is almost as accurate as ELMo and more
accurate than BERT contrary to results seen on
many NLP tasks (Peters et al., 2018a; Devlin et al.,
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Figure 2: The Reversal Trick: As done by Yang et al. (2018) at test time, the reversed embedding is also passed
through the network and the output logits for both pairs (word1 concatenated with word2 and word2 concatenated
with word1) are aligned and combined for the final output. We try doing this at training time as well which leads
to an improvement in accuracy.

2018). This task has no context to exploit and Ten-
ney et al. (2019) also observe that contextualized
embeddings win over non-contextual models on
syntactic tasks but less for semantic tasks.

We also used BERT-large but saw similar ac-
curacies as BERT-base. Concatenating word em-
beddings usually achieved slightly better accuracy
(Appendix B) but subtracting gave more stable re-
sults across different random initializations. The
reversed input pair embeddings (§ 2.2) at training
and testing improves accuracy (Appendix B).

3.1 Generalization to New Objects

In Verb Physics, ∼99% of the words or objects
involved in comparisons in the dev set are seen
at training. If word embeddings capture com-
mon sense well, they should compare two words
not seen during training. To test this, we use the
Verb Physics training set for the ‘size’ attribute
and evaluate on a different test set (Bagherinezhad
et al., 2016): EB evaluation set (§ 2.1) where
only ∼33% of the words are seen during training.

Since this evaluation set contains only < and >
comparisons, we use comparisons in Verb Physics
training set with just these two labels. Unlike
Bagherinezhad et al. (2016) who use visual and
textual cues, our model use only pre-trained text
representations. Yet the probing model achieves at
least 4% higher accuracy (Table 2).

4 Analysis

Levy et al. (2015) find that in models for hyper-
nymy detection: the accuracy gap between the full
model using both the words as input and using just
one of the words is less than 10%. Their training
set contains prototypical hypernyms: single word
in a pair that models can latch onto to detect hy-
pernymy. The unsupervised method of using the
cosine similarity of the two words is also a strong
baseline in that work. We experiment with these
same baselines for our task.

On the Verb Physics dataset: Only word2
seems to be a strong baseline (much like the ma-

Majority Class
Baseline F&C PCE Probing Model

(GloVe)
Probing Model

(ELMo)
Probing Model
(BERT-base)

Size 0.66 0.75 0.80 0.82 0.82 0.80
Weight 0.67 0.74 0.81 0.82 0.82 0.80

Strength 0.66 0.71 0.77 0.78 0.79 0.75
Rigidness 0.60 0.68 0.71 0.71 0.72 0.71

Speed 0.59 0.66 0.72 0.72 0.76 0.71

Overall 0.64 0.71 0.76 0.77 0.78 0.75

Table 1: Accuracy of the probing model compared with the baselines including previous approaches on the at-
tributes in the Verb Physics dataset. The simple probing model achieves better accuracy indicating that the frozen
pre-trained representations capture commonsense physical comparisons.
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Model Accuracy

The Visual+Textual Model
by Bagherinezhad et al. (2016)

0.835

Probing Model (GloVe) 0.879
Probing Model (ELMo) 0.905
Probing Model (BERT) 0.893

Table 2: The probing model trained on the Verb Physics
size dataset and evaluated on (Bagherinezhad et al.,
2016). Only ∼33% of the objects in this test set are
present in training set: our model generalizes to new
objects and gives better accuracy using the frozed pre-
trained representations of the words alone.

jority class baseline for this dataset), but the drop
in accuracy is higher than 10% for GloVe and
ELMo (Table 3): Our model is not simply rely-
ing on lexical memorization. Randomly selecting
a label gives ∼33% accuracy while using the ma-
jority label for all comparisons gives ∼50% accu-
racy. The unsupervised model gives low accuracy
which suggests supervision is helpful.

On the EB Evaluation Set (Bagherinezhad
et al., 2016): Using just one word when training
and evaluating sees a drop of about 12 to 15% in
accuracy (Table 4). This baseline is fairly strong in
comparison to a random baseline (50% accuracy),
but the difference in accuracy again indicates the
model doing more than just lexical memorization.

4.1 Do Models Learn a Consistent Ordering?

Pre-trained representations encode commonsense
physical comparisons, and do not rely on mere
lexical memorization. One explanation is models
could learn to rank or order the objects.

Using
the given

Verb Physics
training set

word1
-

word2

ONLY
word2

Baseline

Unsupervised
Baseline

GloVe 0.78 0.66 0.49
ELMo 0.78 0.67 0.52
BERT 0.75 0.66 0.52

Table 3: Accuracy of probing models (averaged across
the five attributes) on the Verb Physics dev sets. Un-
supervised baseline takes cosine similarity of the em-
beddings and uses a threshold tuned on the dev set to
classify. Using just one word when training and evalu-
ating helps investigate possible lexical memorization.

On the
Complete EB

Evaluation Set;
∼33% ‘overlap’

word1
-

word2
word1 word2

GloVe 0.88 0.74 0.73
ELMo 0.89 0.74 0.72
BERT 0.87 0.65 0.68

Table 4: Evaluation on Bagherinezhad et al. (2016).
Accuracy drops by 15 to 20% when compared with the
only one word baselines.

Examples of Orders Formed Around a Word

head < knee < meal < chair < back < place <
street < world < gate < air < floor < room

eye < chair < child < king < daughter < wife <
boy < messenger < father < coach < horse < door <

house < gate < train < room < sun

Table 5: Two examples for orderings formed around
the words chair and gate for the size attribute using
GloVe. Comparisons between words occurring in both
these orderings (italicized) are consistent.

4.1.1 Local Ordering formed via Logit
Difference

A particular word gets compared with many other
words in data. We can order those words to form
a ‘local’ ordering, e.g., ordering around chair (Ta-
ble 5). Orderings are consistent if the same pair
of words in different local orderings hold the same
relationship, e.g., chair < room in both orderings
in Table 5. It is conceivable humans are more con-
fident about a comparison when the difference in
objects in terms of the property is large (a house
is bigger than a chair). Larger difference in out-
put logits (for label 0 (<) and 1 (>)) can indicate
more model confidence and hence, objects being
farther apart in an ordering. We form local order-
ings around a word using logit difference between
the labels when compared with the other word.

All the local orderings formed around all words
on Verb Physics are completely consistent for
GloVe and BERT. For ELMo, more than 90%
comparisons were usually consistent across any
two orderings. Models seem to learn to arrange
all the words in some sort of consistent ordering.
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Linear Neural Net with 1
or 2 hidden layers

GloVe 0.76 0.77
ELMo 0.77 0.78
BERT 0.74 0.75

Table 6: The best accuracies obtained by a Linear
Model compared with the best accuracies obtained by a
shallow Neural Network. For all three representations,
the linear model gives similar accuracy and hence we
often use it for our analysis. Since good accuracy is
achieved by a simple linear model from the frozen word
representations alone, we can reasonably conclude that
pre-trained embeddings encode information required to
compare words for physical common sense.

4.1.2 Global Ordering over all Words Using
Learned Weights

We use a linear model (0 hidden layers in Fig-
ure 1) to order all the objects in one of the Verb
Physics dev sets. Per Table 6, linear modela are
almost at par (accuracy within 1%) with shal-
low fully connected neural networks on the Verb
Physics dev set. A score for a word is its embed-
ding multiplied with the weight learned for map-
ping the input to the label 1 which would be higher
if word1 > word2. We use this score to rank
the objects. Appendix C shows an example of a
learned ordering over all the words in the dev set
using GloVe. Using this ordering to classify the
comparisons of pair of words achieves accuracy at
par with the original models on a subset of the dev
set containing only 0/1 labels. This suggests the
models assign an absolute value to every word
to rank all the objects and then use this global
ranking to compare any two objects. Using the
weight corresponding to the label 0 achieves sim-
ilar results. An ordering can be used directly for
> or < comparisons but is not that indicative for
≈ comparisons. This might explain the relative
struggles GloVe, ELMo, and BERT face classify-
ing comparisons labeled 2 (Table 7).

5 Conclusion

A linear or a small fully connected neural net-
work probing model can compare two words
on commonsense physical attributes using frozen
pre-trained representations (GloVe, ELMo, and
BERT) of the words alone with higher accuracy
than previous approaches which use extra infor-
mation in addition to the objects being compared.

0 (<) 1 (>) 2 (≈)

GloVe 0.79 0.77 0.33
ELMo 0.81 0.80 0.18
BERT 0.77 0.78 0.12

Table 7: Label-Wise Accuracy: The GloVe, ELMo, and
BERT representations (fed to a linear model) struggle
to capture the relationship word1 ≈ word2 (label 2).
This is likely due to the class imbalance in the dataset,
with the rough distribution of the labels across all at-
tributes in the Verb Physics training set being 41% for
the label 0, 49% for the label 1, and just 10% for the
label 2. The representations seem to learn an order-
ing over all the words and use it to compare objects
(§4.1.2). This is also one possible explanation for com-
paratively poor accuracy on the label 2 since judging
≈ relationship between words is hard while the < or >
relation can be inferred directly from an ordering. Ac-
curacies here are averaged across the results for all the
five attributes.

They also generalize to objects not seen during
training and get significantly higher accuracy than
using just one word: embeddings encode physi-
cal common sense. Models learn an ordering over
of all the words involved in the comparisons and
embeddings could be using this ordering to com-
pare any two objects. The difference in the output
logit values corresponding to the labels serves as a
surprisingly good proxy to form completely con-
sistent orderings around different words. One di-
rection of future work would be to move beyond
comparisons or relative information towards di-
rectly probing for size estimates for various physi-
cal properties for objects (without the setting be-
ing relative), using the recently released large-
scale resource containing ‘distributions over phys-
ical quantities associated with objects, adjectives,
and verbs’ (Elazar et al., 2019).
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