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Abstract

We consider the problem of extracting from
text commonsense knowledge pertaining to
human senses such as sound and smell. First,
we consider the problem of recognizing men-
tions of human senses in text. Our contribution
is a method for acquiring labeled data. Exper-
iments show the effectiveness of our proposed
data labeling approach when used with stan-
dard machine learning models on the task of
sense recognition in text. Second, we propose
to extract novel, common sense relationships
pertaining to sense perception concepts. Our
contribution is a process for generating labeled
data by leveraging large corpora and crowd-
sourcing questionnaires.

1 Introduction

Information extraction methods produce struc-
tured data in the form of knowledge bases of fac-
tual assertions. Such knowledge bases are useful
for porting inference, question answering, and rea-
soning (Bollacker et al., 2008; Hoffart et al., 2012;
Mitchell et al., 2015). However, progress on the
common sense front, as opposed to named enti-
ties such as locations, and people, is still limited
(Havasi et al., 2007; Tandon et al., 2011).

One of the factors impeding progress in com-
mon sense knowledge acquisition is the lack of la-
beled data. Prior work has shown that it can be
straightforward to obtain training data for identi-
fying relationships between named entities such
as companies and their headquarters, or people
and their birth places (Havasi et al., 2007; Tandon
et al., 2011; Bollacker et al., 2008; Hoffart et al.,
2012; Mitchell et al., 2015). Examples of such
relationships can be found in semi-structured for-
mats on the Web(Wu and Weld, 2008; Wang and
Cohen, 2008). This is not the case for common
sense relationships.

We therefore consider the problem of extracting
from text commonsense knowledge pertaining to
human senses such as sound and smell. We split
the problem into two parts, for each part we pro-
pose approaches for obtaining labeled data, and
train standard machine learning models.

1. In the first part of this work, the goal is to de-
tect mentions of concepts that are discernible
by sense. For example, recognize that “chirp-
ing birds” is a mention of an audible con-
cept (sound), and “burning rubber” is a men-
tion of an olfactible concept (smell). We
aim to detect mentions of concepts without
performing co-reference resolution or clus-
tering mentions. Therefore, our setting re-
sembles the established task of entity recog-
nition (Finkel et al., 2005; Ratinov and Roth,
2009), with the difference being that we fo-
cus on un-named entities.

We propose a data labeling method, that
leverages crowd-sourcing and large corpora.
This approach provides the flexibility to con-
trol the size and accuracy of the available
labeled data for model training. Addition-
ally, we train several standard machine learn-
ing models including to recognize mentions
of sound and smell concepts in text. In our
experiments, we show that the combination
of our data labeling approach, and a suitable
learning model are an effective solution to
sense recognition in text.

2. In the second part of this work, we seek to ex-
tract novel common sense relationships about
concepts that are discernible by sense.

Our contributions in this part of the work
are as follows: first, we propose to extract
novel relationships that are sparse in existing
knowledge bases. Second, we propose a pro-
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The sound of clanking swords was
O O O B I O

accompanied by loud screams .
O O O B O

The corridors are municipal and still
O O O O O O

smell of emulsion .
O O B O

Figure 1: Example beginning-inside-outside (BIO) la-
beled sentences with mentions of sound (top) and smell
(bottom) concepts.

cess for generating labeled data by leverag-
ing large corpora and crowd-sourcing ques-
tionnaires. Third, using the resulting la-
beled data, we train standard machine learn-
ing methods (both linear model and memory
neural network models), obtaining high accu-
racy on the task of extracting these previously
under-explored relationships.

In summary, we propose minimal-effort ap-
proaches for obtaining labeled data on two key
tasks: mention recognition, and relationship ex-
traction for concepts pertaining to human senses.
In the first, task we make use of Hearst patterns,
and crowd sourcing, and for the second task, we
make use of part-of-speech tag sequences and
crowd-sourcing. Although these processes are not
new, we have applied them to a novel setting of
common sense about human senses, and showed
their effectiveness. We trained standard machine
learning methods, and showed that the labeled data
generated by our processes lead to high quality
models.

2 Recognizing Mentions of Human
Senses

In this part of the work, we would like to detect
mentions of concepts discernible by sense, we fo-
cus on mentions of audible (sound) and olfactible
(smell) concepts. We treat sense recognition in
text as a sequence labeling task where each sen-
tence is a sequence of tokens labeled using the
BIO tagging scheme (Ratinov and Roth, 2009).
The BIO labels denote tokens at the beginning,
inside, and outside of a relevant mention, respec-
tively. Example BIO tagged sentences are shown
in Figure 1.

2.1 Data Labeling Methodologies
There is a lack of easy to identify labeled data on
the Web for common sense information extraction,

Figure 2: A PCA projection of the embeddings of au-
dible and olfactible phrases labeled by the pattern ap-
proach.

an issue which affects named-entity centric infor-
mation extraction to a lesser degree (Wang and
Cohen, 2008; Wu and Weld, 2008). We consider
three data labeling approaches: i) Automatically
generate training data using judiciously specified
patterns. ii) Solicit input on crowd-sourcing plat-
forms. iii) Leverage both i) and ii) in order to over-
come their respective limitations.

2.1.1 Pattern-based Corpus Labeling
To label data with patterns, we begin by spec-
ifying patterns that we apply to a large cor-
pus. For our concepts of interest, sound, and
smell, we specify the following two patterns.
“ sound of <y>”, and “ smell of <y>”, We
then apply these patterns to a large corpus. In
our experiments, we used the English part of
ClueWeb09. 1. The result is a large collection of
occurrences such as: “ sound of breaking glass”,
“smell of perfume”, etc. The collections contains
134,473 sound phrases, and 18,183 smell phrases.

Figure 2, shows a 2D projection of the 300-
dimensional word vectors2 of the discovered au-
dible and olfactible phrases. We see a strong hint
of two clusters. We later provide a quantitative
analysis of this data.

2.1.2 Crowd-Sourced Supervision
The second way of obtaining labeled data that we
consider is crowd-sourcing. We used the Amazon
Mechanical Turk crowd-sourcing platform.
Crowd Task Definition. To obtain labeled ex-
amples, we could do a “cold call” and ask crowd
workers to list examples of phrases that refer to
senses. However, such an approach requires crowd
workers to think of examples without clues or
memory triggers. This is time consuming and
error prone. We propose to exploit a large cor-
pus to obtain preliminary labeled data, making it
possible to only need crowd workers to filter the
data through a series of “yes/no/notsure” ques-
tions. These types of questions require little effort

1http://lemurproject.org/clueweb09/
2https://code.google.com/archive/p/word2vec/
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% Majority Yes Fleiss κ

Audible 73.4% 0.51
Olfactible 89.6% 0.33

Table 1: Crowd-sourced labeling of phrases generated
by the pattern approach of section 2.1.1.

from crowd workers while mitigating the amount
of noisy input that one could get from open-ended
questions. We randomly selected 1000 phrases
labeled by the pattern approach as described in
Section 2.1.1 to be sound/smell phrases, 500 for
each sense type. Each phrase was given to 3 dif-
ferent workers to annotate “yes/no/notsure”. We
consider a phrase to be a true mention of the
labeled sense if the majority of the participants
chose “yes”. This annotation task serves two pur-
poses: 1) to provide us with human labeled exam-
ples of sound and smell concepts ii) to provide a
quantitative evaluation of pattern generated labels.
Crowd Annotation Results. Table 1 is a sum-
mary of the annotation results. First, we can see
that the accuracy of the patterns is quite high,
which was hinted at in Figure 2. Second, The
inter-annotator agreement rates are moderate, but
lower for olfactible phrases. This is also reflected
by the fact that there were around 3 times as many
“not sure” responses in the smell annotations as
there were in the sound annotation task (27 vs 10).
Nonetheless, the output of these tasks provide us
with another option for labeled data that we can
use to train our models.

2.1.3 Joint Pattern & Crowd-Sourced
Labeling

A third way of obtaining labeled data is to leverage
both pattern-based and crowd-sourced labeling ap-
proaches. One central question pertains to how
we can combine the two sources in a way that ex-
ploits the advantages of each approach while mit-
igating their limitations. We seek to start with the
crowd-sourced labeled, which is small but more
accurate, and expand it with the pattern-generated
labeled data, which is large but less accurate. We
define a function that determines how to expand
the data. Let xci ∈ Dc be a crowd labeled phrase,
and xpi ∈ Dp be a pattern labeled phrase. Then
xpi is added to our training labeled data Dpc if
sim(xci , x

p
i ) >= α where sim is the cosine sim-

ilarity between the vector representations of the
phrases. For vector representations of phrases, we
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Figure 3: Performance as α is varied to control size and
accuracy of labeled data.

use the same pre-trained Google word embeddings
as those used to plot Figure 2. For phrases longer
than one word, we use vector averaging. The ef-
fect of varying α, for a fixed prediction model,
can be seen in Figure 3. When α = 1, that is
we are only using the crowd-sourced labeled data,
performance is at its worst. This is because even
though the human labeled data is more accurate, it
is much smaller, leading to potential model over-
fitting problems. A more subtle finding is that with
low α values (i.e., <0.4 for audible concepts), we
have the highest recall, but not the best precision,
this can be explained by the fact that, with low α
values, we are allowing more of the automatically
labeled data to be part of the training data, thereby
potentially adding noise to the model. However,
the advantage of the mixture approach comes from
the fact that, there comes a point where precision
goes up, recall slightly degrades but we obtain the
best F1 score. In Figure 3, we see these points
at α = 0.6 and α = 0.4 for the audible and ol-
factible concepts respectively. We use these values
to generate the labeled data used to train models
described in the rest of the paper.

2.2 Learning Models
We treat sense recognition in text as sequence
prediction problem, we would like to estimate:
P (yi|xi−k, ..., xi+k; yi−l, ..., yi−1). where x refers
to words, and y refers to BIO labels.

Conditional Random Fields (CRFs) (Lafferty
et al., 2001) have been widely used named en-
tity recognition (Ratinov and Roth, 2009; Finkel
et al., 2005), a task similar to our own. While
the CRF models performed reasonably well on our
task, we sought to obtain improvements by train-
ing variations of Long Short Memory (LSTM) re-
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She heard pounding hammers

LSTM

Vw-2 

dt = softmax(Wd . [Vm; dt-1 ]

LSTM LSTM

Vw-1 

LSTM

Vw Vw+1 

Vm Vm-2 Vm-1 Vm+1 

Figure 4: Our neural network architecture for the task
of recognizing concepts that are discernible by sens-
esss.

current neural networks (Hochreiter and Schmid-
huber, 1997). We found variations of LSTM se-
quence classifiers to do better than the CRF model,
and also better than standard LSTMs. In par-
ticular, the well-studied combination of CRF and
LSTMs works better.

Word and Character Features. As input, the
LSTM neural network model takes a sentence and,
as output, produces a probability distribution over
the BIO tags for each word in the sentence. To
BIO tag each word in the sentence, we use word
features. We chose the word features to be their
word embeddings. As additional features, we
model the character composition of words in or-
der to capture morphology. Neural encodings of
character-level features have been shown to yield
performance gains in natural language tasks (Ling
et al., 2015; Chiu and Nichols, 2016). In all our
experiments, we initialize the word embeddings
with the Google news pre-trained word embed-
dings 3. The character embeddings are learned
from scratch.

Prediction and Output Layer Recurrence. We
represent each word as a mention within a short
context window of length m. We use the LSTM to
encode these windows contexts in order to make
a prediction for each word. The LSTM window
encoding is then used to make predictions over
the BIO labels. The output for each word is de-
coded by a linear layer and a softmax layer into
probabilities over the BIO tag labels. Crucially,
we modify the standard LSTM by modeling tem-
poral dependencies by introducing a recurrence
in the output layer. Therefore, the prediction dt

3https://code.google.com/p/word2vec/

Sound Smell
honking cars burning rubber
snoring chlorine
gunshots citrus blossoms
live music fresh paint

Table 2: Examples of sound and smell concepts recog-
nized by our method.

at time step t takes into account the prediction
dt−1 at the previous time t-1. Formally, we have:
dt = softmax(Wd · [vm;vca ;vs;dt−1]), where
softmax(zi) = ezi/

∑
j e

zj . We illustrate the
model in Figure 4. We found this model to con-
sistently perform well on the senses of sound and
smell.

Model Evaluation. To evaluate the models, we
set aside 200 of the 1000 crowd-annotated phrases
as test data, meaning we have 100 test instances
for each sense type (sound/smell). The rest of
the data, 400 per sense type was used for gener-
ating training data using the combined crowd and
pattern approach described in Section 2.1.3. We
set α = 0.6 and α = 0.4 , based on Figure 3,
for audible and olfactible concepts respectively.
With these α values, the combination approach
produced 1,962 and 1,702 training instances for
audible and olfactible concepts respectively

Performance of the various models is shown in
Table 3. The abbreviations denote the following:
LSTM refers to a vanilla LSTM model, using only
word embeddings as features, + OR refers to the
LSTM plus the output recurrence, + CHAR refers
to the LSTM plus the character embeddings as fea-
tures. + OR + CHAR refers to the LSTM plus
the output recurrence and character embeddings as
features. For the CRF, we use the commonly used
features for named entity recognition: words, pre-
fix/suffices, and part-of-speech tag (Ratinov and
Roth, 2009). We can see that for both senses,
the model that uses both character embedding fea-
tures, and an output recurrence layer yields the
best F1 score. Examples of sounds and smells our
method can recognize are shown in Table 2.

2.3 Sense Mention Recognition Related Work

Our task is related to entity recognition however
in this paper we focused on novel types of en-
tities, which can be used to improve extraction
of common sense knowledge. Entity recogni-
tion systems are traditionally based on a sequen-
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Method F1 P R
Audible

CRF 89.38 87.83 90.99
LSTM 89.64 88.87 90.42
+ OR 89.780 88.60 90.99
+CHAR 87.78 88.18 87.39
+ OR + CHAR 90.91 91.740 90.09

Olfactible
CRF 75.73 79.59 72.22
LSTM 69.96 62.96 78.70
+ OR 78.380 76.320 80.56
+ CHAR 69.57 60.69 81.48
+ OR + CHAR 78.73 76.990 80.56

Table 3: Performance of the various models on the task
of sense recognition.

tial model, for example a CRF, and involve fea-
ture engineering (Lafferty et al., 2001; Ratinov and
Roth, 2009). Like other neural approaches, our ap-
proach does not require feature engineering (Ham-
merton, 2003; Collobert et al., 2011; dos Santos
and Guimarães, 2015; Chiu and Nichols, 2016;
Shimaoka et al., 2016), the only features we use
are word and character embeddings. The work of
(Lample et al., 2016) introduced a CRF on top of
LSTM for the task of named entity recognition.

2.4 Summary on Sense Mention Recognition

We have presented a method for recognizing con-
cepts that are discernible by sense by proposing
a process for collecting data, and then training
standard machine learning methods. The con-
cepts our method recognizes present opportuni-
ties for discovering additional types of common
sense knowledge, for example, learning relation-
ships that encode information such as which ob-
jects produce which sounds, in which environ-
ments can certain sounds be found, what is the
sentiment of various types of smell, etc. These
type of relations can significantly improve cover-
age of common sense in knowledge bases, thereby
improving their utility. We explore this direction
in the next section.

3 Relationships for Concepts Discernible
By Sense

Now that we have a way of recognizing mentions
of sense concepts in text, we can move on to rela-
tionships between such concepts.

To focus our task, we consider three rela-

tions pertaining to sense perception of sound
and smell. Namely: 1) soundSourceRelation, 2)
soundSceneRelation, and 3) smellSentimentRela-
tion.

3.1 Sound-Source Relationship

The sound-source relationship represents informa-
tion pertaining to which objects produce which
sounds. For example, that planes and birds are ca-
pable of flying, the wind blows, and geckos bark.
Obtaining sufficient labeled data to learn an ex-
tractor for this relationship is non-trivial, we pro-
pose one approach in the next section.

Labeled Data Generation. One option for ob-
taining labeled data is to directly request for it on
crowd-sourcing platform by asking crowd work-
ers to list examples of sounds and their sources.
However, such an approach requires crowd work-
ers to think of examples without clues or memory
triggers. This is time consuming and error prone.
Therefore, as we did in the recognition task, we
again propose to exploit a large corpus to obtain
preliminary labeled data. This way, we again only
need crowd workers to filter the data through a
series of “yes/no/notsure” questions. These type
of questions require little effort from crowd work-
ers while mitigating the amount of noisy input that
one could get from open-ended questions.

To pose “yes/no/notsure” questions, we need
a list of plausible sound-source pairs. To this
end, we propose a lightly supervised corpus-based
technique. First, we identify which phrases refer
to sounds using the approach described in the first
Section 2

One important observation we made was that
about 20,000 (15%) of the 134,471 phrases are bi-
grams of the form: “verb noun” or “noun verb”
where in both cases, the verb is in the gerund
or present participle V-ing form. For example,
birds chirping, cars honking,squealing brakes, etc.
From phrases of this kind, we create verb-noun
pairs, that we treat as plausible sound-source pairs
where the verb is the sound and the noun is the
source. We then asked crowd-workers to decide if
the source (noun) produces the sound (verb). Thus
from “birds chirping” we generate the question,
“Is chirping a sound produced by birds?”; Neg-
ative examples include: “surrounding nature”, and
“Standing ovation”, i.e., standing is not a sound
made by ovation. We generated 634 such ques-
tions, from which we obtained a moderate inter-
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Fleiss κ

soundSource 0.57
soundEnvironment 0.35
smellSentiment 0.43

Table 4: Fleiss κ. inter-annotator agreement rates for
the three relations on yes/no type crowd-sourcing tasks.

annotator agreement rate of Fleiss κ = 0.57, see
Table 4. We use the resulting labeled data to train
two types of learning methods.

Linear Learning Model. The learning problem
for the sound-source relationship is as follows:
given a bi-gram phrase n of the form “verb noun”
or “noun verb”, we wish to classify yes or no if a
given noun, denoted by wsrc, produces the verb,
denoted by word wsnd, as a sound. As a simple
linear solution to this problem, we train a logistic
regression classifier. The features we use are the
vectors representing the word embeddings of wsrc

andwsnd, denoted by vsrc, and vsnd. In our exper-
iments, we use the 300-dimensional Google News
pre-trained embeddings 4. There are several ways
in which we combine vsrc, and vsnd into a single
feature vector:
Vector Concatenation: v = concat(vsrc,vsnd)
Size of v, |v| = |vsrc| + |vsnd|
LSTM encoder : v = lstm(vsrc,vsnd)
An LSTM (Hochreiter and Schmidhuber, 1997)
recurrent neural network is used to encode the
phrase containing vsrc and vsnd. |v| = h, where h
is the hidden layer size of the neural network.
Source minus sound: v = vsrc − vsnd
|v| = |vsrc| = |vsnd|
Sound minus source: v = vsnd − vsrc
|v| = |vsrc| = |vsnd|

Memory Networks Learning Model. In addi-
tion to the variations of the linear model, we also
trained a non-linear model in the form of mem-
ory networks (Sukhbaatar et al., 2015). Memory
networks combine their inference component with
a memory component. The memory component
serves as a knowledge base or history vault to re-
call words or facts from the past. For the task
of relation extraction, the memory network model
learns a scoring function to rank relevant memo-
ries (words) with respect to how much they ex-
press a given relationship. This is done for a given
argument pair as a query, i.e., a sound-source

4https://code.google.com/archive/p/word2vec/

Learning Model Accuracy
LM: LSTM encoder 0.90
LM: (Source - Target) 0.88
LM: (Target - Source) 0.87
LM: Vector Concatenation 0.83
MM: 1 hop 0.87
MM: 3 hops 0.85

Table 5: Accuracy of the linear models (LM) and mem-
ory networks models (MM) on the sound-source rela-
tion.

pair. At prediction time, the model finds k rele-
vant memories (words) according to the scoring
function and conditions its output on these memo-
ries. In our experiments, we explore different val-
ues of k, effectively changing how many memo-
ries (words), the model conditions on. We report
results for up to k = 3 as we did not see improve-
ments for larger values of k.

Sound-Source Evaluation. Both the linear
model and the memory networks models were im-
plemented using Tensorflow. For the memory net-
works, we implemented the end-to-end version
as described in (Weston et al., 2014; Sukhbaatar
et al., 2015). Of the 634 crowd-sourced labeled
examples described, we used 100 as test data, the
rest as training data. Model parameters such as
hidden layer size of the memory networks were
tuned using cross-validation on the training data.
As shown in Table 2, we obtain high accuracy
across all models. The best performing model is a
linear model with an LSTM encoding of the sound
phrases, achieving accuracy of 90%. Surprisingly,
we could not obtain better results with the memory
networks model. Increasing the memory size or
the number of hops (how often we iterate over the
memories) did not help. One possible reason is the
size of our training data, in previous work (Weston
et al., 2014; Sukhbaatar et al., 2015), the memory
networks were trained on 1,000 or more examples
per problem type whereas our training data is half
the size. Nevertheless, the memory networks mod-
ule still produces good accuracy, with best perfor-
mance of 87%.

3.2 Sound-Scene Relationship

The sound-scene relationship represents informa-
tion about which sounds are found in which
scenes. For example, birds chirping can be found
in a forest. Therefore, this kind of information can
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also be used in context recognition systems (Ero-
nen et al., 2006), in addition to providing common
sense knowledge that could be useful in language
understanding tasks.

Labeled Data Generation. We would like to
obtain labeled data in the form of scenes and their
sounds. For example, (beach, waves crashing),
(construction, hammering), (street, sirens), (street,
honking cars). To obtain this type of labeled data,
we again would like to only use “yes/no/notsure”
crowd-sourcing questions. To generate plausible
sound-scene pairs, first we find all sentences that
mention at least one scene and one sound concept.
To detect sound concepts, we use the approach de-
scribed in Section 2. To detect mentions of scenes,
we specified a list of 36 example scenes, which in-
cludes scenes such as beach, park, airport most of
our scenes are part of the list of acoustic scenes
from a scene classification challenge 5. For every
sentence that mentions both an acoustic scene and
a sound concept, we apply a dependency parser6.
This step produces dependencies that form a di-
rected graph, with words being nodes and depen-
dencies being edges.

Dependency graph shortest paths between enti-
ties have been found to be a good indicator of rela-
tionships between entities (Xu et al., 2015; Nakas-
hole et al., 2013b). We use shortest paths as fea-
tures in order classify sound-scene pairs. To obtain
training data, we sort the paths by frequency, that
is, how often we have seen the path occur with dif-
ferent sound-scene pairs. We then consider pairs
that occur with frequent shortest paths to be plau-
sible sound-scene pairs which we can present to
crowd-workers in “yes/no/notsure” questions. We
randomly selected 584 sound-scene pairs, and the
corresponding sentences that mention them, which
were then presented to crowd workers in ques-
tions. The inter-annotator agreement rate on this
task is Fleiss κ = 0.35, see Table 4.

Learning Models and Evaluation. For the lin-
ear model, we consider three options for features.
Shortest Paths (SP): LSTM encoding of the de-
pendency shortest path. Sentence (S): an LSTM
encoding of the sentence. SP + S: encoding of
both the shortest path and the sentence are used
as features. For the memory network models, we
considered using the contents of both the shortest

5http://www.cs.tut.fi/sgn/arg/dcase2016/
6https://pypi.python.org/pypi/practnlptools/1.0

Learning Model Accuracy
LM: shortest path 0.81
LM: shortest path +sentence: 0.80
LM: sentence 0.75
MM: 1 hop 0.75
MM: 3 hops 0.80

Table 6: Accuracy on the sound-scene relation.

Learning Model Accuracy
LM: LSTM encoder 0.84
LM: vector addition 0.81
MM: 1 hop 0.82
MM: 3 hops 0.82

Table 7: Accuracy on the sound-sentiment relation.

paths and the sentences to produce memories. We
use 100 of the 584 labeled data for testing, the rest
for training. The shortest paths performed better,
for space reasons we omit the results of using sen-
tences as memories. As shown in Table 6, the lin-
ear model with the shortest path achieves the best
accuracy of 81%. However, the best performing
memory networks model with 3 memory hops is
not significantly worse at 80% accuracy.

3.3 Smell-Sentiment Relationship
For the smell-sentiment relationship, the goal is to
extract information about which smells are con-
sidered pleasant, unpleasant or neutral. In gen-
eral, sentiment is both subjective and context de-
pendent. However, as we show through crowd-
sourced annotations, there is substantial consensus
even on sentiment of smells.

Labeled Data Generation. First we generate a
list of plausible smells phrases, following a sim-
ilar approach to Section 2. We then used these
phrases to evaluate sentiment of smells in a Me-
chanical Turk task. We present a phrase within a
sentence context. We then asked crowd workers to
choose if the phrase refers to a smell that is “pleas-
ant/unpleasant/neutral/notsure/notasmell”. We
generated 600 such questions on which we ob-
tained a moderate inter-annotator agreement rate
of Fleiss κ = 0.43, see Table 4. While this is not a
yes/no task, it is still a simple multiple choice task
with the same advantages of the yes/no tasks as we
described earlier.

Learning Models and Evaluation. We again
use the same earning models. For the linear model,
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we consider two options for features. LSTM en-
coder: LSTM encoding of the smell phrase Vec-
tor addition: vector addition encoding of the
smell phrase. For the memory network models,
the contents of the sentence that mentions the
phrases are stored as memories. We use 100 of
the 600 labeled data for testing, the rest for train-
ing. As can be seen in Table 7, the linear model
with LSTM encoded phrases achieved the highest
accuracy of 84%.

3.4 Summary on Relationships

In this work, we extracted novel common sense re-
lations, using standard machine learning methods.
To obtain labeled data, we proposed a combina-
tion of large corpora, and multiple choice crowd-
sourced questions. These type of questions re-
quire little effort from crowd workers while mit-
igating the amount of noise one might get from
open-ended questions. We have also proposed and
trained models on this data, achieving high accu-
racy for all relations. Scaling up our approach to
more relations is an exciting future direction for
our work. Scale is not expected to be prohibitive,
given the minimally-supervised nature of our ap-
proach.

4 Conclusion

Cyc (Lenat, 1995), and ConceptNet (Havasi et al.,
2007) are well-known examples of knowledge
bases of everyday common sense knowledge.
These projects are decades long efforts involving
either experts or crowd-sourcing. Other knowl-
edge bases focus on facts about named entities
such as people, locations, and companies (Bol-
lacker et al., 2008; Hoffart et al., 2012; Mitchell
et al., 2015). Common sense contained in these
knowledge bases is still limited . We considered
the problem of extracting from text commonsense
knowledge pertaining to human senses such as
sound and smell. We proposed minimal-effort ap-
proaches for obtaining labeled data on two key
tasks: mention recognition, and relationship ex-
traction. In the first task we make use of Hearst
patterns, and crowd sourcing, and for the second
task, we make use of part-of-speech tag sequences
and crowd-sourcing. Although these processes are
not new, we have applied them to a novel setting of
common sense about human senses, and showed
their effectiveness. We trained standard machine
learning methods, and showed that the labeled data

generated by our processes lead to high quality
models.

In the future, we would like to apply our meth-
ods to a broader class of common sense assertion,
and to go develop novel machine learning methods
that improve accuracy on both of these tasks.
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