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Abstract

The aim of this paper is to present our ap-
proach (IxaMed) on the PharmacoNER 2019
task. The task consists of identifying chem-
ical, drug, and gene/protein mentions from
clinical case studies written in Spanish. The
evaluation of the task is divided in two sce-
narios: one corresponding to the detection
of named entities and one corresponding to
the indexation of named entities that have
been previously identified. In order to iden-
tify named entities we have made use of
a Bi-LSTM with a CRF on top in com-
bination with different types of word em-
beddings. We have achieved our best re-
sult (86.81 F-Score) combining pretrained
word embeddings of Wikipedia and Electronic
Health Records (50M words) with contex-
tual string embeddings of Wikipedia and Elec-
tronic Health Records. On the other hand,
for the indexation of the named entities we
have used the Levenshtein distance obtaining
a 85.34 F-Score as our best result.

1 Introduction

The aim of this paper is to present our approach
in the PharmacoNER 2019 task (Gonzalez et al.,
2019), on Medical Entity Recognition and Con-
cept Indexing. The task consists of identifying
different types of entities in the clinical domain
in Spanish. The evaluation of the task is divided
in two scenarios: the detection of medical entities,
and the linking of each entity with its correspond-
ing Concept Unique Identifier, a task called Con-
cept Indexing.

The training corpus contains a manually classi-
fied collection of clinical cases derived from Open
access Spanish medical publications (SPACCC)
(Intxaurrondo, 2018). It contains a total of 1,000
clinical cases (396,988 words). This kind of nar-
rative shows properties of both the biomedical and
medical literature as well as clinical records.

In order to carry out the tasks, for Named En-
tity Recognition we have made use of a Recurrent
Neural Network (RNN) to identify named enti-
ties feeding it with different types of embeddings,
combining pretrained word embeddings and con-
textualized character-level word embeddings or
contextual string embeddings. Furthermore, for
Concept Indexing task we have opted to use a
simple but effective Levenshtein distance method.
We have achieved a F-score of 86.81 identifying
named entities and 85.34 in Concept Indexing.

2 Related work

The SemEval 2014 Task 7 (Pradhan et al., 2014)
was similar to the present competition, except for
the number and types of entities to be identified
(diseases and others) and the fact that discontinu-
ous entities were also included. Task 7 in SemEval
2014 also comprised two subtasks, medical entity
recognition and concept indexation. To tackle the
first subtask, different teams used approaches as
MaxEnt, SVM or CRF in combination with the ex-
traction of syntactic and semantic attributes. The
authors in (Tang et al., 2014) obtained the best re-
sults in strict F-Score with 78.5 on the develop-
ment set and 81.3 on the test set. Their results were
4.7 points higher than those of the second ranked
team (Kaewphan et al., 2014).

For the second subtask, namely Concept In-
dexation, the solutions proposed were very sim-
ilar among the different teams. As in the NER
task, the winner was (Tang et al., 2014) with an
accuracy of 74.1 on the test set. Their solution
was based on the cosine similarity using Vector
Space Model (VSM). The team in (Ghiasvand and
Kate, 2014) assigned the Concept Unique Iden-
tifier (CUI) code by comparing candidate strings
with the terms obtained from the training set and
the contents in the Unified Medical Language Sys-
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tem (UMLS). They also proposed a method based
on edit distance, more precisely Levenshtein dis-
tance (Levenshtein, 1966). The second best team
(Kaewphan et al., 2014) employed word embed-
dings, word2vec (Mikolov et al., 2013), for word
representation and the cosine similarity to find the
closest standard term in UMLS. As a novelty, they
implemented a binary classification based on Sup-
port Vector Machines (SVMs).

In SemEval 2015 (task 14), the evaluation was
the only difference compared to SemEval 2014
(task 7). Besides strict evaluation (correct CUI
and complete entity identification), relaxed eval-
uation was also pursued (successful CUI assign-
ment and partly successful entity identification).
In this case, the winning team was (Pathak et al.,
2015), which obtained in the strict evaluation an
F-score of 75.7, and in the relaxed one an F-score
of 78. The methods used were similar to those
used in SemEval-2014. In this case, a CRF was
used to detect entities and a SVM classifier to de-
termine if these were joined or not (and thus catch
discontinuous entities). Regarding Concept Index-
ing, they used basically customized look-ups, like
Dictionary look-up (exact match of entity word
permutations, LVG), Customized Dictionary look-
up (split UMLS entities by function words), and
Customized Dictionary look-up (list of possible
UMLS spans and application of Levenshtein dis-
tance). The second highest ranked team (Leal
et al., 2015) obtained, for strict evaluation, an F-
score of 74 and in the relaxed one 76.5. They
employed a CRF to identify entities (also discon-
tinuous entities), and for Concept Indexing they
applied exact match on the terminology content
of the Systematized Nomenclature of Medicine -
Clinical Terms (SNOMED-CT) enriching it with
an abbreviation dictionary built on the training set.
They also implemented a comparison method ex-
ploiting SNOMED-CT tree structure, Lucene in-
dex and Levenshtein average after splitting each
recognized entity and each SNOMED-CT candi-
date.

Besides these competitions in recent years, im-
provements have been made mostly in the entity
recognition subtask using neural networks such as
Bi-LSTM + CRFs (Lample et al., 2016). (Casil-
las et al., 2019) used the tool for the detection
of entities in clinical texts in Spanish, obtain-
ing improvements with respect to previous works
(Perez et al., 2017), from an F1-Score of 70.30

to 72.01. Employing a similar system (Goenaga
et al., 2018) obtained the first position at the last
IberEval shared task (Hermenegildo Fabregat and
Araujo, 2018).

3 Resources

Apart from the tools we will present in the follow-
ing sections, we made use of external data with the
intention of completing the information the sys-
tem extracts from the corpus provided by the or-
ganization. For this purpose we employed word-
embeddings (Mikolov et al., 2013) that we have
calculated (window length = 1, dimensions = 300,
algorithm = SkipNgram) from Electronic Health
Records (50M words), together with pretrained
word-embeddings (window=5, dimensions=300,
algorithm= Skip-gram) that have been calculated
with Wikipedia2Vec (Yamada et al., 2018).

On the other hand, we have also used contex-
tual string embeddings (Akbik et al., 2018) we
have calculated from Electronic Health Records
(number of layers=1, hidden size=2,048, sequence
length=250, mini batch size=32) and Wikipedia
(number of layers=1, hidden size=1,024, sequence
length=250, mini batch size=100).

4 Methods

In this section we will explore the different meth-
ods we have used to perform the two sub-tasks of
the shared task.

4.1 Track 1: NER Offset and Entity
Classification

In this section we present our approach in order to
extract named entities in track 1 of the shared task.
For this purpose we employed a neural network
based architecture, more precisely an specific Bi-
LSTM (a RNN subclass, (Hochreiter and Schmid-
huber, 1997)) with a CRF on top of it (Lample
et al., 2016; Ma and Hovy, 2016) using as in-
put raw text and the word-embeddings we have
mentioned in section 3. This kind of neural net-
work is widely used to pursue sequence to se-
quence tagging (Ma and Hovy, 2016; Jagannatha
and Yu, 2016). One of the advantages of using Bi-
LSTM in contrast to other machine learning tech-
niques such as SVM, Perceptron or CRFs is that
the size of the context is automatically learned by
the LSTM and there is no need to perform any
complicated text preprocessing to obtain features
to feed the tool.
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One of the strengths of our approach is that it
combines different types of embeddings based on
different types of corpus. On one hand, we use
embeddings that have been calculated on a gen-
eral domain corpus (Wikipedia) and embeddings
that have been calculated on a medical domain
corpus (EHRs). On the other hand, we stack pre-
trained word embeddings, character-level embed-
dings and contextual string embeddings and we
feed the neural network with them. While the pre-
trained word embeddings and character-level em-
beddings are well known by the scientific commu-
nity, the contextual string embeddings have been
introduced recently (Akbik et al., 2018). This type
of embeddings is based on recent advances in neu-
ral Language Modeling (LM) that have allowed a
language to be modeled as distributions over se-
quences of characters instead of words (Sutskever
et al., 2014), (Graves, 2013), (Kim et al., 2016).

Recent work has shown that by learning to pre-
dict the next character on the basis of previous
characters, such models learn internal represen-
tations that capture syntactic and semantic prop-
erties: even though trained without an explicit
notion of word and sentence boundaries, they
have been shown to generate grammatically cor-
rect text, including words, subclauses, quotes and
sentences (Sutskever et al., 2014), (Graves, 2013),
(Karpathy et al., 2015).

The main features of these contextual string em-
beddings or contextualized character-level word
embeddings are the following:

• They can be pre-trained on large unlabeled
corpora.

• They are able to capture the meaning of the
words in context and are able to produce dif-
ferent embeddings for polysemous words de-
pending on their usage.

• They model words and contexts as sequences
of characters, to both better handle rare and
misspelled words as well as model subword
structures such as prefixes and endings.

Lastly, we have sent two runs for named en-
tity recognition (track 1): one run with the setup
mentioned above, Bi-LSTM + CRF stacking pre-
trained and contextual embeddings, and one run
with the same setup and using the development
corpus for training for a few epochs (fine-tuning)
as a last step.

4.2 Track 2: Concept Indexing
The normalization of given named entities con-
sists in linking named entities to concepts in stan-
dardized medical terminologies, allowing general-
ization across contexts. The task consists in as-
signing, to each term, its corresponding Concept
Unique Index. For example, “corticoide”, “corti-
coides” and ”cortecostiroides” are all normalized
to the same Concept (B-255877006). In our work,
we made use of a Text Similarity based mapping
from the given terms to different sets:

• The terms present in the training set. This
set is limited but gives an account of stan-
dard and non-standard terms present in spon-
taneously written health records.

• SNOMED-CT terms that can be considered a
standard terminology.

We tried approximate searching to guarantee a
matching, by a string-based similarity measure, as
the well-known Levenshtein distance, a standard
soft-matching approach in text normalization. We
computed the Levenshtein distance between the
input string and the set of terms that served as ref-
erence. Edit distance is used to quantify similar-
ity between two strings, counting the minimum
number of operations required to transform one
string into another. The most common metric is
the Levenshtein Distance (Levenshtein, 1966) in
where the basic edit operations are removal, inser-
tion and substitution of a single character. This
metric finds the minimum distance for each spon-
taneous diagnostic term (SpoDT) with respect to
all standard Diagnostic Terms (DictDT), obtaining
the best candidate match (see equation 1).

minLev(SpoDT,DictDTs) (1)

Hence, strings were searched in the reference-
set and ranked according to this distance.

Exact matching of spontaneous expressions in
standard dictionaries is not a good option, because
it obtains a low accuracy. By contrast, matching
with respect to previously classified non-standard
expressions is well-worthy. However, the results
show a considerable boost when using as reference
the set of spontaneous terms and the standard ref-
erence (SNOMED CT).

We also tried a different approach using a
sequence-to-sequence approach that, although it
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NER
Basic Fine-tuned
86.60 86.81

Table 1: The results we have obtained for NER task.
Basic = Combination of word embeddings and contex-
tual string embeddings as an input of a Bi-LSTM with
a CRF on top. Fine-tuned = Basic setup + fine-tuning
on development set.

Concept Indexing
Levenshtein Dist. 1 Levenshtein Dist. 2

85.14 85.34

Table 2: Results for Concept Indexing task. Leven-
shtein Distance 1 = Levenshtein distance applied to the
entities extracted by the basic setup. Levenshtein Dis-
tance 2 = Levenshtein distance applied to the entities
extracted by the fine-tuned setup.

gave promising results (an F-Score around 65%
for concept Indexing), it was around 20 absolute
points below the simplest option of using the Lev-
enshtein distance. We think that this could be in-
teresting to examine the strengths and weaknesses
of each approach, and try to combine their positive
aspects in a single combined or ensemble system,
but we leave it as future work.

5 Results

In this section we present the results we have
achieved for both tracks, NER and Concept index-
ing respectively. For this purpose we have com-
piled all the results in tables 1 and 2. If we ob-
serve the results obtained for both tracks we see
a logical correlation between F-Score obtained for
NER and the F-Score obtained for Concept Index-
ing. In other words, the better is the result for NER
the better is the result for Concept Indexing. This
is due to the fact that we use the output of the NER
system as input of the Concept Indexing system.

Furthermore, if we analyze the results for each
track we can observe we surpass the F-Score of
85.00 in all cases, thus confirming the robustness
of our approaches. For NER, applying a Bi-LSTM
with a CRF on top and feeding this neural net-
work with stacked pretrained and contextual em-
beddings we have achieved a F-Score of 86.60. In
contrast, fine-tuning on development set the pre-
viously mentioned neural network we outperform
this result by 0.21. Although the improvement is
not significant we have met our goal, that is to

say, we have outperformed the basic setup avoid-
ing overfitting.

Moreover, we have applied Levenshtein dis-
tance in order to assign a concept index to named
entities that have been identified by NER system.
We have achieved a 85.14 of F-Score when the in-
put for the Concept Indexing system are named
entities extracted by the basic NER system and a
85.34 of F-Score when the input are the named en-
tities extracted by the fine-tuned NER system.

6 Conclusions

The purpose of this work was to evaluate the
feasibility of different approaches to medical en-
tity detection and concept indexing. Entity de-
tection was dealt with a sequential tagger that
uses word embeddings and contextual string em-
beddings acquired from electronic health records
and Wikipedia. Concept normalization was ap-
proached by Text Similarity techniques. Surpris-
ingly, the Levenshtein-based system obtained rel-
atively good results, and this aspect deserves a fur-
ther study of the strengths and weaknesses of each
approach.
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