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Abstract

We participated in the BioNLP 2019 Open
Shared Tasks: binary relation extraction of
SeeDev task. The model was constructed us-
ing convolutional neural networks (CNN) and
long short term memory networks (LSTM).
The full text information and context informa-
tion were collected using the advantages of C-
NN and LSTM. The model consisted of two
main modules: distributed semantic represen-
tation construction, such as word embedding,
distance embedding and entity type embed-
ding; and CNN-LSTM model. The F1 value
of our participated task on the test data set of
all types was 0.342. We achieved the second
highest in the task. The results showed that
our proposed method performed effectively in
the binary relation extraction.

1 Introduction

The goal of Information Extraction (IE) (Finkel
et al., 2005) is to transform textual information in-
to structured information, and to focus on quick-
ly locating and finding useful information in large
amounts of data. Information Extraction (IE)
(Fader et al., 2011) is also capable of mining use-
ful data and hiding knowledge from a large num-
ber of corpus texts, which has led to some new
research methods in many disciplines. For exam-
ple, with the growing demand for key issues relat-
ed to life and biology, many biological problems
have fallen into the bottleneck due to inadequate
methods. Biological information extraction (Bio-
IE) emerges in time and attracts more and more
researchers to solve problems. For instance, in the
identification of named entities, the classification
of relationships between proteins and the extrac-
tion of links between drugs. In addition, informa-
tion extraction in the field of biology, especially
event extraction, has entered people’s views. This
will be a far-reaching task and a major biological
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challenge for information extraction tasks.

The BioNLP Shared Task Series is a represen-
tative of biomolecular event extraction and has
been held four times. This year is the fifth time
that BioNLP has shared tasks. The topics in this
series include fine-grained extraction, generaliza-
tion to knowledge base construction. In addition,
the scope of this task has become more exten-
sive in each time. For instance, the BioNLP 2016
Shared Task(Nédellec et al., 2016) contained three
separate parts, the Bacteria Biotope subtask (B-
B3), the Seed Development subtask (SeeDev) and
the Genia Event subtask (GE4). However, the
BioNLP 2019 Open Shared Task contains seven
separate parts, the Integrated structure, semantic-
s and coreference subtask (CRAFT), the Pharma-
CoNER task, the Active Gene Annotation Corpus
subtask (AGAC), the BB3, the SeeDev and the Re-
search Domain Criteria subtask(RDoc).

We mainly participated in the binary relation
extraction task, which is part of the SeeDev task.
The SeeDev task (Nédellec et al., 2013)(Chaix
et al., 2016) aims to promote complex event ex-
traction on regulations in plants from scientific
articles. It focuses on events describing genetic
and molecular mechanisms involved in seed devel-
opment of the model plant, Arabidopsis thaliana.
It involves n-ary and binary relation extraction.
Meanwhile, the SeeDev task was proposed for the
first time at BioNLP Shared Task 2016(Nédellec
et al., 2016) (Mehryary et al., 2016). This 2019
edition is a rerun of the task, with an evaluation
methodology more focused on the biological con-
tribution.

Many teams participated in the BioNLP 2016
Shared Task(He et al., 2016). For example,
VERSE uses a support vector machine (SVM) and
k-fold cross-validation to identify the best param-
eters.(Lever and Jones, 2016) DUTIR uses a deep
learning method that utilizes a convolutional neu-
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ral network(Li et al., 2016). Motivated by the pre-
vious study, based on CNN, we have integrated L-
STM(Hochreiter and Schmidhuber, 1997) to solve
the defect that convolutional neural networks can
not obtain context information. After improving
the method, we got good results.

The rest of our paper is structured as follows.
Section 2 introduces models. Section 3 describes
results and discussion. Conclusions are described
in Section 4.

2 Model

The SeeDev-binary task can be thought of as
a binary relationship extraction, which specifies
whether there is interaction between the two en-
tities. In relation extraction, the semantic and syn-
tactic information of a sentence plays an impor-
tant role. Traditional methods often require the
design and extraction of complex features based
on domain-specific knowledge (such as tree ker-
nels and graphics kernels) to construct the model.
As a result, this results in a much lower corpus-
dependent generation capability. Therefore, we
use CNN to replace complex manual design fea-
ture engineering, and learn the advanced function
automation by modeling the word embedding and
fully connected neural networks from the original
input through convolution and pooling operations.
Besides, we capture relative distance information
and entity types as complementary features of the
sentence. After that, we input the data processed
by the CNN into the LSTM. Because CNN do not
get good context information, and sometimes the
connection between text contexts can help us do
relation extraction more accurately. So, LSTM can
get text context information, which allows us to
get a better result in the end.

As shown in Figure 1, the model consists of two
modules: distributed semantic representation con-
struction, such as embedded characters, distance
embedding and entity type embedding, and CNN-
LSTM module. In the next section, we will intro-
duce more details.

2.1 Data preprocessing

When doing data preprocessing, first we use the
Stanford CoreNLP(Manning et al., 2014) tool to
process the task’s data. The text is divided into
sentences and tokenized. Parts-of-speech and lem-
mas are identified and a dependency parse is gen-
erated for each sentence. Then, we further process
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the preprocessed data.

2.2 Embedding

We use the context of two entities to predict the
type of relationship. In our task, the context is rep-
resented by words between two entities in a sen-
tence. Then, by analyzing the data, we observe
that different entities with different types have dif-
ferent mutual interaction probabilities if the entity
types satisfy the relationship constraints. There-
fore, the entity type of the two entities is the im-
portant factor of the predicted relationship type. In
our model, entity types are seen as a complement
to word embedding. In addition, we find that dis-
tance information usually plays an important role.
The distance can capture the relative position be-
tween two entities. So, we concatenate the word
embedding(Levy and Goldberg, 2014), type em-
bedding(Su and Wang, 2011), and distance em-
bedding(Cormode, 2003). We use the pre-trained
word embedding.

Then, we would introduce some formulas about
word embedding, entity type embedding and dis-
tance embedding.

LTw (S) =

[<W >p,<W >w,...<W>y, ,<W >g]

LTW,WT (S) =

[<W >py, s < W >p, < W >0 6]

LTya(S)

(< wH >d(By,Er)r o < we >d(Es,E1), 05 0]

where S stands for the sentences. F; and F»
are the type 1 and type 2 respectively. W stands
for the first word. W is the word embedding ta-
ble. W7 is type embedding table and W stands
for the distance embedding table. LTy (.S) is the
representation of word embedding. LTy, (S)
is the representation type embedding. LTy;4(S)
is the distance embedding. In the distance embed-
ding, zero vector(0) is used to pad the sentence.

"https://github.com/cambridgeltl/BioNLP-2016
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Figure 1: Our proposed CNN-LSTM based model
model dropout batch epoch F1 Cluster F1  Recall Precision
CNN 0.5 64 120 0.52 Comparison 05 0.6 0.43
CNN-LSTM | 0.5 64 120 0.60 Function 0.25 0.19 0.35
Regulation 0.34 047 0.27
Table 1: The F1 score of CNN and CNN-LSTM on the Genic Regulation | 0.23  0.24 0.22
dev data set for SeeDev-binary task Composition 0.35 0.57 0.25
Interaction 0.22 0.16 0.33

2.3 Model training

We run our model 5 times and use the maximum
as the final result of the model. In all model runs,
the dropout(Srivastava et al., 2014) is set to 0.5.
We found that our loss function tends to stabilize
when the epoch reaches around 120. So, we think
that our model can converge at this time, so set
epoch = 120. The batch size is set to 64. And,
we use a pooling approach that combines average
pooling and max pooling.

In this task, we choose the CNN-LSTM mod-
el to compare with a single CNN model. We find
that the CNN-LSTM model works better than a s-
ingle CNN model on development data set. So, we
choose the CNN-LSTM model in the final submis-
sion.

3 Results and discussion

The SeeDev-binary task data sets consist of three
parts which are the training set, the development
set, and the test set. There are a total of 87 sections
from 20 complete articles on Arabidopsis seed de-
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Table 2: The F1, recall and precision of cluster on the
test data set for SeeDev-binary task

Team F1 Recall Precision
MIC-CIS-1 | 0.373 0.511  0.295
YNU-junyi | 0.342 0458 0.273
Yunnan... 0.067 0.133 0.045
YNUBY 0.019 0.070 0.011

Table 3: The result of all types on the test data set for
SeeDev-binary task

Team F1 Recall Precision
MIC-CIS-1 | 0443 0.606 0.349
YNU-junyi | 0.394 0.528 0.314
Yunnan... 0.135 0.267 0.090
YNUBY 0.074 0.274 0.043

Table 4: The result of ignoring types on the test data
set for SeeDev-binary task



Binary relation type

F1 Recall Precision

Binds_To

0.31 0.28 0.35

Composes_Primary_Structure

0.34 0.44 0.28

Composes_Protein_Complex

0 0 0

Exists_At_Stage

0.14 0.1 0.25

Exists_In_Genotype

042 0.64 0.31

Interacts_With

0.09 0.06 0.19

Is_Involved_In_Process

0 0 0

Is_Localized_In

0.27 0.52 0.18

Is_Member_Of_Family

0.35 0.62 0.25

Is_Protein_Domain_Of

0.25 0.39 0.18

Occurs_In_Genotype

0.17 0.14 0.2

Occurs_During

0 0 0

Regulates_Accumulation

0.17 0.19 0.15

Regulates_Development_Phase

0.23 0.34 0.17

Regulates_Expression

0.22 0.25 0.19

Regulates_Molecule_Activity 0 0 0
Regulates_Process 043 0.66 0.32
Regulates_Tissue_Development | O 0 0

Transcribes_Or_Translates_To

0.34 0.38 0.32

Is_Linked_To

0.15 0.1 0.33

Is_Functionally _Equivalent_To

0.64 0.57 0.74

Has_Sequence_Identical _To

0.56 0.77 0.44

Table 5: Detailed results of our method on

velopment. This task defines 16 different types of
entities and 22 different types of binary relation-
ships.

Our method obtained F1 scores of 0.342 for al-
1 types and 0.394 for ignoring relation types and
direction on the test set. In this task, the orga-
nizer gives the results of the evaluation obtained
from three different evaluation conditions. Com-
pared with 2016 BioNLP Shared Task, the orga-
nizer has added two more evaluations in order to
have better biological contributions. These evalua-
tion conditions are global results, relations by type
cluster, and ignoring relation types and direction,
respectively. We obtained a good score compared
to the official results from different systems, and
we ranked the second among all teams. It proves
that our proposed method has good performance
in binary relation extraction.

Table 2 shows the F1, recall and precision of
cluster on the test data sets, and Table 3 shows the
result of all types on the test data sets. Table 4
shows the result of ignoring types on the test da-
ta sets and Table 5 shows detailed results of our
method on the test data set.
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the test data set for SeeDev-binary task

4 Conclusions

We use distributed semantic representation and
CNN-LSTM model to extract the binary relation-
ship between entities, then build a word embed-
ding with rich semantic knowledge, distance em-
bedding and entity type embedding to feed it into
the CNN and learn the intrinsic relationship be-
tween the candidate entities. In the task, our F1-
score of all types is 0.342, which indicates that our
proposed method works efficiently in extraction of
binary relations.

However, using only the original words embed-
ded in CNN-LSTM may not be sufficient to un-
derstand the hidden information between words.
Using our model to get this score does not mean
that the model works well in other tasks.

In the future, we will continue to focus more on
building rich distributed semantic embedding and
we will improve our model by changing our model
structure and adjusting paraments. In addition, we
will explore various neural networks with multi-
layer architectures, such as the attention mecha-
nism and capsule networks, to solve binary rela-
tionships or event extraction problems.
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