
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, pages 121–131
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

121

Bacteria Biotope at BioNLP Open Shared Tasks 2019
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Abstract

This paper presents the fourth edition of the
Bacteria Biotope task at BioNLP Open Shared
Tasks 2019. The task focuses on the extrac-
tion of the locations and phenotypes of mi-
croorganisms from PubMed abstracts and full-
text excerpts, and the characterization of these
entities with respect to reference knowledge
sources (NCBI taxonomy, OntoBiotope ontol-
ogy). The task is motivated by the importance
of the knowledge on biodiversity for funda-
mental research and applications in microbi-
ology. The paper describes the different pro-
posed subtasks, the corpus characteristics, and
the challenge organization. We also provide
an analysis of the results obtained by partici-
pants, and inspect the evolution of the results
since the last edition in 2016.

1 Introduction

In this paper, we present the fourth edition1 of the
Bacteria Biotope (BB) task. The task was intro-
duced in 2011. It has the ambition of promot-
ing large-scale information extraction (IE) from
scientific documents in order to automatically
fill knowledge bases in the microbial diversity
field (Bossy et al., 2012). BB 2019 is part of
BioNLP Open Shared Tasks 20192. BioNLP-OST
is a community-wide effort for the comparison and
evaluation of biomedical text mining technologies
on manually curated benchmarks.

A large amount of information about microbes
and their properties that is critical for microbiol-
ogy research and development is scattered among
millions of publications and databases (Chaix
et al., 2019). Information extraction as framed by
the Bacteria Biotope task identifies relevant enti-
ties and interrelationships in the text and map them
to reference categories from existing knowledge

1https://sites.google.com/view/bb-2019
2https://2019.bionlp-ost.org/

resources. This information can thus be combined
with information from other sources referring to
the same knowledge resources. The knowledge re-
sources used in the BB task are the NCBI taxon-
omy3 (Federhen, 2011) for microbial taxa and the
OntoBiotope ontology4 (Nédellec et al., 2018) for
microbial habitats and phenotypes. The large size
of these resources relative to the small number of
training examples reflects the real conditions of IE
application development, whilst it challenges cur-
rent IE methods. The lexical richness of the two
resources partially offsets the difficulty.

Compared to the 2016 corpus that contained
only scientific paper abstracts from the PubMed
database (Deléger et al., 2016), the 2019 corpus
is enriched with extracts from full-text articles.
We introduced a new entity type (phenotype) and
a new relation type (linking microorganisms and
phenotypes). Phenotypes are observable charac-
teristics such as morphology, or environment re-
quirement (e.g. acidity, oxygen). It is very valu-
able information for studying the ability of a given
microbe to adapt to an environment (Brbić et al.,
2016). The definition of microorganism pheno-
type in the OntoBiotope ontology includes host in-
teraction characteristics (e.g. symbiont) and com-
munity behavior and growth habit (e.g. epilithic).
The task organization and the evaluation metrics
remain unchanged.

2 Task Description

The representation scheme of the Bacteria Biotope
task contains four entity types:

• Microorganism: names denoting microor-
ganism taxa. These taxa correspond to mi-
croorganism branches of the NCBI taxon-

3https://www.ncbi.nlm.nih.gov/taxonomy
4https://tinyurl.com/OntoBiotope2019

https://sites.google.com/view/bb-2019
https://2019.bionlp-ost.org/
https://www.ncbi.nlm.nih.gov/taxonomy
https://tinyurl.com/OntoBiotope2019
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omy. The set of relevant taxa is given on the
BB task website.

• Habitat: phrases denoting physical places
where microorganisms may be observed;

• Geographical: names of geographical places;

• Phenotype: expressions describing microbial
characteristics.

The scheme defines two relation types:

• Lives in relations which link a microorgan-
ism entity to its location (either a habitat or
a geographical entity, or in few rare cases a
microorganism entity);

• Exhibits relations which link a microorgan-
ism entity to a phenotype entity.

Arguments of relations may occur in different
sentences. In addition, microorganisms are nor-
malized to taxa from the NCBI taxonomy. Habi-
tat and phenotype entities are normalized to con-
cepts from the OntoBiotope ontology. We used the
BioNLP-OST-2019 version of OntoBiotope avail-
able on AgroPortal 5. We used the NCBI Taxon-
omy version as available on February 2, 2019 from
NCBI website 6. Copies of both resources can be
downloaded from the task website. The microor-
ganism part of the taxonomy contains 903,191
taxa plus synonyms, while the OntoBiotope on-
tology includes 3,601 concepts plus synonyms
(3,172 for the Habitat branch and 429 for the Phe-
notype branch of the ontology).

Geographical entities are not normalized.
Figure 1 shows an example of a sentence anno-

tated with normalized entities and relations.
As in the 2016 edition, we designed three tasks,

each including two modalities, one where entity
annotations are provided and one where they are
not and have to be predicted.

2.1 Entity Normalization
The first task focused on entity normalization.

In the BB-norm modality of this task, partici-
pant systems had to normalize textual entity men-
tions according to the NCBI taxonomy for mi-
croorganisms and to the OntoBiotope ontology for
habitats and phenotypes.

In the BB-norm+ner modality, systems had to
recognize the mentions before normalizing them.

5http://agroportal.lirmm.fr/ontologies/ONTOBIOTOPE
6ftp://ftp.ncbi.nih.gov/pub/taxonomy

2.2 Relation Extraction

The second task focused on the extraction of the
two types of relations— Lives in relations among
microorganism, habitat and geographical entities,
and Exhibits relations between microorganism and
phenotype entities.

In the BB-rel modality, participant systems
only had to extract the relations, while in the
BB-rel+ner modality they had to perform entity
recognition in addition to relation extraction.

2.3 Knowledge Base Extraction

The goal of the third task is to build a knowl-
edge base using the entities and relations extracted
from the corpus. It can be viewed as the combina-
tion of the previous tasks, followed by a merging
step. Participant systems must normalize entities
and extract relations.

In the BB-kb modality, participant systems
had to perform normalization and relation extrac-
tion with entity mentions being provided. In the
BB-kb+ner modality, they had to perform entity
recognition as well.

3 Corpus Description

3.1 Document Selection

The BB task corpus consists of two types of doc-
uments: PubMed references (titles and abstracts)
related to microorganisms, and extracts from full-
text articles related to beneficial microorganisms
living in food products.

The PubMed references are the same as the 215
references of the Bacteria Biotope 2016 corpus.
They were sampled from all PubMed entries in-
dexed with a term from the Organisms/Bacteria
subtree of the MeSH thesaurus. The full selection
process is described in Deléger et al. (2016).

Full-text extracts were selected from scientific
articles about microorganisms of food interest and
annotated by microbiologist experts in the context
of the Florilege project (Falentin et al., 2017). We
reused and complemented this corpus for the BB
task.

Because manual annotation is time-consuming
and experts have limited time to dedicate to this
task, they did not annotate the full articles. In-
stead, they chose the paragraphs and sentences
they found the most informative in the articles.
Thus, this part of the BB corpus is composed of
177 extracts of variable lengths (from one single
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HabitatGeographical

Ontobiope OBT:001828
tortoise

[...] both M. agassizii and M. testudineum are present in Georgia populations of gopher tortoises

and that clinical disease is apparent in populations where both pathogens are present.

Microorganism Microorganism

Phenotype

Lives_in

Exhibits

Ontobiope OBT:002669
animal pathogen

NCBI taxon 33922
Mycoplasma agassizii

NCBI taxon 244584
Mycoplasma testudineum

Figure 1: Annotation example

sentence to a few paragraphs) selected from 20 ar-
ticles.

3.2 Annotation
The PubMed references were already annotated as
part of the 2016 edition. We revised these annota-
tions to add phenotype entities with their concept
normalization and Exhibits relations. Habitat an-
notations were also revised to take into account the
new and enriched version of the OntoBiotope on-
tology (compared to the 2016 version7).

We also extended the existing annotations of the
full-text extracts of the Florilege project by assign-
ing normalized concepts to the entities.

Annotation revision was performed by six an-
notators with backgrounds in biology, computer
science and natural language processing. All doc-
uments were annotated independently by two an-
notators and disagreements were resolved through
an adjudication phase. Detailed annotation guide-
lines (Bossy et al., 2019) were provided to the an-
notators and were regularly updated following is-
sues raised during the annotation or adjudication
phases.

The inter-annotator agreement was computed
by evaluating one of the two annotations before
adjudication against the other. Table 1 summarizes
the inter-annotator agreement for named entities,
normalization and relations. The metrics used for
inter-agreement are the same as for the evaluation
of predictions and thus are described below (5.1).

3.3 Descriptive Statistics
Table 2 gives the size of the corpus, in terms of
documents, words, sentences and annotated ele-

7http://2016.bionlp-st.org/tasks/bb2/
OntoBiotope_BioNLP-ST-2016.obo

Named-entities (F1) 0.893
Normalization (semantic similarity) 0.974
Relations (F1) 0.786
BB-norm+ner evaluation (SER) 0.322
BB-norm+ner evaluation (F1) 0.823
BB-rel+ner evaluation (SER) 0.448
BB-rel+ner evaluation (F1) 0.765
BB-kb+ner evaluation 0.723

Table 1: Inter-annotator agreement metrics (SER
stands for Slot Error Rate).

ments. The last row shows the number of unique
relations in the whole corpus, i.e. the unique pairs
of microorganism and habitat/phenotype concepts
that are in a relation. The proportion is rather high
(1,931 out of a total of 3,578 occurrences), which
reflects the rich information content of the corpus.

Documents 392
Words 60,402
Unique words 12,566
Sentences 2,646
Entity mentions 7,232
Unique entity mentions 3,300
Concepts 1,072
Relations 3,578
Unique relations between concepts 1,931

Table 2: Global statistics of the corpus

In the following, we present more detailed
statistics and highlight corpus characteristics that
may be challenging for the participants.

http://2016.bionlp-st.org/tasks/bb2/OntoBiotope_BioNLP-ST-2016.obo
http://2016.bionlp-st.org/tasks/bb2/OntoBiotope_BioNLP-ST-2016.obo
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3.3.1 Entities and Concepts

Table 3 shows the number of mentions, unique
(lemmatized) mentions, concepts and average
number of mentions per concept for each entity
type. Habitat entities are the most frequent, fol-
lowed by Microorganism entities. Geographical
entities are very scarce.

There is much more variation in the expression
of habitats and phenotypes than in that of microor-
ganisms. There is an average of respectively 4
and 3.5 unique mentions per habitat and pheno-
type concept while microorganisms only have 1.9.
Their proportion of unique entities out of all men-
tions is also higher (respectively 50.6% and 45.2%
vs. 38.2% for microorganisms).

The proportion of direct mappings (i.e., ex-
act string matches, taking into account lemma-
tization) between entity mentions and labels of
concepts (from the NCBI taxonomy or the Onto-
Biotope ontology) is displayed on Figure 2. It em-
phasizes once more the variability of Habitat and
Phenotype entity expressions, with respectively
72.5% and 91.2% mentions that do not exactly
match a concept label or synonym. Among exact
matches, a small proportion of mentions are not
actually normalized with the concept whose label
they match. These are “contextual normalization”
cases, i.e. entities are normalized with a more spe-
cific concept which can be inferred from the con-
text. These often correspond to lexical coreference
cases.
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42.5%

23.5%
8.2%

2.7%

4.0%

0.6%

54.8%

72.5%

91.2%

Exact match Exact match w/ diff. norm.
No exact match

Figure 2: Exact matches between entity mentions and
concepts. The exact match label refers to entities ex-
actly matching the concept they are normalized with;
the exact match w/ diff. norm. label refers to entities
exactly matching a concept but normalized with a dif-
ferent one; the no exact match label refers to entities
that do not match exactly a concept.

A distinctive feature of the BB task is that mul-
tiple concepts may be assigned to a given entity
mention. Multiple normalization happens when
two (or more) concepts can describe an entity
and are all deemed necessary because each con-
cept corresponds to a different aspect of the en-
tity. An example of such a case is the Habitat en-
tity “diseased cow” which is normalized by both
the <cow> and <animal with disease> concepts.
This is the case mainly for Habitat entities (8.7%),
and rarely happens for Phenotype entities (0.6%)
and Microorganism entities (only one occurrence).

Another characteristic of the corpus is the pres-
ence of nested entities (entities embedded in an-
other larger entity) and discontinuous entities (en-
tities split in several fragments). Both phenomena
can be challenging for machine-learning methods
and are often ignored. The proportion of discon-
tinuous entities in the corpus is limited, with a total
of 3.7%. Nested entities are more frequent (17.8%
in total), especially for habitats. For instance, the
Habitat entity “cheese making factory” also con-
tains the smaller Habitat entity “cheese”.

3.3.2 Relations
Table 4 shows the number of relations for both
Lives in and Exhibits types, including intra-
sentence and inter-sentence relations. Intra-
sentence relations involve entities occurring in the
same sentence while inter-sentence relations in-
volve entities occurring in different sentences, not
necessarily contiguous. Inter-sentence relations
are known to be challenging for automatic meth-
ods. Their proportion in the corpus is not negli-
gible (17.5% in total). An example can be seen
in the following extract: Vibrios [. . . ] are ubiq-
uitous to oceans, coastal waters, and estuaries.
[. . . ] The bacterial pathogen is a growing con-
cern in North America. There is an inter-sentence
relation between the two underlined entities.

3.3.3 Training, Development and Test Sets
The BB corpus is split into training, development
and test sets. In practice, there are two test sets,
one for the modalities involving entity recogni-
tion (the “+ner” sub-tasks) and one for the modal-
ities where entity annotations are given. We kept
the corpus division of the 2016 edition for the
PubMed references. This was possible because
the gold annotations of the test set were never re-
leased to the public. Then we split the Florilege
full-text extracts using the same proportions as for
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Microorganism Habitat Phenotype Geographical
Entity mentions 2,487 3,506 1,102 137
Unique entity mentions 950 1,774 498 78
Concepts 491 440 141 N/A
Unique mentions per concept (average) 1.9 4.0 3.5 N/A

Table 3: Statistics for each entity type

Intra-sent. Inter-sent. Total
Lives In 2,099 (79.8%) 532 (20.2%) 2,631
Exhibits 852 (90.0%) 95 (10.0%) 947
Total 2,951 (82.5%) 627 (17.5%) 3,578

Table 4: Statistics for each relation type

the PubMed references. Figure 3 shows the distri-
bution of documents, entities, concepts and rela-
tions in the training, development and test sets of
the BB-kb+ner task, as an example. The propor-
tions are similar in all sub-tasks. Details for each
sub-task can be found on the task website8.
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Figure 3: Distribution of documents, entities, concepts
and relations in the training, development and test sets
(BB-kb+ner task)

The proportion of concepts seen in the train-
ing set out of all concepts present in the knowl-
edge resources is low for all entity types, which
means that there is a large number of unseen exam-
ples (0.02% for microorganisms, 7.3% for habi-
tats, and 15.6% for phenotypes). It emphasizes the
need for methods that handle few-shot and zero-
shot learning. Microorganisms have the lowest
proportion, due to the large size of the microor-
ganism taxonomies. However, the names of the

8https://sites.google.com/view/
bb-2019/dataset/corpus-statistics

microorganism entities show little variation in the
corpus compared to habitat and phenotype types,
and should be easier to recognize.

4 Supporting Resources

Supporting resources were made available to par-
ticipants. They consist of outputs from state-of-
the-art tools applied to the BB data sets (e.g., POS
tagging, syntactic parsing, NER, word embed-
dings). We proposed in-house embeddings trained
on selected relevant PubMed abstracts, and links
to external embeddings (Pyysalo et al., 2013; Li
et al., 2017) trained on PubMed and Wikipedia.
The full list of tools and resources is available on
the website.

5 Evaluation

5.1 Metrics

We used the same evaluation metrics as in the
2016 edition. The underlying rationale and for-
mula of each score is detailed in Deléger et al.
(2016); Bossy et al. (2013). Additionally we com-
pute a variety of alternate scorings in order to dis-
tinguish the strengths of each submission. The
evaluation tool was provided to participants9.

Normalization accuracy is measured through a
semantic similarity metric, and micro-averaging
across entities. Relation extraction is measured
with Recall, Precision, and F1.

However for tasks where systems must recog-
nize entities, we used the Slot Error Rate (SER) in-
stead of F1 in order to avoid sanctioning twice the
inaccuracy of boundaries. The SER measures the
amount of errors according to three types: inser-
tions (false positives), deletions (false negatives),
and substitutions (partial matches). The SER is
normalized by the number of reference items. The
higher the value the worse is the prediction, and
there is no upper bound since insertions can ex-
ceed the number of items in the reference.

9https://github.com/Bibliome/bionlp-st

https://sites.google.com/view/bb-2019/dataset/corpus-statistics
https://sites.google.com/view/bb-2019/dataset/corpus-statistics
https://github.com/Bibliome/bionlp-st
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Confidence intervals were computed for each
metric with the bootstrap resampling method
(90%, n=100).

5.2 Baseline
We designed simple baselines for each sub-task in
order to provide a comparison reference. We pre-
processed the corpus with the AlvisNLP10 engine,
that performs tokenization, sentence splitting, and
lemmatization using the GENIA tagger (Tsuruoka
et al., 2005).

• BB-norm: we performed exact matching be-
tween lemmatized entities and the knowledge
resources. When no match was found, we
normalized habitats and phenotypes with the
top-level concept of the Habitat and Pheno-
type ontology branches, and microorganisms
with the high-level <Bacteria> taxon.

• BB-norm+ner: we used our exact matching
approach on the lemmatized text of the docu-
ments instead of on given entity mentions.

• BB-rel: we used a simple co-occurrence ap-
proach, linking pairs of entities occurring in
the same sentences.

• BB-rel+ner: we first detected entities using
our exact matching strategy for microorgan-
isms, habitats and phenotypes. For geograph-
ical entities, we used the Stanford Named
Entity Recognition tool (Finkel et al., 2005).
Then we linked entities occurring in the same
sentences, as for the BB-rel task.

• BB-kb: we combined the BB-norm and BB-
rel approaches.

• BB-kb+ner: we combined our BB-norm+ner
method with our co-occurrence approach.

6 Outcome

6.1 Participation
The blind test data was released on the 22nd of
July 2019 and participants were given until the
31st of July to submit their predictions. Each team
was allowed two submissions to each sub-task.

Ten teams participated to all six sub-tasks and
submitted a total of 31 runs. Table 5 details team
affiliations. Teams are from five different coun-
tries in Europe, Asia, and North America. Six of

10https://bibliome.github.io/alvisnlp/

the teams are affiliated to universities, three to in-
dustry companies, and one has a mixed university-
industry affiliation.

Team Affiliation

AliAI
(Zhang et al., 2019)

Alibaba

Amrita Cen Amrita Vishwa
Vidyapeetham

AmritaCen healthcare Amrita Vishwa
Vidyapeetham

BLAIR GMU
(Mao and Liu, 2019)

George Mason
University

BOUN-ISIK
(Karadeniz et al.,
2019)

Boğaziçi University &
Işık University

MIC-CIS
(Gupta et al., 2019)

Siemens AG &
Ludwig Maximilian
University of Munich

PADIA BacReader
(Deng et al., 2019)

Ping An Technology

UTU University of Turku

whunlp
(Xiong et al., 2019)

Wuhan University

Yuhang Wu Yunnan University

Table 5: Participating teams and their affiliations.

6.2 Participants’ Methods and Resources

As in 2016, most methods are based on Machine
Learning algorithms.

For named entity recognition, the CRF al-
gorithm is still the most used (BLAIR GMU),
though sometimes combined with a neural net-
work (MIC-CIS).

In 2016, the majority of participants used
SVMs for relation extraction. In this edition
nearly all participants used neural networks in
a diversity of architectures: multi-layer percep-
tron (Yuhang Wu), bi-LSTM (whunlp), AGCNN
(whunlp). One participant predicted relations
through filtered co-occurrences (BOUN-ISIK),
and another by bagging SVM and Logistic Regres-
sion (BLAIR GMU). Note that AliAI employed
a multi-task architecture similar to BERT (Devlin

https://bibliome.github.io/alvisnlp/
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et al., 2019) to perform both named-entity recog-
nition and relation extraction.

The normalization task was addressed in a more
diverse manner. On one hand several distinct
ML algorithms were used to discriminate entity
categories: ensemble CNNs (PADIA BacReader),
kNN with reranking (BOUN-ISIK), or Linear
Regression (BLAIR GMU). On the other hand
MIC-CIS employed an exact and an approximate
matching algorithm.

Word embeddings trained with Word2Vec
(Mikolov et al., 2013) on a domain-specific cor-
pus (PubMed abstract, PMC articles) seem to be
an universal resource since all but one submissions
for any task used them. BLAIR GMU used con-
textual embeddings based on BERT and XLNet
(Yang et al., 2019).

Dependency parsing was used in every relation
extraction submission, and also for normalization
(BOUN-ISIK).

The most popular NLP tool libraries are Stan-
ford CoreNLP (Manning et al., 2014) and NLTK
(Bird et al., 2009). We also note that the Word-
Piece segmentation is used even in systems that
do not use BERT.

6.3 Results

In this section we report the results for all sub-
tasks, and highlight notable results as well as
a comparison with results obtained in 2016 in
the third edition of the Bacteria Biotope task in
BioNLP-ST 2016. The task site presents detailed
results, including main and alternate metrics, as
well as confidence intervals.

However comparison with 2016 is limited by
the evolution of the task. On one hand the data set
has increased approximately by 50%, and the an-
notations were revised and their quality improved.
On the other hand the tasks were made harder be-
cause the schema was enriched with an entity type
and a relation type, and the target taxa have been
extended from Bacteria only to all microorgan-
isms.

6.3.1 BB-norm and BB-norm+ner
The main results as well as the results for each en-
tity type are shown in Tables 6 and 7. BOUN-ISIK
and BLAIR GMU obtained the best overall results
for BB-norm, and MIC-CIS for BB-norm+ner.

The results for each entity type highlight differ-
ent profiles. While BOUN-ISIK predicts accurate
normalizations for habitat entities for BB-norm,

BLAIR GMU predicts better normalizations for
microorganism entities. PADIA BacReader’s pre-
dictions for habitats is on par with BOUN-ISIK,
and their normalization of phenotype entities is
outstanding.

As for BB-norm+ner, MIC-CIS consistently
predicts the best entity boundaries and normaliza-
tions for all types.

In comparison to 2016, the state of the art for
multi-word entity recognition and normalization,
like habitats and phenotypes, has improved. We
note that with the introduction of new taxa the
recognition and normalization of taxa may have
been rendered more difficult than anticipated since
the results are lower than obtained in 2016.

6.3.2 BB-rel and BB-rel+ner
The results of BB-rel and BB-rel+ner are given in
Tables 8 and 9 respectively. The table includes the
scores obtained for each relation type, as well as
the best results obtained in 2016.

The highest F-score for BB-rel was obtained by
the whunlp submission, with AliAI as a very close
contender. UTU, and very closely behind AliAI,
obtained the highest Precision, whereas BOUN-
ISIK the highest Recall. The Recall of the baseline
prediction indicates the highest recall possible for
relations contained in a single sentence. No partic-
ipating system addresses cross-sentence relations,
which appears to be the most productive lead to
increase performance.

Most submissions outperform the best predic-
tions of 2016 in at least one score, and five of the
eleven submissions obtain a significantly higher F-
score.

For BB-rel+ner, AliAI obtains the highest re-
call and precision, consistently for Lives In and
Exhibits relations. This submission also outper-
forms significantly the state of the art set in 2016.

6.3.3 BB-kb and BB-kb+ner
BLAIR GMU is the only team to submit to the
BB-kb and BB-kb+ner tasks, their results are
shown in Table 10. The knowledge-base task
and evaluation necessarily require end-to-end pre-
diction systems that must perform named-entity
recognition, entity normalization, relation extrac-
tion, as well as contributory tasks like POS-
tagging, or coreference resolution. The limited
scores obtained might be explained by the accu-
mulation of errors by successive prediction steps.

Since the data of all sub-tasks comes from the



128

Team All types Habitats Phenotypes Microorganisms
Baseline 0.531 0.559 0.581 0.470
Best 2016 0.679 0.620 0.801
BOUN-ISIK-2 0.679 0.687 0.566 0.711
BLAIR GMU-2 0.678 0.615 0.646 0.783
BOUN-ISIK-1 0.675 0.687 0.566 0.700
BLAIR GMU-1 0.661 0.586 0.628 0.783
PADIA BacReader-1 0.633 0.684 0.758 0.511
AmritaCen healthcare-1 0.514 0.522 0.646 0.450

Table 6: Results for the BB-norm sub-task. The metric is the average of the semantic similarity between the
reference and the predicted normalizations. Best scores are in bold font, several scores are in bold if their difference
is not significant.

Team All types Habitat Phenotype Microorganism
Baseline 0.823 0.830 0.872 0.790
Best 2016 0.628 0.775 0.399
MIC-CIS-1 0.716 0.728 0.747 0.686
MIC-CIS-2 0.787 0.855 0.759 0.715
BLAIR GMU-1 0.793 0.785 0.775 0.810
BLAIR GMU-2 0.806 0.722 0.894 0.865
AmritaCen healthcare-1 2.571 3.626 1.597

Table 7: Results for the BB-norm+ner sub-task. The metric is the Slot Error Rate (lower is better) and takes into
account false positives and negatives, entity boundary accuracy, and normalization accuracy. Best scores are in
bold font, several scores are in bold if their difference is not significant.

Average Lives In Exhibits
Team F1 Recall Precision F1 Recall Prec. F1 Recall Prec.
Baseline 0.635 0.801 0.525 0.621 0.767 0.521 0.677 0.915 0.538
Best 2016 0.558 0.646 0.623
whunlp-1 0.664 0.702 0.629 0.643 0.664 0.624 0.725 0.829 0.644
AliAI-1 0.650 0.620 0.682 0.648 0.606 0.697 0.654 0.667 0.642
Yuhang Wu-1 0.605 0.670 0.551 0.593 0.645 0.549 0.640 0.752 0.556
BOUN-ISIK-1 0.603 0.731 0.514 0.592 0.709 0.508 0.640 0.808 0.530
BLAIR GMU-2 0.594 0.650 0.548 0.578 0.618 0.543 0.642 0.752 0.560
BOUN-ISIK-2 0.575 0.601 0.552 0.562 0.562 0.561 0.613 0.729 0.529
UTU-2 0.550 0.474 0.655 0.495 0.417 0.610 0.715 0.662 0.777
BLAIR GMU-1 0.549 0.496 0.617 0.526 0.463 0.609 0.619 0.603 0.636
UTU-1 0.529 0.428 0.694 0.505 0.403 0.679 0.603 0.510 0.738
Amrita Cen-1 0.500 0.617 0.420 0.499 0.643 0.407 0.503 0.531 0.478
Amrita Cen-2 0.493 0.610 0.414 0.491 0.642 0.397 0.505 0.502 0.507

Table 8: Results for the BB-rel sub-task. Best scores are in bold font, several scores are in bold if their difference
is not significant.
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Average Lives In Exhibits
Team SER Recall Prec. SER Recall Prec. SER Recall Prec.
Baseline 1.211 0.134 0.229 1.266 0.171 0.228 1.211 0.134 0.229
Best 2016 0.984 0.111 0.498
AliAI-1 0.954 0.351 0.509 0.941 0.309 0.520 0.982 0.449 0.492
BLAIR GMU-1 1.013 0.330 0.456 1.020 0.325 0.451 0.996 0.339 0.468
BLAIR GMU-2 1.059 0.331 0.425 1.046 0.320 0.435 1.086 0.358 0.406
UTU-1 1.085 0.209 0.332 1.091 0.182 0.307 1.069 0.272 0.382
UTU-2 1.227 0.182 0.267 1.169 0.168 0.279 1.362 0.217 0.249

Table 9: Results for the BB-rel+ner sub-task (Prec. = Precision). Best scores are in bold font, several scores are in
bold if their difference is not significant.

same pool of annotated documents, we were able
to build a BB-kb prediction by combining the best
predictions for the BB-norm and BB-rel tasks.
The combination of the microorganism normal-
ization by BLAIR GMU, the habitat and phe-
notype normalization by PADIA BacReader, and
relations by whunlp yield a much higher preci-
sion. The best result for BB-kb+ner was ob-
tained by combining the relation extraction of
BLAIR GMU and the normalization of MIC-
CIS. The named entities concurrently predicted by
the BB-norm+ner and BB-rel+ner systems were
matched by maximizing the overlap segment.

Team BB-kb BB-kb+ner
Baseline 0.216 0.264
Combined 0.505 0.290
BLAIR GMU-2 0.308 0.269
BLAIR GMU-1 0.291 0.259

Table 10: Results for the BB-kb and BB-kb+ner sub-
tasks. The metric is the average of the semantic simi-
larity between the reference and the predicted normal-
izations for all relation arguments after removing dupli-
cates at the corpus level. Best scores are in bold font,
several scores are in bold if their difference is not sig-
nificant.

7 Conclusion

The Bacteria Biotope Task arouses sustained in-
terest with a total of 10 teams participating in
the fourth edition. As usual, the relation extrac-
tion sub-tasks (BB-rel and BB-rel+ner) were the
most popular, demonstrating that this task is still
a scientific and technical challenge. The most no-
table evolution of participating systems since the
last edition is the pervasiveness of methods based
on neural networks and word embeddings. These

systems yielded superior predictions compared to
those in 2016. As mentioned previously, there is
still much room for improvement in addressing
cross-sentence relation extraction.

We also note a growing interest in the normal-
ization sub-tasks (BB-norm and BB-norm+ner).
The predictions improved for habitat entities, and
are very promising for phenotype entities. How-
ever the generalization from bacteria-only taxa in
2016 to all microorganisms in this edition proved
to pose an unexpected challenge.

Knowledge base population (BB-kb and BB-
kb+ner) is the most challenging task, since it re-
quires a wider set of capabilities. Nevertheless we
demonstrated that the combination of other sub-
task predictions allows to produce better quality
knowledge bases.

To help participants, supporting resources were
provided. The most used resources were pre-
trained word embeddings, and general-domain
named entities.

The evaluation on the test set will be maintained
online11 in order for future experiments to com-
pare with the current state of the art.
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