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Abstract

Named entity recognition has been extensively
studied on English news texts. However,
the transfer to other domains and languages
is still a challenging problem. In this pa-
per, we describe the system with which we
participated in the first subtrack of the Phar-
maCoNER competition of the BioNLP Open
Shared Tasks 2019. Aiming at pharmacolog-
ical entity detection in Spanish texts, the task
provides a non-standard domain and language
setting. However, we propose an architec-
ture that requires neither language nor domain
expertise. We treat the task as a sequence
labeling task and experiment with attention-
based embedding selection and the training
on automatically annotated data to further im-
prove our system’s performance. Our system
achieves promising results, especially by com-
bining the different techniques, and reaches up
to 88.6% F1 in the competition.

1 Introduction

The detection and classification of pharmaco-
logical and biomedical entities in texts is es-
pecially challenging due to the domain’s nature
with long and complex entity names, which usu-
ally requires the design and usage of handcrafted
rules and features. Natural language processing
(NLP) research focused on this topic for quite a
while on English texts, e.g., the drugs and chem-
ical names extraction challenge (CHEMDNER)
(Krallinger et al., 2015) or tracks for chemical en-
tity recognition at BioCreative (Pérez-Pérez et al.,
2017). Following these tasks, the Pharmaco-
logical Substances, Compounds and Proteins and
Named Entity Recognition track (PharmaCoNER)
is the first competition on this topic on Spanish
data (Gonzalez-Agirre et al., 2019).

Named entity recognition (NER) and clas-
sification is the first subtrack of Pharma-
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Las células son positivas para antitiroglobluina, CAM5.2 y S-100.

Figure 1: Annotated sample sentences (PRO. is short
for PROTEINAS).

CoNER and aims at distinguishing four en-
tity types: PROTEINAS, NORMALIZABLES, NO-
NORMALIZABLES, and UNCLEAR. Our model
was trained on all four entity types, although the
NO-NORMALIZABLES type was not considered
during the official evaluation due to its ambiguous
definition. Two annotated sample sentences from
the training data are shown in Figure 1.

In this paper, we describe our submissions to
and their results in the first subtrack of Phar-
maCoNER. We address this task as a sequence-
labeling problem and implement a system that
relies Neither on Language Nor on Domain
Expertise (NLNDE). For this, we use a combina-
tion of different state-of-the-art approaches from
NLP to tackle its challenges without the need for
handcrafted features.

We train recurrent neural networks with con-
ditional random field (CRF) output layers which
are state of the art for different sequence labeling
tasks, such as named entity recognition (Lample
et al., 2016), part-of-speech tagging (Kemos et al.,
2019) and de-identification (Liu et al., 2017). In
our different runs, we further explore the advan-
tages of domain-specific fastText embeddings that
have been pre-trained on SciELO and Wikipedia
articles (Soares et al., 2019) to investigate the im-
pact of domain knowledge. Note that the training
of these embeddings requires only a collection of
domain-specific text but no human domain exper-
tise. Based on these models, we train an attention-
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Figure 2: Architecture of our models. The label prefixes “B-" and “I-” show how we address the task as a sequence-
labeling task. The word representations are either the concatenated embeddings (in runs S1-S3) or the attention-

based weighted embeddings (in runs S4-S5).

based embedding selection function in order to
leverage multiple different word embeddings ef-
fectively. Finally, we extend the training data with
automatically annotated data, which was sampled
from the same domain and annotated with infor-
mation from Wikidata.'

2 Methods

In this section, we present our system, the at-
tention function for embedding selection, and the
noisy channel model.

2.1 NLNDE System

In Figure 2, the architecture of our models is de-
picted, which we explain in the following.

Input Embeddings. We tokenize the input with
the tokenizer provided by the shared task organiz-
ers (Intxaurrondo, 2019). We noticed that the tok-
enizer sometimes merges multi-word expressions
into a single token joined with underscores for
contiguous words. As a result, some tokens can-
not be aligned with the corresponding entity anno-
tations. To address this, we split those tokens into
their components in a postprocessing step. Then,
we represent each token with the following em-
beddings (see bottom right box of Figure 2):

o Character embeddings: We use the con-
catenated last forward and backward hid-
den states of a bidirectional long short-term

"https://www.wikidata.org/
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memory (BiLSTM) network (Hochreiter and
Schmidhuber, 1997) over character embed-
dings (50 dimensions, randomly initialized,
fine-tuned during training (Lample et al.,
2016)).

o Domain-independent fastText embeddings
(100 dimensions, pre-trained on Spanish
text (Grave et al., 2018)).

o Domain-specific fastText embeddings (100
dimensions, pre-trained on Spanish SciELO
and Wikipedia articles (Soares et al., 2019)).

e Byte-pair encoding embeddings (300 dimen-
sions, vocabulary size of 200,000, pre-trained
on Spanish text (Heinzerling and Strube,
2018)).

Note that except for the character embeddings, we
do not fine-tune any of the embeddings. All em-
beddings are concatenated into a single word rep-
resentation vector.

Word Features. We also experiment with ex-
tending the input representations with the follow-
ing features:

o Part-of-speech (POS): The POS tags are gen-
erated by the POS-tagger provided by the
shared task organizers (Intxaurrondo, 2019).
The tags are embedded into a 20-dimensional
randomly initialized embedding and learned
during training. The embedded vector is used
as the representation for the POS tag.


https://www.wikidata.org/

e Length: For each word, we encode its length
in a one-hot vector. Words with more than
nine characters share the same vector (10 di-
mensions).

Frequency: We consider the relative fre-
quency f of each word and bin the frequen-
cies into ten groups. The first group contains
the most frequent words that have relative
frequencies above 1% (f > 1%). The re-
maining bins are constructed in the following
manner: f > 0.5%, f > 0.1%, f > 0.05%,
etc. (one-hot encoded, 10 dimensions).

Word shape: We distinguish between up-
percased, lowercased, starts with capital
letter, numeric, mostly numeric, punctua-
tion, mostly punctuation, only letters, alpha-
numeric and other (one-hot encoded, 10 di-
mensions).

All features are concatenated into a single feature
vector f of 50 dimensions.

BiLSTM-CRF Layers. The input representa-
tion is fed into a BILSTM with a conditional ran-
dom field (CRF) output layer, similar to the model
of Lample et al. (2016). The CRF output layer is
a linear-chain CREF, i.e., it learns transition scores
between the output classes. For training, the for-
ward algorithm is used to sum the scores for all
possible sequences. During decoding, the Viterbi
algorithm is applied to obtain the sequence with
the maximum score.

Hyperparameters and Training. The hyperpa-
rameters are the same across all runs. We use a
BiLSTM hidden size of 256 and train the network
with the NADAM optimizer (Dozat, 2016) using a
learning rate of 0.002 and a batch size of 32. For
regularization, we employ early stopping on the
development set and apply dropout with probabil-
ity 0.5 on the input representations.

2.2 Attention for Embedding Selection

As we are combining different word embeddings,
some of them may be more beneficial for certain
words than others, e.g., domain-specific embed-
dings for in-domain words. Kiela et al. (2018)
used an attention mechanism for weighting and se-
lecting the best embeddings for each word. We ex-
tend this idea and propose the following attention
function to weight the embeddings depending on
additional word features.

28

For the attention-based models, all » embed-
dings e are mapped to the same size using a linear
mapping Q; € R¥*Fi without bias, with 2; € R¥
being the ¢-th embedding e; mapped from their
original size E; to the maximal embedding size
E = max,,(Ep).

z; = Qi€ (1)

In order to allow the model to make an informed
decision which embeddings to focus on, we use
the word features described in Section 2.1 as an
additional input to the attention function. The vec-
tor f € R¥ representing the features for each word
is concatenated to each embedding x;. The atten-
tion weight a; for each embedding x; is computed
with the softmax function, by feeding z; and f into

a fully-connected hidden layer of size H with the
parameters W € REXF 7 ¢ REXF 7 ¢ RIXH,

~exp(V -tanh(Wz; + Uf))
@i= Sy exp(V - tanh(Way + U f))

2

Finally, the embeddings x; are weighted using
the attention weights a; resulting in the word rep-
resentation:

3)

e = E Qg * Ty
7

Then, this word representation e € R¥ is fed
into the BiLSTM-CRF. Compared to a concatena-
tion of the different embeddings, this results in a
lower-dimensional word representation and, thus,
requires fewer parameters in the BILSTM layer.
The attention-based embedding selection is shown
in the upper right box of Figure 2.

2.3 Training on Noisy Data

As it was shown in multiple low-resource set-
tings (Dgani et al., 2018; Fang and Cohn, 2016;
Mnih and Hinton, 2012; Paul et al., 2019; Yang
et al., 2018), the performance of NER and other
NLP systems can be substantially improved by
training on additional noisy data which is labeled
in a distantly supervised manner (Mintz et al.,
2009). With this approach, the noisy data is cheap
to create, but also error-prone and can even de-
crease performance if used as training data with-
out noise handling as shown by Hedderich and
Klakow (2018).



Extraction of Noisy Data. We create gazetteers
for the different entity types by extracting names
and aliases of possible entities from Wikidata for
the following categories and their subclasses:?

e PROTEINAS: enzyme, gene, hormone, pro-
tein.

e NORMALIZABLES: allotropy, alloy, amino
acid, antibody, carbohydrate, diagnostic pro-
cedure, dye, lipid, mineral, nucleotide, oil,
reagent, chemical compounds, peptide, plant,
polymer, vaccine.

e UNCLEAR and NO-NORMALIZABLES: The
gazetteer was constructed from entity men-
tions in the training data that appeared at
least twice and examples from the annotation
guidelines.

Then, we retrieve unlabeled documents from the
same domain from the SciELO archive (Packer,
1998). Finally, we use the extracted gazetteers to
automatically annotate the SciELO data with the
method from Lange et al. (2019). We use case-
insensitive string matching for PROTEINAS and
strict string matching for the other types. This
allows to create additional training instances, but
at the same time introduces noise into the system.
To avoid that the noisy labels result in a decrease
of performance, we train on the noisy data with a
special noise handling method adapted from Gold-
berger and Ben-Reuven (2016), which will be de-
scribed in the following.

Noisy Channel and Confusion Matrix. First,
we annotate each word of the training data us-
ing the same method as for generating the noisy
data. Thus, each word in the training data has
a clean, true label y and a noisy label ¢ from
which we can model the noise distribution p(§ =
jly = i) with a confusion matrix, as shown in Fig-
ure 3. We transform the distribution of the pre-
dicted (clean) labels to the noisy label distribution
through a so-called noisy channel (Goldberger and
Ben-Reuven, 2016):

k

p(i = jlz) = p(i = jly = i)p(y = ilz) @)
=1

2WikiData identifiers used for the extraction: Q8047,
Q7187, Q11364, Q8054, Q81915, Q37756, Q8066, Q79460,
Q11358, Q177719, Q189720, Q11367, Q7946, Q28745,
Q42962, Q2356542, Q47154513, Q172847, Q756, Q81163,
Q134808.
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Figure 3: Confusion matrix for the automatic annota-
tion on the training data used for the noisy channel ini-
tialization.

where £ is the number of classes and p(y = i|x) is
the probability of a label y having a specific class
1 given the feature x.

We initialize the noisy channel weights using
the learned confusion matrix on the training set,
for which clean and noisy labels are available.

Training with Confusion Matrix. The se-
quence tagging model is then trained alternately
on the clean data with the CRF output layer and
on the noisy data with the noisy channel layer, as
shown in Figure 2. The number of noisy train-
ing instances is constantly decreased by 5% after
every training epoch to at least 100 sentences, as
we observed that the noisy data helps in particu-
lar for the first epochs, but decreases performance
if the amount is not reduced. Note that we shuf-
fle the noisy data after each training epoch. Thus,
the model is trained on new samples of noisy sen-
tences in every epoch.

3 Submissions

We submitted five runs to the PharmaCoNER
competition. All of them are based on the archi-
tecture described in Section 2.1.

S1 (Base): Our first run, the base system for all
of the following runs, uses a concatenation
of three embeddings (character, BPEmb, fast-
Text) which were all trained on Wikipedia.
Thus, this run does not include any form of
domain knowledge, and it uses neither noisy
data nor attention for embedding selection.

S2 (Domain): Our second run uses the three em-
beddings from S1 plus domain-specific fast-



Development Test
Sip P R Fl1 P R Fl1
S1 863 850 856 | 855 853 854
S2 87.1 858 864 | 863 859 86.1
S3 875 875 875|851 86.0 856
S4 88.0 88.0 88.0 | 8.2 872 86.2
S5 89.1 875 883 | 89.0 883 88.6

Table 1: Precision (P), Recall (R) and F1 for Task 1.

Text embeddings to incorporate knowledge
about word distributions within the domain.

S3 (Noise): Our third run extends the model of
S2 with training on additional noisy data (cf.
Section 2.3). Moreover, we use the feature
vector as an additional input, which is differ-

ent from runs S1 and S2.

S4 (Attention): The fourth run uses the attention
function for word embedding selection (cf.
Section 2.2). Apart from that, the model is
identical to S2 and only trained on clean data.

S5 (Attention+Noise): Our last run has the same
architecture as S4 but is trained on the noisy
data in addition. It thus combines domain-
independent and domain-specific word em-
beddings, attention-based embedding selec-

tion, and training on noisy data.

4 Results and Analysis

This section describes our results and analysis.

4.1 Experimental Results

In Table 1, we report the results on the Pharma-
CoNER development and test sets using the offi-
cial shared task evaluation metrics.

Adding domain-knowledge (S2) to the base
model S1 improves the performance on the devel-
opment and the test set. The training on noisy data
(S3) and the attention function alone (S4) do not
lead to strong improvements on the test set; the
noise model S3 even decreases performance. The
combination of all proposed methods (run S5 At-
tention+Noise) outperforms all other models.

While we are able to see the improvements step
by step introduced by our methods on the devel-
opment set, such improvements are not observable
one-to-one on the test set. We assume that model
S5 performs best at generalizing to unseen words
due to the training on additional data and the atten-
tion function based on basic word properties like
word length or frequency. The other models seem
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para | 0.07 | 0.031 m 0.00
antitiroglobulina .27
CAMS5.2 | 0.31 0.42 | 0.28 | 0.00

Figure 4: The attention weights of our model for the
four embeddings. Darker color indicates higher weight.

to overfit on the development set, even though this
set was never used for training but only for early

stopping.
4.2 Analysis of Attention Weights

The attention-based models learn to focus mostly
on the byte-pair-encoding embeddings, as shown
in Figure 4. In particular, for words from the gen-
eral domain (positivas) and stopwords (para), our
model focuses on these embeddings. For domain-
specific words (antitiroglobulina, CAMS5.2), the
model learns to focus more on the fastText embed-
dings and especially the domain-specific embed-
dings. Interestingly, the character embeddings are
never assigned a noticeable weight. This may be
attributed to the fact that the other embeddings are
all subword embeddings and that they are able to
generate meaningful vectors for out-of-vocabulary
words. Moreover, the character embeddings were
randomly initialized and had to be learned during
training while the other models were pretrained.

5 Conclusions

In this paper, we described our system for the
first subtrack of the PharmaCoNER competition.
We trained a bi-directional long short-term mem-
ory network and explored different input repre-
sentations. We proposed to use a feature-based
attention function for embedding selection and
training on noisy data, which in combination in-
creased performance by more than 3 F1 points up
to 88.6%. This shows that we can successfully
extract these special types of entities without the
need for domain or language-specific model archi-
tectures.
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