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Abstract

Complex questions often require combining
multiple facts to correctly answer, particularly
when generating detailed explanations for why
those answers are correct. Combining mul-
tiple facts to answer questions is often mod-
eled as a “multi-hop” graph traversal problem,
where a given solver must find a series of in-
terconnected facts in a knowledge graph that,
taken together, answer the question and ex-
plain the reasoning behind that answer. Multi-
hop inference currently suffers from semantic
drift, or the tendency for chains of reasoning
to “drift” to unrelated topics, and this seman-
tic drift greatly limits the number of facts that
can be combined in both free text or knowl-
edge base inference. In this work we present
our effort to mitigate semantic drift by extract-
ing large high-confidence multi-hop inference
patterns, generated by abstracting large-scale
explanatory structure from a corpus of detailed
explanations. We represent these inference pat-
terns as sets of generalized constraints over
sentences represented as rows in a knowledge
base of semi-structured tables. We present a
prototype tool for identifying common infer-
ence patterns from corpora of semi-structured
explanations, and use it to successfully extract
67 inference patterns from a “matter” subset
of standardized elementary science exam ques-
tions that span scientific and world knowledge.

1 Introduction

Combining separate pieces of knowledge to answer
complex natural language questions is a central con-
temporary challenge in natural language inference.
For complex questions, a single passage in a corpus
or single fact in a knowledge base is often insuffi-
cient to arrive at an answer, and multiple sentences
or facts must be combined through some inference
process. A benefit and goal of this “multi-hop” in-
ference process is for the set of combined facts to
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form a human-readable explanation detailing why
the inference and answer are correct.

Most recent approaches to combining knowledge
to answer questions (e.g. Das et al., 2017; Jansen
et al., 2017; Ding et al., 2019) model inference
as a progressive construction, iteratively adding
nodes (facts) one at a time to a graph that repre-
sents the inference (and explanation) required to
answer a question. This approach suffers from the
phenomenon of semantic drift (Fried et al., 2015),
which is the observation that determining whether
two facts can be meaningfully combined to answer
a question is an extremely noisy process, and most
often results in adding erroneous facts unrelated
to answering a question that causes the inference
to fail. A common signal to determine whether
two facts might be combined is whether those facts
have shared words or entities. For example, for a
question asking about the possible effects of sun-
light on an ice cube, a given solver might choose
to meaningfully connect the facts “melting means
changing from a [solid] to a liquid by adding heat
energy” and “water is a kind of [solid], called ice,
at temperatures below 0°C” on the shared word
solid. Unfortunately, using shared words alone,
either of these facts could also be connected to
the fact “sound travels fastest through a [solid]”,
which is irrelevant to answering this problem, and
allows further traversals to unrelated facts about
sound that can produce incorrect answers.

Jansen (2018) empirically demonstrated that
combining facts based on lexical overlap has very
low chance of success, which was measured at
between 0.1% and 5% for elementary science ques-
tions, depending on the source corpus of the facts
being retrieved. This is a significant limitation, as
even elementary science questions require combin-
ing an average of 4 to 6 facts (and as many as 16
facts) that span scientific and common-sense or
world knowledge in order to answer and provide
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Figure 1: An overview of our inference pattern extraction approach. A corpus of semi-structured explanations (2) is preprocessed
through a set of heuristics that generate a large number of small (often disconnected) subgraphs in a large graph (2). Those
subgraphs are merged and curated (3). Inference patterns, or subgraphs of nodes can then be extracted from the curated graph, by
the user (4). These patterns for executable constraint satisfaction patterns that can be executed over the knowledge base (5). In
this work we address steps 2 through 5, whereas using these inference patterns to answer and explain unseen questions (6) is part

of ongoing efforts.

a detailed explanation for their reasoning (Jansen
et al., 2018, 2016), and such a low probability of
successfully traversing the knowledge graph places
strong limits on the length of inferences that can
be made (Khashabi et al., 2019). In response to
this challenge, a number of datasets such as Hot-
potQA (Yang et al., 2018) and WorldTree (Jansen
et al., 2018) have emerged to provide explicit gold
explanations that serve as training and evaluation
instruments for multi-hop inference models.

Jansen (2017) proposed combining “common
explanatory patterns”, or groups of frequently inter-
connected facts observed in explanations, as a pos-
sible means of mitigating the semantic drift associ-
ated with combining facts one at a time. Human-
authored explanations contain meaningful connec-
tions between their component facts. Each edge
in an explanatory pattern extracted from a human-
authored explanation is a high-confidence edge that
does not require a solver to use other more noisy
signals (such as lexical overlap) to populate, reduc-
ing the opportunity for semantic drift. An empirical
evaluation using the WorldTree explanation corpus
demonstrated that this approach could in principle
regenerate the majority of unseen gold explana-
tion graphs by using only 2 or 3 hops between
these “explanatory pattern” subgraphs, which is
substantially fewer hops than the up to 16 hops
required if aggregating single facts. The disadvan-

tages of this technique are that (a) it requires the
(currently manual) construction of a large corpus
of detailed explanations to learn these common
explanatory patterns from, which is an expensive
process, and (b) it requires developing automatic
or semi-automatic methods to abstract the structure
of training explanations to mitigate sparsity and
allow known explanations to generalize to unseen
scenarios.

In this work, we explore a hybrid human-in-
the-loop method and tool for abstracting the struc-
ture of common explanatory patterns found in the
WorldTree corpus of structured explanations. We
use this tool to extract 67 inference patterns, speci-
fied as constraint satisfaction patterns over a knowl-
edge base of tables, from detailed explanations to
standardized elementary science exam questions.
Our long-term interests are in generating a corpus
of common inference patterns at scale, and con-
structing an inference system that combines and
uses those patterns to answer questions and produce
detailed explanations for its answers. Conceptually,
this is similar to Explanation-Based Learning (De-
Jong and Mooney, 1986; Baillargeon and DeJong,
2017), but using semi-structured text and constraint
patterns instead of first-order logic. This approach
is also similar to efforts at using scripts or semantic
frames for inference (e.g. Wang et al., 2015; Os-
termann et al., 2017), or automatically extracted
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proxies (e.g. Khashabi et al., 2018), though con-
fined to the subdomain of elementary science, and
semi-automatically extracted from semi-structured
explanation graphs.

2 Approach and Workflow

The workflow describing our process of taking a
corpus of semi-structured explanations through the
inference pattern discovery process is described in
Figure 1, with further details below.

2.1 Semi-Structured Explanation Corpus

Our technique for discovering inference patterns re-
quires extracting these patterns from a pre-existing
corpus of semi-structured explanations. We make
use of the WorldTree explanation corpus! (Jansen
et al., 2018), a set of 1,680 detailed explanation
graphs for standardized elementary science ques-
tions. These questions represent the elementary
(374 through 5 grade) subset of the Aristo Rea-
soning Challenge (ARC) corpus?® (Clark, 2015),
a set of 4-choice multiple choice elementary and
middle-school science questions drawn from 12
US states.

Each question in Worldtree is paired with an ex-
planation graph composed of a set of facts that,
taken together, provide a detailed explanation for
why the answer to a given question is correct. Each
“fact” is a natural language sentence that takes the
form of a row in a knowledge base of 62 semi-
structured tables containing a total of 4,950 unique
rows. Each table centers around encoding a particu-
lar type of knowledge, such as taxonomic relations
(e.g. a bird is a kind of animal), part-of relations
(a wing is a part of a bird), property knowledge
(metals are electrical conductors), or other more
complex relations, such as changes (boiling means
changing from a liquid to a gas by adding heat en-
ergy), coupled relationships (as altitude increases,
air pressure deceases), causality (bacteria can
cause diseases by infecting organisms), and if-then
relationships (if an animal relies on plants for food,
then it must store enough food for winter).

Each semi-structured table contains between 2
and 16 content columns, which form an n — ary re-
lation between the columns in a given row, and are
often used by inference frameworks (e.g. Pasupat
and Liang, 2015; Sun et al., 2016; Khashabi et al.,

"http://www.cognitiveai.org/
explanationbank/
http://www.allenai.org/data.html
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2016) as they afford more fine-grained decomposi-
tion than triple representations (e.g. Etzioni et al.,
2011; Schmitz et al., 2012) common in other in-
ference methods (e.g. Das et al., 2017; Khot et al.,
2017; Kwon et al., 2018). The knowledge base con-
struction was data-driven, where each fact exists
because it was authored to be used in at least one
real explanation. As such, the knowledge base con-
tains a mix of scientific and world knowledge, some
of which is commonly found in other knowledge
bases (e.g., taxonomic, part-of, used-for, Speer
and Havasi, 2012; Tandon et al., 2017), while other
kinds of knowledge (e.g. coupled relationships,
how processes change actors, if-then relationships
centered around elementary science concepts) are
less common. When authoring explanations, the an-
notation protocol required annotators to attempt to
reference existing rows (facts) first rather than cre-
ate duplicate knowledge. The most highly reused
row (an animal is a kind of organism) occurs in
89 different explanations, and 31% of rows in the
knowledge base occur in more than one explana-
tion. This suggests that a subset of core facts are
frequently reused, but that some form of abstraction
or generalization of explanations would be required
for those core facts to connect to the 69% of facts
used in only a single explanation, or to knowledge
imported from other knowledge bases that is not
currently used in any explanation.

2.2 Automatic Generation of Subgraphs

In this work we frame the process of discovering
inference patterns as a process of clustering similar
groups of facts together, and discovering meaning-
ful connections between different groups of facts
in the forms of constraints (see Figure 1, steps 2
to 5). These constraints take the form of edges be-
tween two tables, that can be satisfied by one row
from each table having the same words in specific
columns (see Figure 1, step 5, for an example).

Clustering Facts: Clustering similar facts requires
recognizing that certain groups of facts tend to de-
scribe specific instances of a high-level process,
even when those facts may have little or no lexical
overlap with each other (as in grouping “freezing
means changing from a liquid to a solid” and “boil-
ing means changing from a liquid to a gas”, in the
context of a change of state of matter process).

Discovering Connections: Discovering connec-
tions (i.e. edges) between two or more groups of
facts that tend to occur together in gold explanation


http://www.cognitiveai.org/explanationbank/
http://www.cognitiveai.org/explanationbank/
http://www.allenai.org/data.html

Error Class

Sparsity in Explanation Annotation

Fact 1 Friction occurs when two object’s surfaces move against each other
Fact 2 As an object’s smoothness increases, it’s friction will decrease when it’s surface moves against another surface.
Issue

Sparsity in Knowledge Base
Fact 1
Fact 2 A stove generates heat for cooking.
Missing A campfire generates heat for cooking.
Issue

Permissiveness in automatically populated edges

These facts are not observed together in a single question’s explanation, so they are not connected.

If food is cooked then heat energy is added to that food.

Missing facts in the knowledge base limit the generalization of patterns to new scenarios (e.g. campfire).

Fact 1 Melting means changing from a solid to a liquid by adding heat energy
Fact 2 Wax is an electrical energy insulator
Issue

Permissiveness in automatically populated column links

Creating edges based on shared words (here, “energy’’) does not always generate meaningful connections.

Fact 2 A tape measure™ is used to measure distance.
Fact 2 centimeters (cm) are a unit used for measuring is distance.
Issue

Ideally this edge should generalize to all kinds of measuring tools and units (e.g. X is used to measure Y,

Z is a unit for measuring Y). The connection between tape measure™ in Fact 1 and measure in Fact 2
makes generalization unlikely, and should be removed.

Table 1: Example classes of errors when automatically generating inference pattern graphs. Fact 1 and Fact 2
represent facts (rows) drawn from the knowledge base of semi-structured tables. Boldface words represent lexical
connections between those facts (edges between tables, on the specific columns those words occupy).

graphs. For example, facts about change of state
processes (freezing, boiling, melting, condensing)
may tend to connect to other groups of facts that
discuss specific solids, liquids, or gasses that are
undergoing the change of state (as in “water is a
kind of liquid”, or “ice is a kind of solid”).

Our initial hypothesis was that it would be possi-
ble to extract a large corpus of inference patterns au-
tomatically from a sufficiently large and structured
corpus of explanations. Instead, we discovered
that both the clustering and connection processes
are susceptible to a number of common opportu-
nities for error (described in Table 1) that limit
this process in practice. In addition to these error
classes, we discovered challenges due to inference
patterns existing at different levels of abstraction,
with patterns at different levels of abstraction fre-
quently overlapping. For example, a high-level
domain-specific pattern might describe the process
of changing from one state of matter to another
through the addition or subtraction of heat energy,
while describing specific substances and sources
of heat or cooling. A substantially more low-level,
domain-general, and common pattern in the corpus
is taxonomic inheritance — the idea that if X is a
kind of Y, and Y is a kind of Z, then X is a kind
of Z (e.g. a bird is a kind of animal, an animal
is a kind of living thing, therefore a bird is a kind
of living thing). Similar low-level science-domain
patterns are common (e.g. X isakindof Y, Y is
made of Z, as in “an ice cube is a kind of object,

56

and objects are made of matter” ). High-level and
low-level patterns frequently overlap — that is, a
high-level pattern may contain one or more low-
level patterns. This caused challenges for the pilot
experiments in entirely automatic extraction, either
“over-grouping” facts into a single pattern that a
human annotator would likely consider different
patterns, or vice-versa.

Because of the high-precision requirements of
multi-hop inference, our pragmatic solution to the
above technical challenge is to build a hybrid sys-
tem that combines automatic and manual methods.
First, a preprocessing system assembles and con-
nects groups of facts using a set of minimal high-
precision low-recall heuristics. We then provide
the user with a graphical tool to streamline the
workflow for manually editing groupings, adding
or removing edges between groups of facts, and
speeding the inspection and repair of any errors
made by the automated heuristics. Summary statis-
tics on the proportion of these changes and errors
on our analysis are included in Table 2.

2.3 Merging and Curating Subgraphs

To facilitate the assembly of subgraphs into large
high-quality inference patterns, we developed and
iterated the graphical authoring tool shown in Fig-
ure 2. The tool includes four main components:

Graph View: The graph view allows the annotator
to inspect the entire graph in its current state, and
to merge nodes (that represent groups of facts/table
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Figure 2: A screenshot of the grid view (top) and graph view (bottom) of our inference pattern extraction tool. The constraint
view and the tablestore spreadsheet integration are not shown for space.

rows) together to perform the fact clustering proce-
dure. The graph view also allows the annotator to
highlight specific subgraphs to mark as inference
patterns, which enables further functionality in the
constraint view.

Grid View: The grid view enables the curation
of the edges between nodes by visually displaying
them in an interface that allows the user to (a) re-
move automatically populated edges that are not
meaningful, (b) remove only part of edges (i.e. spe-
cific links between columns between two tables),
and (c) manually edit the automatic clustering by
dragging and dropping specific rows in one edge
group either into another existing group, or into a
new group.

Constraint View: Once a user has identified and
marked a subgraph to extract as an inference pat-
tern, the constraint view allows “running” that infer-
ence pattern to generate all possible sets of rows in
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the tablestore that satisfy that pattern’s constraints.
As subgraphs extracted directly from the large cu-
rated graph built from the explanation corpus tend
to require edits to their nodes and constraints before
they are generic and runnable inference patterns,
the constraint view also includes a number of de-
bugging tools to facilitate diagnosing constraints
that are unable to be satisfied.’

Table View: The tool also includes an interface to
a Google Sheet* storing a live copy of the Table-
store that the annotator can edit to refine existing
knowledge, or incorporate additional knowledge,
while curating and debugging inference patterns.
The tool runs in a Chrome browser window, and
is implemented as a Javascript application with
a node.js backend server. We make use of Cy-

3We include exports from the constraint view tool for all
extracted patterns in our supplementary material.
*http://sheets.google.com


http://sheets.google.com

Measure Count Inference Pattern Nodes Edges
Graph Nodes: Alloys 5 4
Nodes before merging 700 Altitude™ 8 10
Nodes after merging 540 (77%) Building requires measuring 11 13
Graph Edges: Burning-Preventing Harm 12 15
Edges before curation 637 Change of State 68 128
Edges after curation 771 (21%) Chemical Changes 11 12
Grid Row-to-Row Connections: Containers contain things 6 6
Row-to-row connections before curation 1384 Cooking Food 9 11
Row-to-row connections modified 631 (46%) Electrical Conductivity 27 52
Row-to-row connections removed 224 (16%) Friction 15 24
Grid Edge Constraints: General Motion* 3 3
Edge constraints before curation 2101 Ice Wedging* 4 4
Edge constraints removed 133 (6%) Long lasting vs replacing* 5 4
Edge constraints marked optional 27 (1%) Magnetism 14 20
Manufacturers use mats. for products 5 5
Table 2: Manual edits done to the automatically gen- Measurements 22 34
erated graph and grid during the merging and curation Navigation lost at sea 6 7
steps. Values in parentheses represent percent change Physical Changes 13 14
) : Seeing 19 29
Soil erosion* 6 6
Solutions - Dissolving substances* 4 5
toscape.js (Franz et al., 2015) as a graph visual- Sources of Heat* 3 2
ization plugin, while primarily using the CoSE- ~ Sunlight as a source of energy* 14 30
. . Sunlight location and shadow size* 7 7
Bilkent graph layout algorithm (Dogrusoz et al., Taste™ 9 1
2009) modified to allow variable edge lengths Taxonomic Inheritance 2 1
based on the maximum degree of connected nodes Texture™ . 4 3
. . . Thermal Conductivity 27 34
to make the graph easier to visualize when assem- Touch-Hardness™ 4 3

bling densely-connected patterns. The tool was
iterated for usability to maximize throughput for
the merging and curation steps, and includes func-
tionality for quickly finding knowledge in the graph
while seamlessly moving between graph (graphi-
cal) and grid (tabular) views, filtering subsets of
nodes and edges by various metrics (completeness,
table connection, user-selected utility rating), and
keeping track of where the annotator is in the cu-
ration workflow. A Scala preprocessing tool reads
in gold explanations (which can be filtered to in-
clude only subsets of questions by a question clas-
sification label, such as only matter, energy, or
life science questions), applies the initial cluster-
ing heuristics, and outputs tab delimited files that
are then read in by the tool. Edges between rows
in WorldTree are determined by rows have over-
lapping content lemmas (defined as nouns, verbs,
adjectives, or adverbs), with Stanford CoreNLP
(Manning et al., 2014) used for lemmatization and
POS tagging.

3 Preliminary Evaluation

To evaluate the utility of our approach, we made use
of the tool to extract inference patterns present in
all questions in the training subset of the WorldTree
corpus categorized as belonging to the Matter topic,
one of the 9 broad science curriculum categories of
question topics, using the ARC question classifica-
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Table 3: A list of high-level inference patterns discov-
ered in the corpus of explanations for Matter science
exam questions using this tool. A full list of patterns is
provided in Table 5 (see Appendix). An asterisk (¥)
signifies patterns that are partial or otherwise limited in
size because they overlap with other topics (e.g. from
Earth or Life Science) not examined in this preliminary
study.

tion labels of Xu et al. (2019). This represents 43
of 902 (5%) of questions and explanations in the
training corpus, covering topics such as Changes
of State of Matter (e.g. melting, boiling), Measur-
ing Properties of Matter (e.g. temperature, mass),
Physical vs Chemical Changes (e.g. length vs com-
position), Properties of Materials (e.g. electrical or
thermal conductivity, taste), Properties of Objects
(e.g. shape or volume), and Mixtures (e.g. alloys).

3.1 Initial merging and curation

The preprocessing procedure generated 273 grids
for this subset of the explanation corpus, represent-
ing the specific pairs of tables (e.g. KINDOF <
CHANGE) that have direct connections in the ex-
planations for these questions. A total of 1,384
unique row-row connections populated these grids,
and required manual verification. Summary statis-
tics for the edits to these grids is shown in Table 2.
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Figure 3: Example inference patterns extracted from the WorldTree explanation corpus using this tool. Nodes represent one or
more example facts (table rows) from a specific table (e.g. CHANGE), and edges represent constraints between table rows that
must be satisfied. Facts shown in nodes are examples, and not an exhaustive list of all rows that meet the constraints for a given
inference pattern.
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On average, each grid generally required minimal
to moderate editing. Figure 4 (see Appendix)
shows the full graph before and after the initial
merging and curation process.

3.2 Extracting Inference Patterns

Due to it’s size, the graph after merging and cu-
ration is included in the supplementary material.
Manual inspection of the curated graph using the
Graph View revealed 29 high-level inference pat-
terns shown in Table 3, each containing between
3 and 66 nodes, and up to 107 edges.’ These rep-
resent the high-level inferences being described in
the Matter subset of the explanation corpus, and
include scientific reasoning processes for topics
such as Measuring Properties with Instruments and
Thermal Conductivity, while also describing com-
mon world knowledge such as Seeing, Tasting, and
Cooking Food. These world-knowledge-centered
explanation patterns tend to be either directly re-
quired to answer questions (for example, about
observing material properties), or to process the
examples the questions are grounded in (such as
temperature or state changes caused by cooking
food). While high-level patterns can be classified
as belonging more to scientific or world knowledge,
the individual knowledge present in each pattern
is generally a mix of both, including nodes that
match either scientific knowledge (e.g. “Matter
in the gas phase has variable volume”) or world
knowledge at either a high-level (e.g., “a balloon
is a flexible container”) or low-level (e.g., “if a
container contains something, then that container
touches that something”).

Examining the 29 high-level inference patterns,
we further subdivided them into 38 smaller, more
reusable component inference patterns that de-
scribe narrower inferences for a given problem do-
main. For example, the high-level Change of State
inference pattern was subdivided into 3 smaller
and more specialized patterns such as Changing be-
tween states of known substances, Phase Changes,
and Evaporating Liquids, each containing between
4 and 9 nodes. Examples of these inference pat-
terns are shown in Figure 3, while the full corpus of

3These large inference patterns (up to 66 nodes and 107
edges) represent large topical patterns generated from analyz-
ing many questions on similar topics, and were not derived
from any one question. In these cases, it is likely that only a
small subset of these larger inference patterns would be used
to answer a given question. We describe further subdividing
these larger patterns into smaller reusable pieces further in
Section 3.2.
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Change of State

Freezing means changing from a liquid to a solid by
reducing heat energy

A liquid is a kind of state of matter

Water is in the liquid state, called liquid water, for
temperatures between 0 C and 100 C

A solid is a kind of state of matter

Water is in the solid state, called liquid water, for
temperatures between -273 C and 0 C

Cooling means reducing heat energy

Freezing is when liquids are cooled below freezing point

Phase Changes

Boiling means changing from a liquid to a gas by
adding heat energy

Boiling is a kind of phase change

A phase change is when a substance changes from
one state to another state

Temperature changes can cause phase changes

Alloys

Alloys are made of two or more metals
Bronze is a kind of alloy

Bronze is made of copper and tin

Tin is a kind of metal

Copper is a kind of metal

Containers contain objects

A container is a kind of object

If a container contains something, then that container
touches that something

A bowl is a kind of container

A container contains objects

A rock is a kind of object

Table 4: A small subset of example combinations of
knowledge base facts that satisfy the constraints of in-
ference patterns extracted from the explanation corpus.
Each example was generated from the inference pat-
tern, and is not found in the training corpus.

patterns generated is included in the supplementary
material.

3.3 Executing constraint patterns

Our long-term goal is to use the extracted inference
patterns to answer unseen questions, and enable
generating detailed coherent multi-fact explana-
tions for the reasoning behind those answers. We
are currently building a scripting language and de-
velopment environment for easily authoring and
evaluating constraint-based inference patterns.

In the near-term, to evaluate the executability of
each pattern, we incorporate a constraint satisfac-
tion framework into the extraction tool allowing the
user to test each extracted pattern by querying the
tablestore knowledge base and enumerating valid
combinations of table rows that satisfy the con-
straints of a given inference pattern. Our Javascript
table constraint solver is able to process approxi-
mately 2 million constraint evaluations per second,



which generally satisfies exhaustively testing small
patterns in under one minute.® The graphical in-
terface allows disabling subsections of larger infer-
ence patterns for speed to exhaustively test larger
inference patterns piece-wise, or limiting specific
nodes to only a small subset of possible facts to
speed evaluation.

Examples of valid combinations of facts satisfy-
ing the extracted inference patterns in Figure 3 are
shown in Table 4. Each of these short explanations
was not observed in the training corpus, but rather
was generated by satisfying the constraints of an
inference pattern by querying the knowledge base,
and could form explanations for unseen questions —
either in whole, or as part of a combination of sev-
eral patterns together (such as combining Changes
of State and Phase Changes). At our current state
of development, each inference pattern generally
matches between one and several thousand unique
patterns in the knowledge base, but precise counts
are limited by the speed of our current constraint
satisfaction solver.

4 Conclusion and Future Work

We present a method and tool for extracting infer-
ence patterns from corpora of explanations, where
these inference patterns provide a mechanism to
combine large amounts of knowledge with high-
confidence. While this ability to combine facts into
meaningful multi-fact patterns exceeds what is cur-
rently possible using contemporary algorithms for
multi-hop reasoning, several challenges remain.
First, while significantly faster and more data-
driven than our manual attempts at constructing
inference patterns, the end-to-end process of con-
structing an explanation for a question, authoring
knowledge base facts, merging and curating a cen-
tral graph, extracting patterns from that graph, and
debugging generic patterns currently comes at a
significant labour cost — an average of approxi-
mately 2 hours per question’ — that we are working
to further reduce to allow the technique to scale.
We hypothesize that a number of the time costs
associated with this process scale sublinearly, and
are currently working on demonstrating this by

SWe are currently developing a high-performance stand-
alone constraint satisfaction solver for these types of lexical-
ized table-based constraint satisfaction problems.

7 Approximate durations of the most time consuming steps
(average per question): explanation construction: 15 minutes;
merging/graph curation/high-level pattern identification: 45
minutes; subpattern identification/debugging: 45 minutes.
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refining the protocol and evaluating on an order-of-
magnitude more explanations.

Second, while these inference patterns have util-
ity for answering and explaining science exam
questions, this needs to be empirically demon-
strated by incorporating the patterns into a question
answering system to measure the overall recall of
this technique. We are actively pursuing both the
construction of a corpus of science-domain expla-
nation patterns, at scale, while concurrently devel-
oping methods of using these inference patterns
to answer questions and provide compelling multi-
fact explanations for their answers.

5 Supplementary Material

This work contains supplementary material, in-
cluding additional tables and figures in the
Appendix below, and a corpus of 67 extracted
inference patterns available at http://www.
cognitiveai.org/explanationbank/ .
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7 Appendix

Annotation Workflow: The annotation workflow
is as follows: The user selects a subset of questions
to process (in this preliminary work, we select all
MATTER questions in the WorldTree corpus). The
user then switches to the Grid View, which displays
one “grid” at a time, where each grid represents all
the connections from a given table to another table
in the tablestore (for example, all the connections
from the KINDOF table to the IF-THEN table).
The user then uses the Grid View to quickly verify
that the automatic groupings are correct, and make
adjustments or edits to these groupings. Here the
user can also remove bad edges (two table rows
that were automatically connected, but whose con-
nection isn’t meaningful), or remove subsets of the
column links on edges that are partially correct
(see Table 1). Once this is completed, the user then
switches to the Graph View, where they click on
each node group from the recently curated grid,
highlight other nodes that contain similar rows, and
make manual node merging decisions (by dragging
and dropping nodes on top of each other). Notes
can also be left on specific nodes or edges, to help
describe what underlying concepts the nodes rep-
resent, and how they interconnect. Once this is
completed, the user marks that grid completed, and
moves on to the next grid. User-selectable filtering
allows only nodes and edges from grids that have
been completed to be displayed, greatly reducing
clutter and visual search time.

Once the user has completed all grids, the graph
is completed, and represents the interconnected
knowledge of all of the explanations in the ques-
tions, typically itself clustered into a number of dis-
connected graphs that represent large high-level in-
ference patterns (such as magnetic attraction, ther-
mal transfer, or changes of state of matter). The
user then manually inspects these, and highlights
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subgraphs of nodes to form a candidate inference
pattern. These candidate patterns form a series
of knowledge constraints for a series of tablestore
rows that must be met in each node in order to sat-
isfy the constraints. These constraints can then be
run, debugged (as a whole, or as subsets of nodes
or edges), and saved. During this process, miss-
ing knowledge or edits to existing knowledge in
the tablestore that prevent generalization are often
discovered — these edits can be immediately made
to the Tablestore Google Sheet and the constraints
rerun in seconds, to form a fast iteration cycle for
debugging knowledge base and inference pattern
constraint interactions.

7.1 Additional Resources

A full export of the inference patterns gener-
ated in this work, as well as example patterns
from the knowledge base that satisfy their pat-
terns of constraints, is available at http://www.
cognitiveai.org/explanationbank/ .

7.2 Additional Tables and Figures

Additional tables and figures are provided below.


http://www.cognitiveai.org/explanationbank/
http://www.cognitiveai.org/explanationbank/

Before merging
and curation

After merging
and curation

Figure 4: (top) the graph generated by the preprocessing tool, before manual curation and editing by the tool (step 2 in Figure 1).
(bottom) the graph after manual curation and editing, and before inference patterns have been generated (step 3 in Figure 1).
Clusters in the bottom graph approximately correspond to high-level inference patterns. The set of inference patterns is not
shown for space, but each extracted pattern and it’s enumerations are included as separate files in our supplementary material.
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Enumerated

Inference Pattern Nodes Edges Instances in KB
Alloys - - -

Alloy (Core) 3 2 27

Alloy (Composition) 5 6 8

Alloys (Single Elem Not Alloy) 3 2 6
Altitude * 8 10 6
Benefits of long lasting vs replacement 5 4 2

Building requires measuring - Study materials

Building requires measuring 6 7 19
Sturdy materials for building 6 7 3
Burning-Electrocution-Preventing Harm - - -
Harm caused by burning 9 10 546
Harm caused by electrocution 7 7 324
Change of State - - -
Change of State (Evaporating Liquids) 9 9 11
Phase Changes 4 3 7
State of Matter (changing between states of known substances) 8 13 3
Chemical Changes - - -
Chemical Changes (Core+Grounding Specific Chemical Change) 4 3 2
Chemical Reactions (Core) 4 5 15
Chemical Reactions (Core + Substance Grounding) 6 7 363
Chemical Reactions (e.g., acids) 4 3 3
Containers contain things - - -
Containers (Abstracted) 5 5 1000
Containers (Application) 6 6 15
Cooking Food - - -
Cooking (Core) 6 6 26
Cooking a particular food 7 7 338
Cooking (Containers for cooking) 6 6 1
Electrical Conductivity - - -
Dangers of Electric Shock 4 3 414
Electrical Insulation 15 23 46
Electrical Circuits in Devices 7 11 18
Friction - - -
Friction (core) 16 31 3
General Motion * 3 3 6
Ice Wedging * 4 4 2
Magnetism - - -
Magnetic Objects 5 4 10
Manufacturers use material for products - - -
Manufacturers use materials for products (core) 4 3 19
Measurements - - -
Measurement Tools 4 4 130
Observations (Celestial Bodies) 5 6 6
Observations (Distant Objects) 5 6 208
Observations (Microscopic Things) 6 6 4
Observations (Small Things) 6 6 94
Navigation-Direction-Being lost at sea - - -
Navigation (core) 3 2 1
Navigation (being lost/boat) 6 7 2
Physical Changes - - -
Physical Changes (Changing Shape) 9 10 832
Seeing - - -
Things that can see and what they can see 6 6 1000
Soil erosion * 6 6 28
Solutions - Dissolving substances * 4 5 1
Sources of Heat * 3 2 6
Sunlight as a source of energy * 14 30 80
Sunlight location and shadow size * 7 7 312
Taste * 9 11 26
Taxonomic Inheritance 2 1 1000
Texture * 4 3 2
Thermal Conductivity - - -
Thermal Conductivity (Core) 21 26 1000
Thermal Conductors O 5 4 9
Thermal Conductors 1 5 4 8
Thermal Insulators 5 5 5
Touch-Hardness * 4 3 8

Table 5: An extended list of inference patterns discovered in the corpus of explanations for Matter science exam questions using
this tool. Indented inference patterns represent a subset of smaller, more generic sub-patterns extracted from the larger pattern.
“Enumerated instances in KB” represents the number of unique combinations of facts the pattern generates in our current KB
(note that for speed, this currently has a hard upper limit of 1,000 patterns). An asterisk (*) represents patterns that are partial or
otherwise limited in size because they overlap with questions (e.g. from Earth or Life Science) not examined in this preliminary
study.
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