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Abstract

A key challenge of multi-hop question answer-
ing (QA) in the open-domain setting is to ac-
curately retrieve the supporting passages from
a large corpus. Existing work on open-domain
QA typically relies on off-the-shelf informa-
tion retrieval (IR) techniques to retrieve an-
swer passages, i.e., the passages containing
the groundtruth answers. However, IR-based
approaches are insufficient for multi-hop ques-
tions, as the topic of the second or further hops
is not explicitly covered by the question. To
resolve this issue, we introduce a new sub-
problem of open-domain multi-hop QA, which
aims to recognize the bridge (i.e., the anchor
that links to the answer passage) from the con-
text of a set of start passages with a reading
comprehension model. This model, the bridge
reasoner, is trained with a weakly supervised
signal and produces the candidate answer pas-
sages for the passage reader to extract the an-
swer. On the full-wiki HotpotQA benchmark,
we significantly improve the baseline method
by 14 point F1. Without using any memory-
inefficient contextual embeddings, our result is
also competitive with the state-of-the-art that
applies BERT in multiple modules.

1 Introduction

As machines have achieved super-human perfor-
mance (Devlin et al., 2018) for single-passage
question answering on the standard SQuAD
dataset (Rajpurkar et al., 2016), building QA sys-
tems with human-like reasoning ability has at-
tracted broad attention recently. In this challenge,
the QA system is required to reason with dis-
tributed piece of information from multiple pas-
sages to derive the answer. Several multi-hop
QA benchmarks include WIKIHOP (Welbl et al.,
2018), ComplexWebQuestions (Talmor and Be-
rant, 2018) and HotpotQA (Yang et al., 2018) have
been released recently to advance this line of re-
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search. In this paper, we focus on the practi-
cal open-domain HotpotQA benchmark where the
questions are asked upon natural language pas-
sages instead of knowledge bases and the support-
ing passages are not known beforehand.

The typical pipeline of open-domain QA sys-
tems (Chen et al., 2017; Wang et al., 2018; Htut
et al., 2018) is to first use an IR system to re-
trieve a compact set of paragraphs and then run
a machine reading model over the concatenated or
reranked paragraphs. While IR works reasonably
well for simple questions', it often fails to retrieve
the correct answer paragraph for multi-hop ques-
tions. This is due to the fact that the question often
cannot fully cover the information for the second
or further hops. Consider the question “What gov-
ernment position was held by the woman who por-
trayed Corliss Archer in the film Kiss and Tell?”
from the HotpotQA (Yang et al., 2018) dataset.
Since the name of the person (Shirley Temple) is
not directly mentioned in the question and the an-
swer is about another aspect of the person other
than film acting, traditional IR heuristics based on
n-gram matching might fail to retrieve the answer
passage. In fact, the correct answer passage of
Shirley Temple never appears in the top passages
ranked by the default IR method of HotpotQA.

Instead of predicting the answer passage with
text matching between passages and questions,
we claim that the answer passage can be better
inferred based on the context-level information.
Noticing that the IR retrieved passages can usu-
ally successfully cover the first hop evidence of the
questions (i.e. start passages), we propose to use
a reading comprehension model to infer the enti-
ties linking to the answer passage from the start
passages. Our experiments show that this sim-
ple approach can tremendously increase the an-

'As shown in Table 3 of Chen et al. (2017), a simple IR
method can achieve 77.8% recall on the SQuAD dataset.

Proceedings of the Second Workshop on Machine Reading for Question Answering, pages 48-52
Hong Kong, China, November 4, 2019. (©2019 Association for Computational Linguistics



Question

Start Passages:

“A Kiss For Corliss”
“Lord High Treasurer”
“Meet Corliss Archer”
“Village accountant”
“Joseph Kalite”

Full Wikipedia

e

‘WIKIPEDIA
The Free Encyclopedia Target Passages:
“Shirley Temple”

“F. Hugh Herbert”

“Kiss and Tell (1942 film)”

Answer: Chef of Protocol  «g,p, Hope”
“A Kiss for Corliss”

Target Passage Bridge
Reader Reasoner

Question: What government position was held by the woman
who portrayed Corliss Archer in the film Kiss and Tell ?

Correct answer passage ««»..-

Figure 1: The overview of our QA system. The bridge rea-
soner reads the start passages retrieved by an IR system and
predicts a set of candidate bridges (anchor links) that lead to
the answer passages, which is further processed by the pas-
sage reader to return the answer.

swer coverage of the top-ranked passages and thus
increase the final QA performance by 14 point
F1. Despite that our bridge reasoner and passage
reader only learn above GloVe embeddings (Pen-
nington et al., 2014), we achieve competitive per-
formance with methods that use BERT (Devlin
et al., 2018) in multiple modules.

2 Problem Definition and Motivation

An open-domain multi-hop QA system aims to
answer complex questions by retrieving evidence
from a large open-domain passage corpus, such as
Wikipedia. Usually the evidence scatters in a dis-
tributed set of supporting passages pi,p2, ..., Dn
that forms an ordered chain. Each p; provides
evidence that partially fulfills the information re-
quired to answer the question, as well as provides
clues (usually concepts or entities) that lead to the
next supporting passage p;+1. The last passage p,,
of the chain contains the answer and is referred to
as the answer passage. Although the supervision
of the complete supporting chains could be bene-
ficial for training and diagnosing the QA system,
predicting these complete reasoning sequences at
evaluation time is usually quite challenging.

This work builds on an important observation
that the prediction of the entire chain is not nec-
essary for the QA performance. As a matter of
fact, we conduct a preliminary experiment that
compares a QA model that has full access to the
supporting passages, versus a model that only has
access to the answer passage. This experiment
was conducted on the distractor version of Hot-
potQA (Yang et al., 2018), which has groundtruth

49

supporting passage annotations. We use the base-
line QA model from Yang et al. (2018). The re-
sult shows that the full access only gives marginal
improvements?, even this model uses the support-
ing passage labels as additional supervision sig-
nals. The above result confirms that the multi-hop
QA performance largely depends on the accurate
retrieval of the answer passages.

Definition of Bridge Reasoning The key idea of
our approach is to reformulate the problem of an-
swer passage retrieval as a reading comprehension
task. The reading model predicts an entity that
points to the answer passage. Such entities serve
as the bridges connecting the supporting passages,
therefore we refer them as bridge entities. When
working with passages from Wikipedia, we con-
sider the anchor links in each article as the candi-
date set of bridge entities. Thus each bridge candi-
date is a title of another passage and we use bridge
entity and answer passage interchangablely.
Note that our definition of bridge reasoning here
can be easily extended beyond anchor links, as
long as we have entity linking tools to connect the
same entities in different passages and build links
between them. The main goal of this paper is to
demonstrate that the bridge reasoning task can be
effectively formulated as a reading comprehension
task, and we leave the investigation of the broader
definition of bridge reasoning to future work.

Remark on Distant Supervision It is also wor-
thy to note that obtaining the supervision of the an-
swer passages is much easier — as long as there are
question-answer pairs, we can use distant supervi-
sion to obtain answer passage annotations. There-
fore the proposed bridge reasoning task is rather
general and is easy to be extend to more datasets
without support passage supervision.

3 The Proposed Approach

Our QA system is illustrated in Figure 1. We first
use the bridge reasoner to get the answer pas-
sages and then feed the top candidate answer pas-
sages into a standard passage reader to predict the
final answer to the multi-hop question.

3.1 The Base Span Prediction Model

Both the bridge reasoner and the passage reader
use a model that predicts a relevant span given a

266.07 F1 and 49.43 EM with full support access versus
64.77 F1 and 50.96 EM with only answer passage access.



question. We use the same model architecture for
both tasks and the architecture is base on the doc-
ument QA model from (Clark and Gardner, 2018),
which is used by Yang et al. (2018) as the baseline
for HotpotQA. The model uses a shared bidirec-
tional GRU (Cho et al., 2014) to encode the ques-
tion and the passages. The encoded questions and
passages are then passed to a bidirectional atten-
tion layer (Seo et al., 2017) to get the question-
aware passage states. The state vectors are en-
hanced by a self-attention layer (Wang et al., 2017)
and are finally fed into linear layers to predict the
start and end span scores at every word position.

3.2 Bridge Reasoner

Our bridge reasoner integrates multiple types of
evidence to predict the bridge entities that link to
potential answer passages.

Local Context Evidence The most critical ev-
idence we use is the local context of the start
passages. These passages usually cover the first
hop of the question and provide clues about the
bridges. Our bridge reasoner therefore employs
the span prediction model to predict the spans of
bridge entities from the context of the start pas-
sages. Unlike typical span prediction models that
consider all possible spans, the bridge reasoner
here only needs to rank all the entities that have
anchor links. We take the final representation of
each token from the span prediction model and use
each anchor’s start token representation iy to rep-
resent the anchor’s local context evidence.

Passage Content Evidence Each bridge entity in
our setting is associated with a Wikipedia article,
so the relevance of each bridge can be computed
by matching the article content with the question.
Here we use a bi-LSTM to encode the abstract pas-
sages and use max-pooling on the output states to
get the passage content representation hb.

Both the local context evidence hg_  and pas-
sage content evidence h} are integrated into our
final bridge reasoner by a linear layer. The super-
vision for training the bridge reasoner is derived
from the distractor version of HotpotQA: we take
the title of the support passage that contains the
groundtruth answer as the groundtruth bridge en-
tity. When there are multiple passages that contain
the answer, we randomly pick one of the passages.

3.3 Target Passage Reader

Our passage reader has the same neural architec-
ture as the bridge reasoner and the goal here is to
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extract the correct answer span. We run the tar-
get passage reader on the top 10 answer passage
candidates predicted by the bridge reasoner.

Training Passages from Cross-validation As
we are using the same set of training questions
for training the bridge reasoner and the target pas-
sage reader, there will be a discrepancy between
the training and evaluation of QA: at evaluation
time, the reader sees the passages predicted by
the bridge reasoner, while at training time, the
groundtruth answer passage is known. On the
other hand, we also cannot use the predicted pas-
sages for training the reader, as the bridge reasoner
itself is trained on the training set so the top pre-
dicted passages on training set are already overfit-
ted. To make the training match the evaluation, we
use the bridge reasoner model to perform two-fold
cross-validation on training questions and use the
cross-predicted passages for training the reader.

Auxiliary Training Objective of Bridge Pre-
diction We introduce an auxiliary objective to
encourage the reader to utilize the answer pas-
sage supervision during training. This is done by
adding a span loss for predicting the answer pas-
sage title>. This simple auxiliary loss introduces
implicit regularization for the reader and turns to
be beneficial for the final QA performance.

4 Experiments

Setup Our experiments mainly focus on the
“bridge” questions of which the supporting pas-
sages can form a reasoning chain and the an-
swers can be found in the last passage. For the
“comparison” questions in the dataset, the topics
for comparison are often explicitly mentioned in
the questions, so IR methods are often sufficient
and we keep the IR retrieved passages for com-
parison answer prediction. Because HotpotQA
does not provide training passages for the open-
domain setting, we use a hybrid tf-idf and bm25
approach to retrieve 10 start passages for each
training question. For the dev and test questions,
we directly run the trained bridge reasoner on the
start passages retrieved by HotpotQA’s default IR
approach. To further expand the coverage of the
start passages, we find a useful external entity link-
ing tool* and we append the abstracts of the Top2

3The passage titles are included as part of the context for
QA.
‘https://tagme.d4science.org/tagme/
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Approach | Hits@10
HotpotQA IR | 484
Our Methods
Bridge Reasoner 76.6
w/o local context evidence 75.4
w/o passage content evidence 65.7
Bridge Reasoner + entity linking 80.6

Table 1: Answer passage prediction performance, measured

by Hits@10 on dev bridge questions.

Dev Test
Model EM Fl | EM Fl
Methods w/o BERT
HotpotQA Baseline | 24.68 3436 | 23.95 32.89
GRN - - 27.34  36.48
Ours 36.81 48.48 | 36.04 4743
w/o EL 35.00 46.16 - -
Methods with BERT
GRN + BERT - - 29.87 39.14
CogQA 376 494 | 37.12 4887
w/o EL 34.6 46.2 - -
w/o re-scoring 33.6 45.0 - -
Methods with Unknown Usage of BERT
DecompRC - - 30.00 40.65
MUPPET - - 30.61 40.26

Table 2: QA performance on HotpotQA. The underline
methods use the same resource, but our method does not use
any pre-trained contextual embeddings like BERT.

returned Wikipedia articles for both bridge reason-
ing and answer prediction.

Answer Passage Prediction The performance
of the bridge reasoner on answer passage predic-
tions is shown in Table 1. Overall, the bridge
reasoner retrieves the answer passage with sig-
nificantly higher accuracy than HotpotQA’s IR
method. We also see that the local context evi-
dence is more effective than the passage content
evidence for answer passage prediction. Since
conventional IR methods also use passage content
for ranking, the results here validate our assump-
tion that the bridges can be better inferred by read-
ing the context of the start passages.

Question Answering Results Table 2 shows the
final multi-hop QA performance. We compare
several concurrent systems on the leaderboard, in-
cluding the newly published CogQA (Ding et al.,
2019) and a few anonymous results that are re-
leased at the same period as CogQA, e.g., MUP-
PET, GRN, and DecompRC. Most of the top sys-
tems on the leaderboard benefit from the pre-
trained contextual embedding BERT, while our
method is trained from scratch. We categorize all
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Bridge Only Full Dev
Model EM Fl | EM F1
Our approach 3419 47.16 | 36.81 48.48
w/o EL 3291 4542 | 3500 46.16
w/o Multi-Task 3291 46.13 | 3580 47.14
w/o Bridge Reasoner | 22.52 32.78 | 27.05 36.67

Table 3: QA performance ablation on the development set.

the systems according to their usages of BERT.
Among all the results without BERT, our approach
shows a huge advantage and is about 10% higher
in terms of both EM and F1 compared to the cur-
rent known best system w/o BERT (GRN). Since
our reader has the same architecture as the Hot-
potQA baseline, this shows the great potential of
our bridge reasoner. When compared to models
w/ BERT, i.e., the CogQA, our result is still com-
petitive. Similarly to CogQA, we also investigate
the passage initialization with question entity link-
ing, and observed significant performance boost.
Note that the CogQA paper does not provide de-
tails of the entity linker, so the results with our en-
tity linker may not be the same to the one used by
CogQA. Furthermore, when entity linking is not
used, our method and CogQA start with the same
initial passages. This gives an apple-to-apple com-
parison except that ours does not use BERT. Ac-
cording to the dev results, our method is on par
with CogQA (35.0 v.s. 34.6 for EM and both 46.2
for F1). This proves that our bridge reasoning
method is superior to the cognitive graph gener-
ator in CogQA.

Ablation Study Table 3 gives ablation results on
the dev set, where both entity linking and the aux-
iliary objective slightly improve the performance.
As the focus of the paper is to improve the cover-
age of answer passages for “bridge” questions, we
also report the “bridge” question portion where the
improvement is more significant.

5 Conclusion

This paper introduces an important sub-problem
of bridge reasoning for the task of multi-hop QA
in the open-domain setting. We propose a bridge
reasoner that utilizes multiple types of evidence to
derive the passages that cover the answers. The
reasoner significantly improves the coverage of
answer passages than IR methods. With the pre-
dicted passages, we show that a standard reading
comprehension model is able to achieve similar
performance as the state-of-the-art method that re-
quires BERT in multiple modules.
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