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Abstract

Typical event sequences are an important
class of commonsense knowledge. Formal-
izing the task as the generation of a next
event conditioned on a current event, previous
work in event prediction employs sequence-to-
sequence (seq2seq) models. However, what
can happen after a given event is usually di-
verse, a fact that can hardly be captured by de-
terministic models. In this paper, we propose
to incorporate a conditional variational autoen-
coder (CVAE) into seq2seq for its ability to
represent diverse next events as a probabilis-
tic distribution. We further extend the CVAE-
based seq2seq with a reconstruction mecha-
nism to prevent the model from concentrat-
ing on highly typical events. To facilitate
fair and systematic evaluation of the diversity-
aware models, we also extend existing eval-
uation datasets by tying each current event
to multiple next events. Experiments show
that the CVAE-based models drastically out-
perform deterministic models in terms of pre-
cision and that the reconstruction mechanism
improves the recall of CVAE-based models
without sacrificing precision.1

1 Introduction

Typical event sequences are an important class
of commonsense knowledge that enables deep
text understanding (Schank and Abelson, 1975;
LoBue and Yates, 2011). Following previous
work (Nguyen et al., 2017), we work on the task
of generating a next event conditioned on a cur-
rent event, which we call event prediction. For
example, we want a computer to recognize that
the event “board bus” is typically followed by an-
other event “pay bus fare” and to generate the lat-
ter word sequence given the former.

1The source code and the new test sets are pub-
licly available at https://github.com/hkiyomaru/
diversity-aware-event-prediction.

Early studies memorized event sequences ex-
tracted from a corpus and inevitably suffered
from low generalization capability and a scala-
bility problem. A promising approach to mod-
eling wide-coverage knowledge is to general-
ize events by representing them in a continu-
ous space (Granroth-Wilding and Clark, 2016;
Nguyen et al., 2017; Hu et al., 2017). Nguyen et al.
(2017) generate a next event using the sequence-
to-sequence (seq2seq) framework, which was first
proposed for machine translation (Bahdanau et al.,
2014) and subsequently applied to various NLP
tasks including text summarization (Rush et al.,
2015; Chopra et al., 2016) and dialog genera-
tion (Sordoni et al., 2015; Serban et al., 2016).

One limitation of the simple seq2seq models,
which are deterministic in nature, is their inabil-
ity to take into account an important characteristic
of events: What can happen after a current event
is usually diverse. For the example of “board bus”
mentioned above, “get off bus” as well as “pay bus
fare” is a valid next event. The inherent diversity
makes it difficult to train deterministic models, and
during testing, they can hardly generate multiple
next events that are both valid and diverse.

To address this problem, we first propose to
incorporate a conditional variational autoencoder
(CVAE) into seq2seq models (Kingma et al., 2014;
Sohn et al., 2015). As a probabilistic model,
the CVAE draws a latent variable, representing
the next event, from a probabilistic distribution,
and this distribution encodes the diversity of next
events.

Through experiments, we found that, as indi-
cated by high precision, the CVAE made learn-
ing from diverse training data more effective.
However, the outputs of the CVAE-based seq2seq
model concentrated on a small number of highly
typical events (i.e., low recall), possibly due to
the mode-seeking property of variational infer-

https://github.com/hkiyomaru/diversity-aware-event-prediction
https://github.com/hkiyomaru/diversity-aware-event-prediction
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ence (Bishop, 2006, pp. 466–470). This tendency
is also reminiscent of seq2seq models’ preference
to generic outputs (Sordoni et al., 2015; Serban
et al., 2016).

We alleviate this problem by extending the
CVAE-based seq2seq model with a reconstruction
mechanism (Tu et al., 2017). During training, the
reconstruction mechanism forces the model to re-
construct the input from the hidden states of the
decoder. This has an effect of restraining the
model from outputting highly typical next events
because they make the reconstruction more diffi-
cult.

We evaluate the proposed models using two
event pair datasets provided by Nguyen et al.
(2017). One problem with these datasets is that
each current event in the test sets is tied to only
one next event. For a fair evaluation of diversity-
aware models, we extend the test sets so that each
given event has multiple next events.

Experiments show that the CVAE-based
seq2seq models consistently outperformed the
simple seq2seq models in terms of precision (i.e.,
validity) without hurting recall (i.e., diversity)
while forcing the simple seq2seq models to gen-
erate diverse outputs yielded low precision. The
reconstruction mechanism consistently improved
recall of the CVAE-based models while keeping
or even increasing precision. We also confirmed
that the original test sets failed to detect the clear
differences between the models.

2 Related Work

2.1 Event Prediction

There is a growing body of work on learning
typical event sequences (Chambers and Jurafsky,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding and Clark, 2016; Pichotta
and Mooney, 2016; Hu et al., 2017; Nguyen et al.,
2017). While early studies explicitly store event
sequences in a symbolic manner, a recent ap-
proach to this task is to train neural network mod-
els that implicitly represent event sequence knowl-
edge as continuous model parameters. In both
cases, models are usually evaluated by how well
they restore a missing portion of an event se-
quence. We collectively refer to this task as event
prediction.

Event prediction can be categorized into two
tasks: classification and generation. In the clas-
sification task, a model is to choose one from a

pre-defined set of candidates for a missing event.
A popular strategy is to rank candidates by similar-
ity with the remaining part of the event sequence.
Similarity measures include pointwise mutual in-
formation (Chambers and Jurafsky, 2008), condi-
tional bigram probability (Jans et al., 2012), and
cosine similarities based on latent semantic in-
dexing and word embeddings (Granroth-Wilding
and Clark, 2016). For its reliance on pre-defined
candidates, however, the classification approach is
constrained by its limited flexibility.

In the generation task, a model is to directly
generate a missing event, usually in the form of
a word sequence (Pichotta and Mooney, 2016;
Hu et al., 2017; Nguyen et al., 2017), although
one previous study adopted a predicate-argument
structure-based event representation (Weber et al.,
2018). Nguyen et al. (2017) worked on the task
of generating a next event given a single event,
which we follow in this paper. They adopted the
seq2seq framework (Sutskever et al., 2014) and
investigated how recurrent neural network (RNN)
variants, the number of RNN layers, and the pres-
ence or absence of an attention mechanism (Bah-
danau et al., 2014) affected the performance. Hu
et al. (2017) gave a sequence of events to the
model to generate the next one. Accordingly, they
worked on hierarchically encoding the given event
sequence using word-level and event-level RNNs.

All of these models are deterministic in nature
and do not take into account the fact that there
could be more than one valid next event. For ex-
ample, both “get off bus” and “pay bus fare” seem
to be appropriate next events of “board bus”. The
inherent diversity makes it difficult to train deter-
ministic models. During testing, they can hardly
generate multiple next events that are both valid
and diverse.

2.2 Conditional Variational Autoencoders

Variational autoencoders (VAEs) are a neural
network-based framework to learn probabilistic
generation (Kingma and Welling, 2013; Rezende
et al., 2014). The basic idea of VAEs is to recon-
struct an input y via a latent representation z in
a way similar to autoencoders (AEs). While AEs
learn the process as deterministic transformation,
VAEs adopt probabilistic generation: a VAE en-
codes y into the probability distribution of z, in-
stead of a point in a low-dimensional vector space.
It then reconstructs the input y from z drawn from
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the posterior distribution. z is assumed to have a
prior distribution, for which a multivariate Gaus-
sian distribution is often used. As straightforward
extensions of VAEs, conditional VAEs (CVAEs)
let probabilistic distributions be conditioned on a
common observed variable x (Kingma et al., 2014;
Sohn et al., 2015). In our case, x is a current event
while y is a next event to predict.

Bowman et al. (2016) applied VAEs to text gen-
eration. They constructed VAEs using RNNs as its
components and found that VAEs with an RNN-
based decoder failed to encode meaningful infor-
mation to z. To alleviate this problem, they pro-
posed simple but effective heuristics: KL cost an-
nealing and word dropout. We also employ these
techniques.

If a VAE-based text generation model is con-
ditioned on text, it can be seen as a CVAE-based
seq2seq model (Zhao et al., 2017; Serban et al.,
2017; Zhang et al., 2016). Since a CVAE learns
probabilistic generation, it is suitable for tasks
where the output is not uniquely determined ac-
cording to the input. One of the representative ap-
plications of CVAE-based text generation is dia-
logue response generation, or the task of gener-
ating possible replies to a human utterance (Zhao
et al., 2017; Serban et al., 2017). Applying CVAEs
to next event prediction is a natural choice because
the task is also characterized by output diversity.

2.3 Diversity-Promoting Objective Functions

In dialogue response generation, seq2seq is known
to suffer from the generic response problem: The
model often ends up blindly generating uninfor-
mative responses such as “I don’t know”. A popu-
lar approach to this problem is to rerank the candi-
date outputs, which are usually produced by beam
search, according to the mutual information with
the conversational context (Li et al., 2016).

We notice that the reconstruction mecha-
nism (Tu et al., 2017) serves the same purpose
in a more straightforward manner, albeit stem-
ming from a different motivation. The reconstruc-
tion mechanism forces the model to reconstruct
the input from the hidden states of the decoder.
Although it was originally proposed for machine
translation to prevent over-translation and under-
translation, it could counteract the event prediction
model’s tendency to concentrate on highly typical
outputs.

Figure 1: The neural network architecture of our event
prediction model. ⊕ denotes vector concatenation.

3 Problem Setting

Given a current event x, we are to generate a vari-
ety of events, each of which, y, often happens af-
ter x. x and y are represented by word sequences
like “board bus” and “get off bus”. Our goal is to
learn from training data an event prediction model
pθ(y|x), where θ is the set of model parameters.

4 Conditional VAE with Reconstruction

Figure 1 illustrates an overview of our model.
To capture the diversity of next events, we use a
conditional variational autoencoder (CVAE) based
seq2seq model. The CVAE naturally represents
diverse next events as a probability distribution.
Additionally, we extend the CVAE with a recon-
struction mechanism (Tu et al., 2017) to allevi-
ate the model’s tendency to concentrate on a small
number of highly typical events.

4.1 Objective Function

We introduce a probabilistic latent variable z and
assume that y depends on both x and z. The con-
ditional log likelihood of y given x is written as:

log p(y|x) = log

∫
z
pθ(y, z|x)dz (1)

= log

∫
z
pθ(y|z, x)pθ(z|x)dz. (2)

We refer to pθ(z|x) and pθ(y|z, x) as the prior net-
work and the decoder, respectively. Eq. 2 involves
an intractable marginalization over the latent vari-
able z. The CVAE circumvents this problem by
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maximizing the evidence lower bound (ELBO) of
Eq. 2. To approximate the true posterior distri-
bution pθ(z|y, x), we introduce a recognition net-
work qφ(z|y, x), where φ is the set of model pa-
rameters. The ELBO is then written as:

LCVAE(θ, φ; y, x) = −KL(qφ(z|y, x) ‖ pθ(z|x))
+ Eqφ(z|y,x)[log pθ(y|z, x)] (3)

≤ log p(y|x). (4)

We extend the CVAE with a reconstruction mech-
anism pψ(x|y), where ψ is the set of model pa-
rameters. During training, it forces the model to
reconstruct x from y drawn from the posterior dis-
tribution. Adding the corresponding term, we ob-
tain the following objective function:

L(θ,φ, ψ; y, x) = LCVAE(θ, φ; y, x)

+ λEqφ(z|y,x)[log pψ(x|y)pθ(y|z, x)], (5)

where λ is the weight for the reconstruction term.
Because outputting highly typical next events
makes the reconstruction more difficult, the recon-
struction mechanism counteracts the model’s ten-
dency to do so.

4.2 Neural Network Architecture
We first assign distributed representations to
words in x and y using the same encoder. The
encoder is a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with two layers. We concate-
nate the representations of the first and last words
to obtain hx and hy, the representations of x and
y, respectively.

We assume that z is distributed according to
a multivariate Gaussian distribution with a diago-
nal covariance matrix. During training, the recog-
nition network provides the posterior distribution
qφ(z|y, x) ∼ N (µ,σ2I):[

µ
log(σ2)

]
=W 1

[
hy

hx

]
+ b1. (6)

During testing, the prior network gives the prior
distribution pθ(z|x) ∼ N (µ′,σ′2I):[

µ′

log(σ′2)

]
=W 2h

x + b2. (7)

We employ the reparametrization trick (Kingma
and Welling, 2013) to sample z from the posterior
distribution so that the error signal can propagate
to the earlier part of the networks.

We use a single-layer LSTM as the decoder.
When the decoder predicts yi, the i-th word of
y, it receives its previous hidden state, the word
embedding of yi−1, the latent variable z, and the
context representation calculated by an attention
mechanism (Bahdanau et al., 2014).

We use a single-layer LSTM as the reconstruc-
tor. When the reconstructor predicts xj , the j-
th word of x, the inputs are its previous hidden
state, the word embedding of xj−1, and the context
representation calculated by an attention mecha-
nism. The parameters of the reconstructor’s atten-
tion mechanism are different from those used in
the decoder.

As indicated by Eqs. 3 and 5, we sum up three
terms to get the loss: the cross entropy loss of the
decoder, the cross entropy loss of the reconstruc-
tor, and the KL divergence between the posterior
and prior. Since these loss terms are differentiable
with respect to the model parameters θ, φ and ψ,
we can optimize them in an end-to-end fashion.

4.3 Optimization Techniques

Encoding meaningful information in z using
CVAEs with an RNN decoder is known to be
hard (Bowman et al., 2016). We employ two com-
mon techniques to alleviate the issue: (1) KL cost
annealing (gradually increasing the weight of the
KL term) and (2) word dropout (replacing target
words with unknown words with a certain prob-
ability). For KL cost annealing, we increase the
weight of the KL term using the sigmoid function.
For word dropout, we start with no dropout, and
gradually increase the dropout rate by 0.05 every
epoch until it reaches a predefined value.

5 Datasets

We used the following two datasets provided by
Nguyen et al. (2017).
Wikihow: Wikihow2 organizes on a large scale
descriptions of how to accomplish tasks. Each
task is described by sub-tasks with detailed de-
scriptions. Nguyen et al. (2017) created an event
pair dataset by extracting adjacent sub-task de-
scriptions.
Descript: The original DESCRIPT corpus is a
collection of event sequence descriptions created
through crowdsourcing (Wanzare et al., 2016).
Nguyen et al. (2017) built a new corpus of event

2https://www.wikihow.com

https://www.wikihow.com
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Figure 2: The workflow of test data construction.

pairs by extracting the contiguous two event de-
scriptions in the DESCRIPT corpus. Descript is
of higher quality but smaller than Wikihow.

5.1 Construction of New Test Sets
One problem with these datasets is that each cur-
rent event in their test sets is tied to only one next
event. As discussed by Nguyen et al. (2017), test
sets for event prediction should have reflected the
fact that there could be more than one valid next
event.

Inspired by Zhao et al. (2017), we addressed
this problem by extending the test sets through an
information retrieval technique and crowdsourc-
ing. Figure 2 illustrates the overall workflow. For
each of the two test sets, we first randomly chose
200 target event pairs. Our goal was to add multi-
ple next events to each of the current events. For
each event pair, we focused on the current event
and retrieved 20 similar current events in the train-
ing set. As a similarity measure, we used cosine
similarity based on the averaged word2vec3 em-
beddings of constituent words. We then used the
corresponding 20 next events of the retrieved event
pairs as candidates for the next events of the target
current event.

We asked crowdworkers to check if a given
event pair was appropriate. Note that our crowd-
sourcing covered not only the automatically re-
trieved event pairs but also the original event pairs.
To remove a potential bias caused by wording,
we presented a current event and a candidate next
event as A and B, respectively. Each event pair
was given one of the following five labels:

l1: Strange expression.
l2: No relation.
l3: A and B are related, but one does not happen

after the other.
l4: A happens after B.
l5: B happens after A.

3https://code.google.com/archive/p/
word2vec/

l1 l2 l3 l4 l5

Wikihow (orig.) 7.3% 20.2% 30.6% 6.5% 35.5%
Wikihow (cand.) 6.9% 37.4% 25.4% 10.0% 20.3%

Descript (orig.) 0.0% 4.5% 8.0% 3.5% 84.1%
Descript (cand.) 1.7% 19.7% 12.0% 13.3% 53.2%

Table 1: The result of crowdsourcing. Each number
indicates the ratio of events with the corresponding la-
bel. The labels were selected by taking the majority. In
no majority cases, we gave priority to the labels with
smaller subscripts.

Train Dev Test New Test

Wikihow 1,287,360 26,820 26,820 858 (174)
Descript 23,320 2,915 2,915 2,203 (199)

Table 2: Statistics of the datasets. The training, de-
velopment and test sets are the original ones provided
by Nguyen et al. (2017). For each dataset, we built
new test sets with multiple next events. The numbers
of unique current events are in parentheses.

Event pairs with label l5 were desirable. We dis-
tributed each event pair to five workers and aggre-
gated the five judgments by taking the majority.
We used the Amazon Mechanical Turk platform
and employed crowdworkers living in the US or
Canada whose average work approval rates were
higher than 95%. The total cost was $240.

Table 1 shows the ratio of event pairs with each
label. We selected event pairs with label l5 to build
new test sets. The sizes of the resultant datasets are
listed in Table 2. One current event in Wikihow
and Descript had 4.9 and 11.0 next events on aver-
age, respectively. Note that the number of unique
current events in our test sets was not equal to 200
because some current events happened to have no
next event with label l5.

5.2 The Quality of Original Datasets

As shown in Table 1, only 84.1% of the original
event pairs of Descript were given label l5. Even
worse, the majority of the original event pairs of
Wikihow were given labels other than l5. We
had two possible explanations for this. First, be-
cause Wikihow was an open-domain dataset, it
contained descriptions with which crowdworkers
were not necessarily familiar (e.g., creating a web-
site). Second, the event pairs were sometimes hard
to interpret because they were extracted from ad-
jacent descriptions out of context. The results sug-
gest that further studies in this area should use
Wikihow with caution.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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6 Experiments

6.1 Model Setup
We initialized word embeddings by pre-trained
word2vec embeddings. Specifically, we used the
embeddings with 300 dimensions trained on the
Google News corpus. The encoder, decoder,
and reconstructor had hidden vectors with size
256. The prior network and the recognition net-
work consisted of a linear map to 256-dimensional
space. The latent variable z had a size of 256.
We used the Adam optimizer (Kingma and Ba,
2015) for updating model parameters. The learn-
ing rate was selected from {0.0001, 0.001, 0.01}.
For CVAEs, we selected the word dropout ratio
from {0.0, 0.1, 0.3}. To investigate the effect of
the weight parameter for the reconstruction loss,
we trained and compared models with different
λ ∈ {0.1, 0.5, 1.0}. Hyper-parameter tuning was
done based on the original development sets.

6.2 Baselines
We compared eight seq2seq models: deterministic
models (S2S) (Nguyen et al., 2017) and CVAE-
based models (CVAE) with and without the atten-
tion mechanism (att) and the reconstruction mech-
anism (rec). The hyper-parameters were the same
as those reported in Section 6.1. The models with-
out the attention mechanism calculated the context
representation by concatenating the forward and
backward last hidden states of the encoder.

To stochastically generate next events using de-
terministic models, we sampled words at each de-
coding step from the vocabulary distribution.4 For
CVAE-based models, we sampled the latent vari-
able z and then decoded y greedily.

6.3 Quantitative Evaluation
Following Zhao et al. (2017), we evaluated preci-
sion and recall. For a given current event x, there
were Mx reference next events rj , j ∈ [1,Mx].
A model generated N hypothesis events hi, i ∈
[1, N ]. The precision and recall were as follows:

precision(x) =

∑N
i=1maxj∈[1,Mx] BLEU(rj , hi)

N

recall(x) =

∑Mx
j=1maxi∈[1,N ] BLEU(rj , hi)

Mx

4We did not employ a beam search algorithm because it
was not easy to compare the results with those of the prob-
abilistic models. Beam search yields a specified number of
distinct events while the probabilistic models can generate
duplicate events.

where BLEU is the sentence-level variant of a
well-known metric that measures the geomet-
ric mean of modified n-gram precision with the
penalty of brevity (Papineni et al., 2002). The final
score was averaged over the entire test set. We re-
fer to the precision and recall as P@N and R@N,
respectively. F@N is the harmonic mean of P@N
and R@N. We report the scores with N = 5 and
10, in accordance with the average number of next
events in our new test sets.

For comparison, we also followed the experi-
mental procedure of Nguyen et al. (2017), where
event prediction models deterministically output
a single next event using greedy decoding. For
CVAEs, we did this by setting z at the mean of
the predicted Gaussian prior. The outputs were
evaluated by BLEU. We refer to the criterion as
greedy-BLEU. We used the original test sets for
this experiment.

Table 3 lists the evaluation results. In terms of
precision (i.e., validity), the CVAE-based models
consistently outperformed the deterministic mod-
els with large margins. The deterministic mod-
els achieved better recall (i.e., diversity) than the
CVAE-based models, but this came with a cost
of drastically low precision. The results may be
somewhat surprising because our focus is on gen-
erating diverse next events. However, generating
valid next events is a precondition of success, and
we found that the CVAE-based models were able
to satisfy the two requirements while the determin-
istic models were not.

For both deterministic and probabilistic mod-
els, the attention mechanism exhibited tendencies
to improve precision and recall on Wikihow but
to lower the scores on Descript. Our results were
consistent with those of Nguyen et al. (2017). We
conjecture that Descript was so small that the at-
tention mechanism led to overfitting.

For CVAEs, the reconstruction mechanism
mostly improved recall without hurting precision,
regardless of the presence or absence of the atten-
tion mechanism. Note that the best F-scores were
consistently achieved by CVAEs with reconstruc-
tion. Such consistent improvements were not ob-
served for the deterministic models. The recon-
struction mechanism had evidently no effect on
mitigating the difficulty of deterministic models in
learning from diverse data.

In terms of greedy-BLEU, our deterministic
models were competitive with the previously re-
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P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

S2S (Nguyen et al., 2017) - - - - - - 2.69 ± 0.00
S2S+att (Nguyen et al., 2017) - - - - - - 2.81 ± 0.00

S2S 2.75 ± 0.19 3.10 ± 0.16 2.91 ± 0.17 2.69 ± 0.12 4.22 ± 0.16 3.28 ± 0.14 2.62 ± 0.23
S2S+att 2.66 ± 0.05 3.10 ± 0.11 2.86 ± 0.08 2.74 ± 0.08 4.15 ± 0.11 3.30 ± 0.06 2.64 ± 0.07
S2S+rec (λ = 0.1) 2.68 ± 0.22 3.05 ± 0.15 2.85 ± 0.19 2.61 ± 0.15 4.08 ± 0.31 3.18 ± 0.20 2.63 ± 0.08
S2S+rec (λ = 0.5) 2.44 ± 0.16 2.86 ± 0.19 2.63 ± 0.17 2.56 ± 0.06 4.12 ± 0.14 3.16 ± 0.09 2.43 ± 0.13
S2S+rec (λ = 1.0) 2.44 ± 0.18 2.97 ± 0.26 2.68 ± 0.21 2.61 ± 0.17 3.99 ± 0.19 3.15 ± 0.18 2.32 ± 0.06
S2S+att+rec (λ = 0.1) 2.63 ± 0.09 3.05 ± 0.05 2.82 ± 0.06 2.72 ± 0.24 4.32 ± 0.09 3.33 ± 0.19 2.64 ± 0.09
S2S+att+rec (λ = 0.5) 2.63 ± 0.02 3.04 ± 0.10 2.82 ± 0.05 2.60 ± 0.07 4.08 ± 0.15 3.17 ± 0.09 2.48 ± 0.06
S2S+att+rec (λ = 1.0) 2.50 ± 0.14 2.97 ± 0.07 2.71 ± 0.10 2.59 ± 0.07 4.08 ± 0.13 3.17 ± 0.09 2.35 ± 0.07

CVAE 4.94 ± 0.11 2.07 ± 0.08 2.92 ± 0.10 4.92 ± 0.08 2.09 ± 0.07 2.93 ± 0.08 2.62 ± 0.03
CVAE+att 5.35 ± 0.25 2.33 ± 0.11 3.25 ± 0.15 5.35 ± 0.21 2.33 ± 0.09 3.25 ± 0.13 2.60 ± 0.07

CVAE+rec (λ = 0.1) 5.52 ± 0.42 2.50 ± 0.21 3.44 ± 0.25 5.50 ± 0.43 2.50 ± 0.22 3.44 ± 0.27 2.79 ± 0.11
CVAE+rec (λ = 0.5) 5.71 ± 0.08 2.44 ± 0.13 3.42 ± 0.14 5.70 ± 0.12 2.48 ± 0.10 3.46 ± 0.11 2.52 ± 0.15
CVAE+rec (λ = 1.0) 5.11 ± 0.41 2.24 ± 0.19 3.11 ± 0.26 5.13 ± 0.41 2.28 ± 0.17 3.16 ± 0.24 2.48 ± 0.01
CVAE+att+rec (λ = 0.1) 5.86 ± 0.53 2.40 ± 0.10 3.40 ± 0.02 5.87 ± 0.53 2.42 ± 0.11 3.42 ± 0.02 2.63 ± 0.07
CVAE+att+rec (λ = 0.5) 5.48 ± 0.13 2.61 ± 0.27 3.54 ± 0.27 5.41 ± 0.06 2.60 ± 0.26 3.50 ± 0.25 2.52 ± 0.14
CVAE+att+rec (λ = 1.0) 5.32 ± 0.28 2.86 ± 0.28 3.71 ± 0.28 5.23 ± 0.19 3.01 ± 0.24 3.82 ± 0.23 2.48 ± 0.04

(a) Results on Wikihow.

P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

S2S (Nguyen et al., 2017) - - - - - - 5.42 ± 0.00
S2S+att (Nguyen et al., 2017) - - - - - - 5.29 ± 0.00

S2S 7.21 ± 0.68 5.34 ± 0.32 6.13 ± 0.46 7.59 ± 0.59 7.81 ± 0.36 7.70 ± 0.48 5.09 ± 0.31
S2S+att 7.59 ± 0.46 5.78 ± 0.49 6.56 ± 0.49 7.84 ± 0.33 7.99 ± 0.35 7.91 ± 0.33 4.87 ± 0.19
S2S+rec (λ = 0.1) 9.04 ± 0.42 6.12 ± 0.26 7.30 ± 0.32 8.91 ± 0.31 8.58 ± 0.25 8.74 ± 0.28 5.49 ± 0.22
S2S+rec (λ = 0.5) 8.00 ± 0.38 5.71 ± 0.30 6.66 ± 0.31 8.07 ± 0.29 8.09 ± 0.34 8.08 ± 0.30 5.14 ± 0.22
S2S+rec (λ = 1.0) 6.92 ± 0.11 5.19 ± 0.04 5.93 ± 0.06 6.91 ± 0.16 7.08 ± 0.07 6.99 ± 0.06 4.92 ± 0.12
S2S+att+rec (λ = 0.1) 8.27 ± 0.18 5.78 ± 0.21 6.80 ± 0.20 8.51 ± 0.16 8.39 ± 0.31 8.45 ± 0.24 5.15 ± 0.32
S2S+att+rec (λ = 0.5) 8.40 ± 0.77 6.04 ± 0.52 7.02 ± 0.62 8.05 ± 0.28 7.95 ± 0.18 8.00 ± 0.22 5.73 ± 0.29
S2S+att+rec (λ = 1.0) 7.58 ± 0.49 5.58 ± 0.23 6.43 ± 0.31 7.35 ± 0.20 7.51 ± 0.27 7.43 ± 0.23 5.34 ± 0.16

CVAE 17.27 ± 0.94 4.77 ± 0.12 7.47 ± 0.22 17.35 ± 0.95 5.01 ± 0.12 7.77 ± 0.21 5.03 ± 0.18
CVAE+att 16.13 ± 1.91 4.51 ± 0.20 7.04 ± 0.42 15.99 ± 2.21 4.75 ± 0.33 7.32 ± 0.61 4.65 ± 0.33

CVAE+rec (λ = 0.1) 18.19 ± 0.69 5.40 ± 0.24 8.33 ± 0.36 18.44 ± 0.33 5.89 ± 0.17 8.92 ± 0.22 5.50 ± 0.24
CVAE+rec (λ = 0.5) 17.33 ± 0.61 5.10 ± 0.42 7.87 ± 0.48 17.35 ± 0.57 5.67 ± 0.40 8.55 ± 0.47 5.34 ± 0.09
CVAE+rec (λ = 1.0) 17.20 ± 2.05 5.03 ± 0.26 7.78 ± 0.52 17.10 ± 2.41 5.42 ± 0.33 8.23 ± 0.63 5.24 ± 0.11
CVAE+att+rec (λ = 0.1) 16.96 ± 1.09 5.19 ± 0.12 7.95 ± 0.10 17.44 ± 1.00 5.78 ± 0.12 8.67 ± 0.10 5.18 ± 0.26
CVAE+att+rec (λ = 0.5) 18.57 ± 1.41 5.45 ± 0.36 8.42 ± 0.55 18.52 ± 1.59 5.91 ± 0.34 8.96 ± 0.53 5.58 ± 0.37
CVAE+att+rec (λ = 1.0) 16.47 ± 1.30 5.35 ± 0.24 8.07 ± 0.38 16.27 ± 1.38 5.89 ± 0.36 8.65 ± 0.53 5.33 ± 0.32

(b) Results on Descript.

Table 3: Event prediction performance evaluated by automatic evaluation metrics. Each model is trained three
times with different random seeds. The scores are the average and standard deviation. The bold scores indicate the
highest ones over models.

ported models of Nguyen et al. (2017), though
our models were optimized based on the loss
while the previous models were tuned according to
greedy-BLEU. Curiously enough, greedy-BLEU
indicated no big difference between the determin-
istic and probabilistic models, while our new test
sets yielded large gaps between them in terms of
precision and recall. As we will see in the next sec-
tion, these differences were not spurious and did
demonstrate the limitation of a single pair-based
evaluation.

6.4 Qualitative Analysis
Table 4 shows next events generated by the deter-
ministic and probabilistic models, with Table 4a
being an example from Wikihow. The determin-
istic model generated events without any duplica-
tion, leading to a high recall. However, most of
the generated events, such as “choose high speed

goals”, look irrelevant to the current event. This
suggests that, as indicated by low precision, the
deterministic model fails to generate valid next
events when being forced to diversify the outputs.

The CVAE without the reconstruction mecha-
nism appears to have generated next events that
were generally valid and, at a first glance, diverse.
However, a closer look reveals that they expressed
a small number of highly typical events and that
their semantic diversity was not large. For ex-
ample, “consider the risks of psychotherapy” was
semantically identical with “consider the risk fac-
tors” in this context. Compared with the vanilla
CVAE, the CVAEs with reconstruction success-
fully generated semantically diverse next events.
We would like to emphasize that the diversity was
improved without sacrificing precision.

Table 4b shows an example from Descript. As
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Current event: talk to mental health professional
Reference next events: [1] find support group, [2] reestablish your sense of safety, [3] spend time facing why you distrust
people, [4] talk to your doctor about medication, [5] try cognitive behavioral therapy cbt, and [6] visit more than one
counselor

S2S CVAE CVAE+att+rec (λ = 0.1) CVAE+att+rec (λ = 1.0)

1. adjust your support 1. seek therapy (11) 1. consider the possibility 1. get referral to
system (1) of medical treatment (14) therapist (8)

2. choose high speed 2. consider psychotherapy (5) 2. ask your doctor about 2. ask your doctor about
goals (1) medications (4) medication (8)

3. join support group (1) 3. consider your therapist (2) 3. ask your family (2) 3. get support (4)
4. understand your parent 4. consider the risks of 4. be aware of your 4. get an overview of the

lifestyle (1) psychotherapy (2) depressive symptoms (2) various topics (2)
5. listen to someone 5. consider the risk factors (2) 5. be aware of your own 5. be aware of the benefits

knowledgeable (1) mental health (2) of testosterone (1)

(a) Frequently generated events by models trained on Wikihow.

Current event: board bus
Reference next events: [1] buy a ticket, [2] find a seat if available or stand if necessary, [3] give bus driver token or money,
[4] pay driver or give prepaid card or ticket, [5] pay fare or give ticket if needed, [6] pay for the bus [7] pay the driver,
[8] place your luggage overhead or beneath seat, [9] reach the destination, [10] sit down, [11] sit down and ride, [12] sit
in your seat, [13] sit on the bus, and [14] take a seat in the bus

S2S CVAE CVAE+rec (λ = 0.1) CVAE+rec (λ = 1.0)

1. pay for ticket (1) 1. get off bus (9) 1. find seat (10) 1. pay fare (29)
2. delivery driver (1) 2. pay bus fare (7) 2. pay fare (5) 2. pay the fare (1)
3. get on train (1) 3. get on bus (6) 3. get off bus (4) 3. -
4. sit down (1) 4. pay fare (4) 4. put bag in overhead compartment (2) 4. -
5. check mirrors (1) 5. pay for ticket (2) 5. wait for bus to stop (2) 5. -

(b) Frequently generated events by models trained on Descript.

Table 4: Next events generated by the deterministic and probabilistic models. We sampled 30 next events for each
current event. Note that the samples can be duplicate. The numbers in parentheses indicate the frequencies.

with Wikihow, the deterministic model generated
next events that were diverse but mostly invalid.
The vanilla CVAE also lacked semantic diversity
as with the case of Wikihow. The CVAE with re-
construction (λ = 0.1) alleviated the problem and
was able to produce next events that were both
valid and diverse. However, care must be taken in
tuning λ, as the model with λ = 1.0 ended up con-
centrating on a small number of next events, which
was indicated by low recall. With a too large λ,
the model was strongly biased toward next events
that had one-to-one correspondences with current
events. Note that we could tune λ if we had new
development sets with multiple next events, in ad-
dition to new test sets.

Finally, we have to acknowledge that there is
still room for improvement in the new test sets. Al-
though we successfully collected valid and diverse
next events, the data construction procedure pro-
vided no guarantee of typicality. For the reference
next events of “board bus” (Table 4b), “pay for the
bus” and its variants dominate, but we are unsure
if they are truly more typical than “place your lug-
gage overhead or beneath seat”. One way to take
typicality into account is to ask a large number of

crowdworkers to type next events given the cur-
rent event, rather than to check the validity of a
given event pair. Although we did not do this for
the high cost and difficulty in quality control, it is
worth exploring in the future.

7 Conclusion

We tackled the task of generating next events given
a current event. Aiming to capture the diversity
of next events, we proposed to use a CVAE-based
seq2seq model with a reconstruction mechanism.
To fairly evaluate diversity-aware models, we built
new test sets with multiple next events. The
CVAE-based models drastically outperformed de-
terministic models in terms of precision and that
the reconstruction mechanism improved the recall
of CVAE-based models without sacrificing preci-
sion. Although we focused on event pairs in the
present work, the use of longer sequence of events
would be a promising direction for future work.
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