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Abstract

Pretrained deep contextual representations
have advanced the state-of-the-art on various
commonsense NLP tasks, but we lack a con-
crete understanding of the capability of these
models. Thus, we investigate and challenge
several aspects of BERT’s commonsense rep-
resentation abilities. First, we probe BERT’s
ability to classify various object attributes,
demonstrating that BERT shows a strong abil-
ity in encoding various commonsense features
in its embedding space, but is still deficient in
many areas. Next, we show that, by augment-
ing BERT’s pretraining data with additional
data related to the deficient attributes, we
are able to improve performance on a down-
stream commonsense reasoning task while us-
ing a minimal amount of data. Finally, we
develop a method of fine-tuning knowledge
graphs embeddings alongside BERT and show
the continued importance of explicit knowl-
edge graphs.

1 Introduction

Should I put the toaster in the oven? Or does the
cake go in the oven? Questions like these are triv-
ial for humans to answer, but machines have a
much more difficult time determining right from
wrong. Researchers have chased mimicking hu-
man intelligence through linguistic commonsense
as early as McCarthy (1960):

... [machines that] have much in com-
mon with what makes us human are de-
scribed as having common sense. (Mc-
Carthy, 1960).

Such commonsense knowledge presents a severe
challenge to modern NLP systems that are trained
on a large amount of text data. Commonsense
knowledge is often implicitly assumed, and a sta-
tistical model fails to learn it by this reporting bias

1

(Gordon and van Durme, 2013). This critical dif-
ference of machine learning systems from human
intelligence hurts performance when given exam-
ples outside the training data distribution (Gordon
and van Durme, 2013; Schubert, 2015; Davis and
Marcus, 2015; Sakaguchi et al., 2019).

On the other hand, NLP systems have recently
improved dramatically with contextualized word
representations in a wide range of tasks (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019). These representations have the benefit of
encoding context-specific meanings of words that
are learned from large corpora. In this work, we
extensively assess the degree to which these repre-
sentations encode grounded commonsense knowl-
edge, and investigate whether contextual represen-
tations can ameliorate NLP systems in common-
sense reasoning capability.

We present a method of analyzing common-
sense knowledge in word representations through
attribute classification on the semantic norm
dataset (Devereux et al., 2014), and compare a
contextual model to a traditional word type rep-
resentation. Our analysis shows that while contex-
tual representations significantly outperform word
type embeddings, they still fail to encode some
types of the commonsense attributes, such as vi-
sual and perceptual properties. In addition, we
underscore the translation of these deficiencies to
downstream commonsense reasoning tasks.

We then propose two methods to address these
deficiencies: one implicit and one explicit. Im-
plicitly, we train on additional data chosen via at-
tribute selection. Explicitly, we add knowledge
embeddings during the fine-tuning process of con-
textual representations. This work shows that
knowledge graph embeddings improve the ability
of contextual embeddings to fit commonsense at-
tributes, as well as the accuracy on downstream
reasoning tasks.
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2 Attribute Classification

First, we preform an investigation to see if the
output from BERT is able to encode the neces-
sary features to determine if an object has a re-
lated attribute. We propose a method to evaluate
BERT’s representations and compare to previous
non-contextual GloVe (Pennington et al., 2014)
baselines, using simple logistic classifiers.

2.1 Commonsense Object Attribution

To get labels for attribute features of common-
sense features of objects, we utilize CSLB, a se-
mantic norm dataset collected by the Cambridge
Centre for Speech, Language, and the Brain (De-
vereux et al., 2014). Semantic norm datasets are
created through reports from human participants
asked to label the semantic features of a given
object. Thus, a proportion of these features are
obvious to humans, but may be difficult to find
written in text corpora. This is notably different
from the collection methods of prominent com-
monsense databases, such as ConceptNet (Speer
and Havasi, 2013).

CSLB gives 638 different attributes describ-
ing a variety of objects provided by 123 partici-
pants. To make results consistent between base-
lines (GloVe) and BERT, we first preprocess the
attributes present in CSLB. We removed attributes
with two-word names, ambiguous meanings (i.e.
homographs), or missing GloVe representations.
This gives a 597 attribute vocabulary. Examples
of objects described are zebra, wheel, and wine.
Example of attributes are is upright, is a toy, and
is an ingredient.

2.2 Contextualization

Since BERT is commonly utilized at the sequence
embedding level (Devlin et al., 2019), we develop
a contextualization module to allow representa-
tions of (object, attribute) pairs, allowing us to
acquire one sequence embedding from BERT for
each pair. From a high level, we want to develop a
method to transform (object, attribute) into simple
grammatical sentences.

For each (object, attribute) pair, we raise the
pair to a sentence structure such that the attribute is
describing the object. We would enforce the fol-
lowing representation, in line with the procedure
of Devlin et al. (2019):

[C'LS] cprefix nOUN Caffix adj. Cpostiix [SEP]

The goal is to create a simple formula that al-
lows the model to isolate the differences between
the object-attribute (noun-adjective) pairs, rather
than variation in language. cpefix represents pre-
vious context, i.e. context that appears before the
word. cufix 1S context that appears between the
noun and the adjective. cpogfix 1S context that
closes out the sentence.

We illustrate this algorithm for use with CSLB,
but this methodology can be used for any dataset,
such as other semantic norm datasets. We use this
process for each (object, attribute) pair in CSLB.
First, we check if any words in the attribute need
to be changed. For example, in CSLB, instead of
does deflate, we use deflates as the attribute text,
since it simplifies the language. Then, for cprefix,
we use either A or An, and for cpoufix, and use a
period. For ¢, f;z, we use either is or nothing, de-
pending on the attribute. Some example sentences
would be: (shirt, made of cotton) would become
” A shirt is made of cotton.” and (balloon, does de-
flate) becomes A balloon deflates.” See the ap-
pendix for full pseudocode.

We find that this method is a better alternative
to simply creating a sequence with the concatena-
tion of the object and the attribute. Some attribute-
object pairs translate better to English than others.
For example, "wheel does deflate” might be a rel-
atively uncommon and awkward English phrase
when compared to more natural phrases such as
’shirt made of cotton”.

2.3 Determining Attribute Fit

We explore if word embeddings contain the nec-
essary information within their embedding space
to classify various semantic attributes. Our proce-
dure involves use of a simple logistic classifier to
classify if an attribute applies to a candidate ob-
Jject. We create a list of (object, attribute) pairs as
training examples for the logistic classifier (thus,
there are Nopjects X Nattributes training examples
in total). We then train logistic classifiers for each
attribute, and use leave-one-out accuracy as accu-
racy — averaging the leave-out-one result across all
Nobjects Cclassifiers, since we leave out a different
object each time. For example, to examine the at-
tribute made of cotton, we train on all objects ex-
cept one, using the label 1 if the object is made of
cotton, and 0 otherwise. Then, we test to see if the
left-out object is classified correctly. We repeat
Nobjects times, removing a different object each
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Figure 1: Swarm plots showing attribute fit scores for GloVe (left) and BERT (right). Each dot represents a
single attribute, displayed along the x-axis according to the classifier’s ability to fit that feature with the given
embeddings. The y-axis is not significant, and instead, dots are displaced along the y-axis instead of overlapping
to show quantity. The median fit score per embedding type is displayed with a dotted line.
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Figure 2: Differences between fit scores when using GloVe (start of arrow) or BERT (end of arrows) embeddings.

time. To judge fit, we use F1 score, as F1 score
is not affected by dataset imbalance. We consider
other classifiers, such as SVD classifiers, but we
find that there is no significant empirical differ-
ence between the classifiers. For baseline tests, we
use the pretrained 300 dimensional GloVe embed-
dings,! as they have shown to perform better than
word2vec embeddings (Lucy and Gauthier, 2017).
See appendix for specific logistic regression pa-
rameters, such as the number of update steps used.

2.4 Attribute Scores

We show our findings for feature fit for each at-
tribute. Figure 1 highlights that BERT is much
stronger on this benchmark — the median fit score
is nearly double that of the previously reported
GloVe baselines. This suggests that BERT en-

"https://nlp.stanford.edu/projects/
glove/

codes commonsense traits much better than pre-
vious baselines, which is suggestive of its strong
scores on several commonsense reasoning tasks.
Notably, we can see that much fewer features have
a fit score less than 0.5. We observe that many
more traits have a perfect fit score of 1.0. How-
ever, our results also show that BERT is still un-
able to fully fit many attributes. This underscores
that BERT still lacks much attribution ability, per-
haps in areas outside of its training scheme or pre-
training data. Seen in Figure 2 is the change in
fit scores between GloVe and BERT. We can see
that some traits exhibit much larger increases — in
particular, physical traits such as made of wood,
does lock, and has a top. Traits that are more ab-
stract tend to have a lesser increase. For example,
is creepy and is strong still are not able to be fit by
the contextualized BERT module.
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Metric Visual Encyclopedic  Functional Perceptual Taxonomic || Overall
Mediangiove 46.2 38.9 44 4 49.0 89.1 46.1
MediangerT 83.3 76.2 78.3 80.0 100 82.7
A +37.1 +37.3 +33.9 +31.0 +10.9 +36.6
Table 1: Comparison of median logistic classifier fit scores (out of 100 percent fit) across categories defined in
CSLB.
Category Lower scoring attributes (fit score < 1.0)  Attributes perfectly fit (fit score = 1.0)
Visual is triangular, is long and thin, is upright, does come in pairs, has a back, has a bar-
has two feet, does swing, is rigid rel, has a bushy tail, has a clasp
Encyclopedic is hardy, has types, is found in bible, is does grow on plants, does grow on trees,
American, does play, is necessary essen- does live in rivers, does live in trees, does
tial photosynthesize, has a crew
Functional does work, does spin, does support, does does DIY, does carry transport goods,
drink, does breathe, does hang does chop, does drive
Perceptual is chewy, does rattle, is wet, does squeak, does bend, has a sting, has pollen, has
is rough, has a strong smell soft flesh, is citrus, is fermented
Taxonomic is a home, is a dried fruit, is a garden tool, is a bird of prey, is a boat, is a body part,

is a vessel, is a toy, is an ingredient

is a cat, is a citrus fruit, is a crustacean

Table 2: Fine-grained comparison across categories between attributes that lack some level of fit (left) and perfectly
fit attributes (right) with classification using BERT representations.

Table 1 shows a comparison of fit scores across
different types of attribute categories. These cate-
gories are defined per attribute in CSLB (Devereux
et al., 2014). Visual attributes define features that
can be perceived visually, such as is curved. Per-
ceptual defines attributes that can be perceived in
other non-visual ways, such as does smell nice.
Functional describes the ability of an object, such
as is for weddings. Taxonomic defines a biolog-
ical or symbolic classification of an object like
is seafood. Finally, encyclopedic are traits that
may be the most difficult to classify, as they are
attributes that most pertain to abstract common-
sense, such as is collectible.

BERT has stronger scores in all categories, and
just short of double the overall accuracy. Impor-
tantly, however, it struggles to classify many cat-
egories of objects. In taxonomic categories, it is
able to perfectly fit more than half the objects. We
suspect that this is intuitive, as BERT is trained on
text corpora that allow for learning relationships
between classes of objects and the object itself.
GloVe notably also preforms strong in this cate-
gory, for the same reasons. BERT scores the low-
est on encyclopedic traits, which most closely re-
semble traits that would appear in commonsense
tasks. This suggests that BERT maybe be rela-
tively deficient in regards to reasoning about com-

monsense attributes.

We also examine specific attributes where
BERT is fully fit (with a perfect fit score), and
compare those attributes to features where BERT
is unable to fit. Table 2 shows examples of both
levels of fit. BERT is able to fit many features
that would be easily represented in text, such as
does bend, does grow on plants, and does drive.
It is unable to fit traits that may be less com-
mon in text and more susceptible to the report-
ing bias, such as is American, is chewy, and
has a strong smell. Surprisingly, it is also unable
to fit several features that would be likely common
in text such as is a toy, suggesting that BERT’s
training procedure is lacking coverage of many ev-
eryday events perhaps due to the reporting bias.

2.5 Do Knowledge Graphs Help?

We extend our investigation with two inquiries.
First, given the large gain in accuracy over GloVe,
we wonder if BERT embeddings now encode
the same information that external commonsense
knowledge graphs (such as ConceptNet (Speer and
Havasi, 2013)) provide. Second, we question if it
is possible to increase the overall accuracy above
the accuracy presented by using BERT embed-
dings (otherwise, it could mean that the deficit is
simply because the logistic classifier does not have



System Median
GloVe 46.1
BERT 1 ARGE 82.7
ConceptNet 23.2
BERT; srcE + ConceptNet  90.7

Table 3: Results for attribute classification with Con-
ceptNet as a knowledge graph source.

needed capacity (Liu et al., 2019a)).

We use ConceptNet (Speer and Havasi, 2013)
for our experiments. We label each relationship
type with an index. (antonym as 0, related_to
as 1, etc.) During classification, we query the
knowledge base with the object and the attribute
and check if there are any relationships between
the two. We embed the indexes of matched rela-
tionships to randomly initialized embeddings and
concatenate them with the original BERT embed-
dings. If more than one relationship is found, we
randomly choose a relationship to use.

Table 3 shows our results. By itself, the explicit
commonsense embeddings do not have enough
coverage to learn classifications of each attribute,
since the knowledge graph does not contain in-
formation about every (object, attribute) pair.
However, by combining the knowledge graph em-
beddings with the BERT embeddings, we illus-
trate that knowledge graphs cover information that
BERT is unable to generate the proper features for.
In addition, the results suggest that BERT is de-
ficient over various attributes, and the traditional
knowledge graphs are able to cover this feature
space. These results support the hypothesis that
BERT simply lacks the features rather than the
problem of the logistic classifier.

3 Improving BERT’s Representations

We have gained an understanding of the types of
commonsense attributes BERT is able to classify
and encode in its embeddings, and also have an un-
derstanding of the types of attributes that BERT’s
features are deficient in covering. In Section
2.5, we have shown that commonsense knowledge
graphs may also help encode information that ex-
tends beyond BERT’s embedding features. How-
ever, we have yet to know whether this BERT’s
deficiency will translate to any of BERT’s down-
stream reasoning ability, which is ultimately more
important.

We empirically address the gap between at-

Passage: For my anniversary with my hus-
band, I decided to cook him a very fancy
and nice breakfast. One thing I had always
wanted to do but never got to try was mak-
ing fresh squeezed orange juice. 1 got about
ten oranges because I wasn’t sure how much
I was going to need to make enough juice
for both me and my husband. I got home
and pulled my juicer out from underneath my
sink. I began using the juicer to squeeze the
juice out of my orange juice. I brought my
husband his breakfast with the orange juice,
and he said that the juice was his favorite
part!

How were the oranges sliced?

a) in half

b) in eighths

When did they plug the juicer in?

a) after squeezing oranges

b) after removing it from the box

Table 4: Example of a prompt from MCScript 2.0 (Os-
termann et al., 2018), an everyday commonsense rea-
soning dataset. Questions often require script knowl-
edge that extends beyond referencing the text.

tribute classification and downstream ability in
BERT. First, we demonstrate that there is a corre-
lation between low-scoring attributes and low ac-
curacy on reasoning questions that involve those
attributes.  Then, we leverage our investiga-
tion to build two baseline methods of improving
BERT’s commonsense reasoning abilities (Figure
4). Since BERT is trained on implicit data, we ex-
plore a method of using RACE (Lai et al., 2017)
alongside a list of attributes that BERT is deficient
in (such as the one in Section 2.4). We also extend
our investigation in Section 2.5 on commonsense
knowledge graphs by proposing a method to inte-
grate BERT with external knowledge graphs. See
appendix for hyperparameters.

3.1 Background: MCScript 2.0

We leverage MCScript 2.0 (Ostermann et al.,
2019) for several investigations in this paper. MC-
Script 2.0 is a downstream commonsense reason-
ing dataset. Each datum involves one passage,
question, and two answers, and the goal is to pick
the correct answer out of the two choices. Many
questions involve everyday scenarios and objects,
which helps us link our semantic norm results to
more downstream reasoning capability. Table 4
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Figure 3: Linear regression fit of accuracy on MCScript
2.0, per attribute, versus fit score, with the inner 90
percent bootstrap confidence intervals highlighted (n =
1000). Each dot represents the accuracy of questions
related to one attribute.

shows an example.

3.2 Do Low Classification Scores Result in
Low Performance?

We examine if low-scoring attributes result in
low downstream performance, and high-scoring
attributes also result in high downstream perfor-
mance. For each question in MCScript, we re-
late that question to 1 or more of the attributes in
the previous experiment. For example, a question
might be talking about whether to use a camera
flash, and would be thus related to the traits does
have flash, is dark, and is light. Here we aim to
empirically assess deficiencies in BERT’s ability
and their downstream implications. For instance,
if it is unable to fit does have flash, will it have a
gap in knowledge in areas regarding camera flash?
If a given feature does not have a related question,
we do not include it in our experiments. In total,
Nquestions = 193, and nagributes = 92.

For the MCScript model, we simply classify
based on the [C'LS] token, as suggested in De-
vlin et al. (2019). We softmax over the logits be-
tween the two answers when producing our final
answers, and split the passage-question pair and
answer by a [SEP] token. The attribute-related
questions here are from the development set only.

Seen in Figure 3 are the results. We do not see a
clear pattern, but we can still make several obser-
vations. First, we notice that there are simply a lot
of items with a high fit score. Next, there are a lot
of attributes that BERT simply gets correct. How-
ever, notably, BERT is less consistent with getting

items that have a low fit score (< 0.5). We can also
notice that all attributes that have high accuracy on
MCSecript also have a high fit score.

3.3 Implicit Fine-Tune Method

We develop a method of fine-tuning with addi-
tional data based on the deficiencies found in the
previous section. We fine-tune on additional data,
but we select only data related to attributes that
BERT is deficient in.

3.3.1 Data Selection

In our experiments, we use RACE (Lai et al.,
2017) as our supplementary dataset. While we can
fine-tune on the entire dataset, we can also select a
subset that directly targets the deficient attributes
in semantic norm. To select such a subset, we
define a datum as related if any words match be-
tween the datum in the supplementary dataset and
the deficient feature in semantic norm, stemming
all words beforehand. For some attributes, we re-
move frequent words (“is, “does”, and “has”) to
avoid matching too many sentences within RACE.

Since each datum in RACE involves a question,
answer, and passage, we allow matches between
either of the three texts, and do not differentiate
between matches in the question, answer, and pas-
sage. We find that this keeps around a third of
the data in RACE (around 44K, out of the 97K
data present in RACE). It is also key that this data
selection process does not require access to the
downstream task dataset. Thus, this procedure has
the ability to generalize to other tasks beyond MC-
Script 2.0.

3.3.2 Fine-Tuning Procedure

We fine-tune BERT’s language objectives on
RACE. We do not change the properties of either
objective, to keep comparability between our anal-
ysis and BERT. This mimics Devlin et al. (2019),
and thus, we fine-tune the token masking objective
and the next sentence prediction objective. Several
works have improved on BERT’s language objec-
tives (Yang et al., 2019; Liu et al., 2019b), but we
keep the language objectives in BERT intact for
comparison.

After fine-tuning on RACE, we fine-tune on
MCScript with the classification objective only.
We do this since we need to build a classification
layer for the specific task, as noted in Devlin et al.
(2019). We do not freeze the weights in this pro-
cess, as to keep comparability with the fine-tuning
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Figure 4: Outline of our baseline method of improving BERT for commonsense reasoning. Our method fine-tunes
BERT through multiple facets while optimizing for accuracy and reduced train steps. We use RACE (Lai et al.,
2017) as an external dataset, and MCScript 2.0 (Ostermann et al., 2019) as our downstream task.

procedure in Devlin et al. (2019).

3.4 Explicit Fine-Tune Method

Motivated by our results in 2.5, we develop a
method of integrating knowledge graph embed-
dings with the BERT embeddings. First, we query
knowledge graphs based on the given text to find
relationships between objects in the text. Then, we
generate an embedding for each relationship found
(similar to Section 2.5). Finally, we fine-tune these
embeddings alongside the BERT embeddings.

34.1 Knowledge Graph Query

We query a suite of knowledge bases (Concept-
Net (Speer and Havasi, 2013), WebChild (Tandon
etal., 2017), ATOMIC (Sap et al., 2019)) to create
knowledge graph embeddings. First, we examine
all relationships, indexing each unique relation-
ship sequentially. Then, during fine-tuning, for
each prompt in MCScript 2.0, we query the knowl-
edge bases to find any (start_node, end_node,
edge) matches between the knowledge base and
the current prompt. For example, if eat and
dinner are both present in the text, the rela-
tionship at_location in ConceptNet would match
(Figure 5). We record the index of the matched re-
lationship, keeping a list of matched relationships
per word in the prompt. If a start_node spans more
than one word, we record the match as occurring
for the first word in the phrase.

System Acc. | Data
BERTLARGE + RACE 84.3 98 K
BERT; srcE + RACE (random) 84.0 | 44 K
BERT [ srcE + RACE (selected) 84.5 | 44 K

Table 5: Test set results from the implicit method
on MCScript 2.0. “selected” indicates a subset of
RACE that consists of misclassified attributes in se-
mantic norm. “random” is a randomly chosen subset.

3.4.2 Fine-Tuning Procedure

We fine-tune our knowledge graph embeddings
alongside the BERT fine-tuning procedure. We
randomly initialize an embedding for each rela-
tionship and each knowledge graph. We choose
an embedding for each word in the prompt (ran-
domly, if there is more than one relationship asso-
ciated), creating a sequence of knowledge graph
embeddings. We create a sequence embedding
for the 30-dimensional graph embeddings by feed-
ing the sequence through an bidirectional LSTM.
Then, during fine-tuning, we classify each datum
in MCScript based on the concatenation of the ex-
plicit graph sequence representation and the BERT
sequence embedding (i.e. [C'LS]), as per Devlin
et al. (2019).

3.5 Results and Analysis

Table 5 shows the results from the implicit
method. Accuracy is consistent across the board,
with all models giving about a 2% downstream ac-



Why did the child eat?

we sat down at the
dinner table. Mom brought
out a freshly cooked
figh! I gladly began to
feast. After

eat

dinner: at location

cook: has_ first subevent
fish: related_to

feast: synonym

Figure 5: Visualization of ConceptNet knowledge base queries. The word eat is being queried with the other
words in the text, with the valid edges discovered displayed against the left.

System Accuracy
Human (Ostermann et al., 2019) 97.4
Random Baseline 48.9
BERT [ ArcE 82.3
with ConceptNet 83.1
with WebChild 82.7
with ATOMIC 82.5
with all KB 83.3
with all KB + RACE (selected)  85.5

Table 6: Test set results for knowledge base embed-
dings on MCScript 2.0.

curacy boost. However, the model with the less
amount of data (RACE, selected from deficiencies
only) achieves equivalent accuracy to the entire
RACE dataset, while using only half the amount
of data. This underscores the importance of the
abstract semantic norm task, as the related data se-
lection process was effective in choosing examples
that are directly related to deficiencies.

Table 6 shows our results with explicit knowl-
edge embeddings. Each knowledge base improves
accuracy, with ConceptNet giving the largest per-
formance boost. ATOMIC gives the smallest
boost, likely because the ATOMIC edges involve
longer phrases, which means less matches, and the
overlap between ATOMIC text and the text present
in the task is not as large as either ConceptNet or
WebChild.

We can also combine the explicit knowledge
base embeddings and the implicit RACE fine-
tuning, yielding the highest accuracy (with all KB
+ RACE (subset) in Table 6). The knowledge em-
beddings provide a similar +1% absolute improve-
ment (85.5 vs. 84.5), suggesting that the knowl-
edge embeddings cover different aspects and re-
lationships in the text than learned during fine-
tuning on RACE.

4 Related Work

Similar to our attribute classification investiga-
tion, several other works have used applied se-
mantic norm datasets to computational linguistics
(Agirre et al., 2009; Bruni et al., 2012; Kiela et al.,
2016). Methodologically, our work is most simi-
lar to Lucy and Gauthier (2017), who use a logistic
regression classifier to determine fit score of word
type embeddings based on leave-one-out verifica-
tion. Forbes et al. (2019) investigates the com-
monsense aptitude of contextual representations.
However, our work differs in several important
ways: 1) we connect our analysis to downstream
reasoning aptitude, underscoring the importance
of the semantic norm analysis, and 2) we intro-
duce various ways of improving BERT, motivated
by our analysis.

In contemporaneous work, various research has
been done in improving upon BERT’s perfor-
mance through knowledge augmentation. Implic-
itly, Sun et al. (2019) explores fine-tuning on in-
domain data, similarly to our fine-tuning on the
RACE dataset (Lai et al., 2017). They discover
an increase in accuracy that is especially preva-
lent over smaller datasets. Our work differs in that
we do not fine-tune on the entire domain data, but
rather select a smaller subset of data to fine-tune
on. Other work extends BERT to domains where
its original training data does not suffice (Belt-
agy et al., 2019; Lee et al., 2019). RoBERTa (Liu
etal., 2019b) also pretrains on RACE, and finds in-
creased results through altering several of BERT’s
pretraining tasks, claiming that BERT was exten-
sively undertrained. Explicitly, ERNIE, Zhang
et al. (2019) introduces information to contextual
representations during pretraining. ERNIE uses
word-level fusion between the contextual repre-
sentation and explicit information.

Prior work has developed several bench-



mark datasets to assess commonsense knowl-
edge of NLP models (Roemmele et al., 2011;
Mostafazadeh et al., 2016; Zhang et al., 2017;
Zellers et al., 2018, 2019; Ostermann et al., 2018,
2019; Sakaguchi et al., 2019). These benchmarks
are typically posed as question answering, but we
use semantic norm datasets to specifically assess
BERT’s ability to represent grounded attributes.
Further, we demonstrate that these abstract at-
tributes can be used to enhance BERT’s represen-
tations and improve the downstream performance.

5 Conclusion

We found that BERT outperforms previous dis-
tributional methods on an attribute classification
task, highlighting possible reasons why BERT im-
proves the state-of-the-art on various common-
sense reasoning tasks. However, we show that
BERT still lacks proper attribute representations
in many areas. We developed implicit and explicit
methods of remedying this deficit on the down-
stream task. We demonstrated that, individually
and combined, both methods can improve scores
on the downstream reasoning task. We motivate
future work in probing and improving the ability
of neural language models to reason about every-
day commonsense.
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A Appendices

A.1 Hyperparameters

Seen in Table 7 is a list of hyperparameters for our
experiments. We use the same parameters for both

uses of explicit knowledge embeddings.

Table 7:
ments.

A.2 Contextualization Module Pseudocode

Psuedocode can be found by referencing Algo-

rithm 1.

Regression Classifier

Penalty L2
# Penalty Coefficient 1.0
Iteration count 200
Optimizer Ibfgs
Patience le-4
Explicit Knowledge Embeddings
Embedding size 10
Knowledge bases used 3

BERT Fine-Tuning
Maximum sequence length 450

Train batch size 32
Learning rate le-5
Epochs 4
Warmup 20%
LSTM
Hidden size 32
Dropout 0.0
Bidirectional Yes

Hyperparameters used throughout experi-
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Algorithm 1: Contextualization Module for CSLB Attributes

contextualize (object, attribute):

to_remove = [does]

if attribute(first word] in to_remove then
attribute[second word] = make_plural(attribute[second word])
attribute.remove(attribute[first word])

end if

if starts_with_vowel(attribute[first word]) then
‘ Cprefix = An

else
‘ Cprefix = A

end if

needs_affix = [made]
if attribute[first word] in needs_affix then

‘ Caffix = is
else

| cafix = None
end if
Cpostfix = -

Teturn Cprefix + Object + caffix + attribute + Cpostfix
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