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Abstract

This paper presents the participation of
the VSP team for the PharmaCoNER
Tracks from the BioNLP Open Shared
Task 2019. The system consists of a neural
model for the Named Entity Recognition
of drugs, medications and chemical enti-
ties in Spanish and the use of the Spanish
Edition of SNOMED CT term search en-
gine for the concept normalization of the
recognized mentions. The neural network
is implemented with two bidirectional Re-
current Neural Networks with LSTM cells
that creates a feature vector for each word
of the sentences in order to classify the en-
tities. The first layer uses the characters of
each word and the resulting vector is ag-
gregated to the second layer together with
its word embedding in order to create the
feature vector of the word. In addition, a
Conditional Random Field layer classifies
the vector representation of each word in
one of the mention types. The system ob-
tains a performance of 76.29%, and 60.34%
in F1 for the classification of the Named
Entity Recognition task and the Concept
indexing task, respectively. This method
presents good results with a basic approach
without using pretrained word embeddings
or any hand-crafted features.

1 Introduction

Nowadays, the task of finding the essential
data about the patients in medical records is
very difficult because of the highly increasing
amount of unstructured documents generated
by the doctors. Thus, the automatic extrac-
tion of the mentions related with drugs, med-
ications and chemical entities in the clinical
case studies can reduces the time of healthcare
professionals expend reviewing these medical
documents in order to retrieve the most rele-
vant information.
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Previously, some Natural Language Pro-
cessing (NLP) shared tasks were organized
in order to promote the develop of auto-
matic systems given the importance of this
task. The i2b2 shared task was the first NLP
challenge for identifying Protected Health In-
formation in the clinical narratives (Ozlem
Uzuner et al., 2007). The CHEMDNER task
was focused on the Named Entity Recogni-
tion (NER) of chemical compounds and drug
names in PubMed abstracts and chemistry
journals (Krallinger et al., 2015).

The goal of the BioNLP Open Shared Task
2019 is to create NLP challenges for developing
systems in order to extract information from
biomedical corpora. Concretely, the Pharma-
CoNER Task is focusing on the recognition
of pharmacological substance, compound and
protein mentions from Spanish medical texts.

Currently, deep learning approaches over-
come traditional machine learning systems
on the majority of NLP tasks, such as text
classification (Kim, 2014), language modeling
(Mikolov et al., 2013) and machine transla-
tion (Cho et al., 2014). Moreover, these mod-
els have the advantage of automatically learn
the most relevant features without defining
rules by hand. Concretely, the LSTM-CRF
Model proposed by (Lample et al., 2016) im-
proves the performance of a CRF with hand-
crafted features for different biomedical NER
tasks (Habibi et al., 2017). The main idea of
this system is to create a word vector repre-
sentation using a bidirectional Recurrent Neu-
ral Network with LSTM cells (BiLSTM) with
character information encoded in another BiL-
STM layer in order to classify the tag of each
word in the sentences with a CRF classifier.
Following this approach, the system proposed
in (Dernoncourt et al., 2016) uses a BiLSTM-
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CRF Model with character and word levels for
the de-identification of patient notes using the
i2b2 dataset that overcomes the previous sys-
tems in this task.

This paper presents the participation of the
author, as VSP team, at the tasks proposed
by PharmaCoNER about the classification of
pharmacological substances, compounds and
proteins and the Concept Indexing of the rec-
ognized mentions from clinical cases in Span-
ish. The proposed system follows the same
approaches of (Lample et al., 2016) and (Der-
noncourt et al., 2016) for the NER task with
some modifications for the Spanish language
implemented with NeuroNER tool (Dernon-
court et al., 2017) because the architecture
obtains good performance for the recognition
of biomedical entities. In addition, a simple
SNOMED CT term search engine is imple-
mented for the concept normalization.

2 Dataset

The corpus of the PharmaCoNER task con-
tains 1,000 clinical cases derived from the
Spanish Clinical Case Corpus (SPACCC)!
with manually annotated mentions such as
pharmacological substances, compounds and
proteins by clinical documentalists. The doc-
uments are randomly divided into the training,
validation and test sets for creating, develop-
ing and ranking the different systems, respec-
tively.

The corpus contains four different entity
types:

e NORMALIZABLES: they are chemicals
that can be normalized to a unique con-
cept identifier.

NO_NORMALIZABLES: they are chem-
icals that cannot be normalized. These
mentions were used for training the sys-
tem, but they were not taken into consid-
eration for the results in the task of NER
or Concept Indexing.

PROTEINAS: this entity type refers to
mentions of proteins and genes follow-
ing the annotation schema of BioCreative
GPRO (Pérez-Pérez et al., 2017).

"ttps://doi.org/10.5281/zenodo. 2560316
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e UNCLEAR: these mentions are cases of
general substances, such as pharmaceu-
tical formulations, general treatments,
chemotherapy programs, vaccines and a
predefined set of general substances.

Additionally, all mentions without the
NO_NORMALIZABLES tag are annotated
with its corresponding SNOMED CT normal-
ization concept.

3 Method

This section presents the Neural architecture
for the classification of the entity types and
the concept normalization method in Spanish
clinical cases. Figure 1 presents the process
of the NER task using two BiLSTMs for the
character and token levels in order to create
each word representation until its classification
by a CRF.

3.1 Data preprocessing

The first step is a preprocessing of the sen-
tences in the corpus, which prepares the inputs
for the neural model. Firstly, the clinical cases
are separated into sentences using a sentence
splitter and the words of these sentences are
extracted by a tokenizer, both were adapted
for the Spanish language. For the experiments,
the previous processes were performed by the
spaCy tool in Python (Explosion AI, 2017).
Once the sentences were divided into word, the
BIOES tag schema encodes each token with
an entity type (B tag is the beginning token, I
tag is the inside token, E tag is the ending to-
ken, S tag is the single token and O tag is the
outside token). In many previous NER tasks,
using this codification is better than the BIO
tag scheme (Ratinov and Roth, 2009), but the
number of labels increases because there are
two additional tags for each class. Thus, the
number of possible classes are the 4 tags times
the 4 entity types and the O tag for the Phar-
maCoNER corpus.

3.2 BIiLSTM layers

RNNs are very effective in feature learning
when the inputs are sequences. Concretely,
the Long Short-Term Memory cell (LSTM)
(Hochreiter and Schmidhuber, 1997) defines
four gates for creating the representation of
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Figure 1: Neural model for the recognition of mentions in Spanish clinical cases using the PharmaCoNER

task 2019 corpus.

each input taking the information of the cur-
rent and previous cells. Thus, each output is
a combination of the current and the previous
cell states. Furthermore, another LSTM can
be applied in the other direction from the end
of the sequence to the start in order to extract
the relevant features of each input in both di-
rections.

3.2.1 Character level

The first layer takes each word of the sentences
individually. These tokens are decomposed
into characters that are the input of the BiL-
STM. Once all the inputs are computed by the
network, the last output vectors of both direc-
tions are concatenated in order to create the
vector representation of the word according to
its characters.

3.2.2 Token level

The second layer takes the embedding of each
word in the sentence and concatenates them
with the outputs of the first BILSTM with
the character representation. In addition, a
Dropout layer is applied to the word repre-
sentation in order to prevent overfitting in the
training phase. In this case, the outputs of
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each direction in one token are concatenated
for the classification layer.

3.3 Contional Random Field Classifier

CRF (Lafferty et al., 2001) is the sequential
version of the Softmax that aggregates the la-
bel predicted in the previous output as part of
the input. In NER tasks, CRF shows better
results than Softmax because it adds a higher
probability to the correct labelled sequence.
For instance, the I tag cannot be before a B
tag or after a E tag by definition. For the pro-
posed system, the CRF classifies the output
vector of the BiLSTM layer with the token in-
formation in one of the classes.

3.4 Concept Indexing

After the NER task, the concept indexing is
applied to all recognized entities in the sen-
tences for the term normalization. To this
end, the Spanish Edition of the SNOMED CT
International Browser?

and gives its normalization term. Moreover,
The Spanish Medical Abbreviation DataBase

searches each mention

’https://prod-browser-exten.ihtsdotools.

org/


https://prod-browser-exten.ihtsdotools.org/
https://prod-browser-exten.ihtsdotools.org/

(AbreMES-DB)? is used in order to disam-
biguate the acronyms and the resulting term
is searched in the SNOMED CT International
Browser. In the cases where there are more
than one normalization concept for a term, a
very naive approach is followed where the first
node in the term list is chosen as the final out-
put.

4 Results and Discussion

The architecture was trained over the train-
ing set during 100 epochs with shuffled mini-
batches and choosing the best performance
over the validation set via stopping criteria.
The values of the two BiLSTM and CRF pa-
rameters for generating the prediction of the
test set are presented in Table 1. Addition-
ally, a gradient clipping keeps the weight of the
network in a low range preventing the explod-
ing gradient problem. The embeddings of the
characters and words are randomly initialized
and learned during the training of the network.
The main goal of this work is to test the per-
formance of the proposed neural model on this
dataset without using pretrained word embed-
dings or any hand-crafted features. In future
work, the impact of different pretrained word
embeddings will be covered.

Table 1: The parameters of the neural model and
their values used for the PharmaCoNER results.

| Parameter | Value |
Character embeddings dimension 25
Character-level LSTM hidden units | 25
Word embeddings dimension 300
Word-level LSTM hidden units 256
Optimizer SGD
Learning rate 0.001
Dropout rate 0.5
Gradient clipping 5

The results were measured with precision
(P), recall (R) and F-measure (F1) using the
True Positives (TP), False Positives (FP) and
False Negatives (FN) for its calculation. Ta-
ble 2 presents the results of the system over the
test set of the PharmaCoNER tasks. The per-
formance for the entity type classification and
the performance for the Concept Indexing task
are 76.29% and 60.34% in F1, respectively.

3https://zenodo.org/record/2207130#
. XHPEFYUo85k
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Table 2: Official results of the neural Model for the
two tasks of the PharmaCoNER.

‘ Task ‘ R ‘ P ‘ F1 ‘
NER 71.61% | 81.62% | 76.29%
Concept Indexing | 55.22% | 66.5% | 60.34%

Table 3 presents the results of the NER task
for each entity type independently. It can be
observed that the number of FN is higher than
FP in all the classes giving better results in
Precision than in Recall. The performance
of the classes are directly proportional of the
number of instances in the training set. In or-
der to alleviate this problem, the use of over-
sampling techniques will be tackled in future
works to increase the number of examples of
the less representative classes and making this
dataset more balanced.

5 Conclusions and Future work

This paper presents a model where a neural
model classifies mentions from clinical texts
in Spanish and the Concept Indexing uses the
SNOMED CT search engine for their normal-
ization. The neural architecture is based on
RNNs in both direction of the sentences us-
ing LSTM for the computation of the outputs.
Finally, a CRF classifier performs the classi-
fication for tagging the entity types. The re-
sults shows a performance of 76.29% in F1 for
the classification of the pharmacological sub-
stances, compounds and proteins in the Phar-
maCoNER corpus and the normalization sys-
tem reaches to 60.34% in F1. In spite of the
basic approaches, the results are very promis-
ing in both tasks. As future work, it is pro-
posed to pretrain the word embeddings with
collections of biomedical documents and the
aggregation of other embeddings such as Part-
of-Speech tags, syntactic parse trees or seman-
tic tags, that could increase the representation
of each word in order to improve its classi-
fication. Moreover, fine-tuning the parame-
ters of the model according to the Pharma-
CoNER corpus will be useful in order to in-
crease the performance of the method. Fur-
thermore, adding more layers to each BiLSTM
is proposed to be included in the architecture.
In addition, other complex concept indexing
rules could be applied to chose the best nor-
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Table 3: Performance of the neural model for each category in the Named Entity Recognition Task of

the PharmaCoNER.

| Label |TP [FN [FP | R | P | F1
NORMALIZABLES | 707 [ 266 | 94 | 72.66% | 88.26% [ 79.71%
PROTEINAS 612 | 247 | 203 | 71.25% | 75.09% | 73.12%
UNCLEAR 20 [14 |6 | 58.82% | 76.92% | 66.67%

malization term in the cases that they are mul-
tiple possibilities.
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