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Abstract

Recently, neural models led to significant im-
provements in both machine translation (MT)
and natural language generation tasks (NLG).
However, generation of long descriptive sum-
maries conditioned on structured data remains
an open challenge. Likewise, MT that goes
beyond sentence-level context is still an open
issue (e.g., document-level MT or MT with
metadata). To address these challenges, we
propose to leverage data from both tasks and
do transfer learning between MT, NLG, and
MT with source-side metadata (MT+NLG).
First, we train document-based MT systems
with large amounts of parallel data. Then, we
adapt these models to pure NLG and MT+NLG
tasks by fine-tuning with smaller amounts of
domain-specific data. This end-to-end NLG
approach, without data selection and planning,
outperforms the previous state of the art on the
Rotowire NLG task. We participated to the
“Document Generation and Translation” task
at WNGT 2019, and ranked first in all tracks.

1 Introduction

Neural Machine Translation (NMT) and Neural
Language Generation (NLG) are the top lines of
the recent advances in Natural Language Process-
ing. Although state-of-the-art NMT systems have
reported impressive performance on several lan-
guages, there are still many challenges in this field
especially when context is considered. Currently,
the majority of NMT models translate sentences
independently, without access to a larger context
(e.g., other sentences from the same document or
structured information). Additionally, despite im-
provements in text generation, generating long de-
scriptive summaries conditioned on structured data
is still an open challenge (e.g., table records). Ex-

∗This work was done while the author was visiting at
Naver Labs Europe.

isting models lack accuracy, coherence, or ade-
quacy to source material (Wiseman et al., 2017).

The two aspects which are mostly addressed
in data-to-text generation techniques are identi-
fying the most important information from input
data, and verbalizing data as a coherent docu-
ment: “What to talk about and how?” (Mei et al.,
2016). These two challenges have been addressed
separately as different modules in pipeline sys-
tems (McKeown, 1985; Reiter and Dale, 2000) or
in an end-to-end manner with PCFGs or SMT-
like approaches (Mooney and Wong, 2007; Angeli
et al., 2010; Konstas and Lapata, 2013), or more
recently, with neural generation models (Wiseman
et al., 2017; Lebret et al., 2016; Mei et al., 2016).
In spite of generating fluent text, end-to-end neu-
ral generation models perform weakly in terms of
best content selection (Wiseman et al., 2017). Re-
cently, Puduppully et al. (2019) trained an end-
to-end data-to-document generation model on the
Rotowire dataset (English summaries of basketball
games with structured data).1 They aimed to over-
come the shortcomings of end-to-end neural NLG
models by explicitly modeling content selection
and planning in their architecture.

We suggest in this paper to leverage the data
from both MT and NLG tasks with transfer learn-
ing. As both tasks have the same target (e.g.,
English-language stories), they can share the same
decoder. The same encoder can also be used for
NLG and MT if the NLG metadata is encoded as
a text sequence. We first train domain-adapted
document-level NMT models on large amounts of
parallel data. Then we fine-tune these models on
small amounts of NLG data, transitioning from
MT to NLG. We show that separate data selec-
tion and ordering steps are not necessary if NLG
model is trained at document level and is given

1https://github.com/harvardnlp/
boxscore-data

https://github.com/harvardnlp/boxscore-data
https://github.com/harvardnlp/boxscore-data
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Corpus Lang(s) Split Docs Sents

DGT EN-DE
train 242 3247
valid 240 3321
test 241 3248

Rotowire EN
train 3398 45.5k
valid 727 9.9k
test 728 10.0k

WMT19-sent EN-DE train – 28.5M
WMT19-doc 68.4k 3.63M

News-crawl EN train 14.6M 420M
DE 25.1M 534M

Table 1: Statistics of the allowed resources. The En-
glish sides of DGT-train, valid and test are respectively
subsets of Rotowire-train, valid and test. More mono-
lingual data is available, but we only used Rotowire and
News-crawl.

enough information. We propose a compact way to
encode the data available in the original database,
and enrich it with some extra facts that can be eas-
ily inferred with a minimal knowledge of the task.
We also show that NLG models trained with this
data capture document-level structure and can se-
lect and order information by themselves.

2 Document-Level Generation and
Translation Task

The goal of the Document-Level Generation and
Translation (DGT) task is to generate summaries
of basketball games, in two languages (English
and German), by using either structured data about
the game, a game summary in the other language,
or a combination of both. The task features 3
tracks, times 2 target languages (English or Ger-
man): NLG (Data to Text), MT (Text to Text) and
MT+NLG (Text + Data to Text). The data and
evaluation are document-level, encouraging par-
ticipants to generate full documents, rather than
sentence-based outputs. Table 1 describes the al-
lowed parallel and monolingual corpora.

3 Our MT and NLG Approaches

All our models (MT, NLG, MT+NLG) are based
on Transformer Big (Vaswani et al., 2017). Details
for each track are given in the following sections.

3.1 Machine Translation Track
For the MT track, we followed these steps:

1. Train sent-level MT models on all the WMT19
parallel data (doc and sent) plus DGT-train.

2. Back-translate (BT) the German and English
News-crawl by sampling (Edunov et al., 2018).

3. Re-train sentence-level MT models on a con-
catenation of the WMT19 parallel data, DGT-
train and BT. The later was split into 20 parts,
one part for each training epoch. This is almost
equivalent to oversampling the non-BT data by
20 and doing a single epoch of training.

4. Fine-tune the best sentence-level checkpoint
(according to valid perplexity) on document-
level data. Like Junczys-Dowmunt (2019), we
truncated the WMT documents into sequences
of maximum 1100 BPE tokens. We also aggre-
gated random sentences from WMT-sent into
documents, and upsampled the DGT-train data.
Contrary to Junczys-Dowmunt (2019), we do
not use any sentence separator or document
boundary tags.

5. Fine-tune the best doc-level checkpoint on
DGT-train plus back-translated Rotowire-train
and Rotowire-valid.

We describe the pre-processing and hyperpa-
rameters in Section 4. In steps (1) and (3), we train
for at most 20 epochs, with early stopping based
on newstest2014 perplexity. In step (4), we train
for at most 5 additional epochs, with early stopping
according to DGT-valid perplexity (doc-level). In
the last step, we train for 100 epochs, with BLEU
evaluation on DGT-valid every 10 epochs. We also
compute the BLEU score of the best checkpoint
according to DGT-valid perplexity, and keep the
checkpoint with highest BLEU.

The models in step (5) overfit very quickly,
reaching their best valid perplexity after only 1 or 2
epochs. For DE-EN, we found that the best DGT-
valid BLEU was achieved anywhere between 10
and 100 epochs (sometimes with a high valid per-
plexity). For EN-DE, perplexity and BLEU cor-
related better, and the best checkpoint according
to both scores was generally the same. The same
observations apply when fine-tuning on NLG or
MT+NLG data in the next sections.

Like Berard et al. (2019), all our MT models
use corpus tags: each source sentence starts with a
special token which identifies the corpus it comes
from (e.g., Paracrawl, Rotowire, News-crawl). At
test time, we use the DGT tag.

One thing to note, is that document-level decod-
ing is much slower than its sentence-level counter-
part.2 The goal of this document-level fine-tuning

2On a single V100, sent-level DGT-valid takes 1 minute to
translate, while doc-level DGT-valid takes 6 minutes.
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was not to increase translation quality, but to allow
us to use the same model for MT and NLG, which
is easier to do at the document level.

3.2 Natural Language Generation Track
Original metadata consists of one JSON document
per game, containing information about teams and
their players. We first generate compact represen-
tations of this metadata as text sequences. Then,
we fine-tune our doc-level MT models (from step
4) on the NLG task by using this representation
on the source side and full stories on the target
side. We train on a concatenation of DGT-train,
Rotowire-train and Rotowire-valid. We filter the
later to remove games that are also in DGT-valid.
Our metadata has the following structure:
1. Date of the game as text.
2. Home team information (winner/loser tag, team name and

city, points in the game, season wins and losses and team-
level scores) and information about its next game (date,
home/visitor tag, other team’s name), inferred from the
other JSON documents in Rotowire-train.

3. Visiting team information and details on its next game.
4. N best players of the home team (player name, followed

by all his non-zero scores in a fixed order and his start-
ing position). Players are sorted by points first, then by
rebounds and assists.

5. N best players of the visiting team.

To help the models identify useful information,
we use a combination of special tokens and posi-
tional information. For instance, the home team
is always first, but a <WINNER> tag precedes the
winning team and its players. We ignore all-zero
statistics, but always use the same position for each
type of score (e.g., points, then rebounds, then as-
sists) and special tokens to help identify them (e.g.,
<PTS> 16 and <REB> 8). We try to limit the num-
ber of tags to keep the sequences short (e.g., made
and attempted free throws and percentage: <FT> 3
5 60). An example of metadata representation is
shown in Table 2.

3.3 MT+NLG Track
For the MT+NLG track, we concatenate the MT
source with the NLG data. We use the same meta-
data encoding method as in the NLG track and we
fine-tune our doc-level MT models (from step 4).
We also randomly mask tokens in the MT source
(by replacing them with a <MASK> token), with
20% or 50% chance (with one different sampling
per epoch). The goal is to force the model to use
the metadata because of missing information in the
source. At test time, we do not mask any token.

4 Experiments
4.1 Data Pre-processing
We filter the WMT19-sent parallel corpus with
langid.py (Lui and Baldwin, 2012) and remove
sentences of more than 175 tokens or with a
length ratio greater than 1.5. Then, we apply
the official DGT tokenizer (based on NLTK’s
word_tokenize) to the non-tokenized text (ev-
erything but DGT and Rotowire).

We apply BPE segmentation (Sennrich et al.,
2016) with a joined SentencePiece-like model
(Kudo and Richardson, 2018), with 32k merge
operations, obtained on WMT + DGT-train (En-
glish + German). The vocabulary threshold is set
to 100 and inline casing is applied (Berard et al.,
2019). We employ the same joined BPE model
and Fairseq dictionary for all models. The meta-
data is translated into the source language of the
MT model used for initialization,3 and segmented
into BPE (except for the special tokens) to allow
transfer between MT and NLG. Then, we add a
corpus tag to each source sequence, which spec-
ifies its origin (Rotowire, News-crawl, etc.)

Like Junczys-Dowmunt (2019), we split
WMT19 documents that are too long into shorter
documents (maximum 1100 BPE tokens). We also
transform the sent-level WMT19 data into doc-
level data by shuffling the corpus and grouping
consecutive sentences into documents of random
length. Finally, we upsample the doc-level data
(WMT19 and DGT) by 8 times its original size
(in terms of sent count). We do so by sampling
random spans of consecutive sentences until
reaching the desired size.

The DGT and Rotowire data is already tok-
enized and does not need filtering nor truncating.
We segment it into BPE units and add corpus tags.

4.2 Settings
All the models are Transformer Big (Vaswani et al.,
2017), implemented in Fairseq (Ott et al., 2018).
We use the same hyper-parameters as Ott et al.
(2018), with Adam and an inverse square root
schedule with warmup (maximum LR 0.0005). We
apply dropout and label smoothing with a rate of
0.1. The source and target embeddings are shared
and tied with the last layer. We train with half-
precision floats on 8 V100 GPUs, with at most
3500 tokens per batch and delayed updates of 10

3Only week days, months and player positions need to be
translated.
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Metadata <DATE> Freitag Februar 2017 <WINNER> Oklahoma City Thunder <PTS> 114 <WINS> 29 <LOSSES> 22 <REB> 47 <AST> 21 <TO> 20 <FG> 38
80 48 <FG3> 13 26 50 <FT> 25 33 76 <NEXT> Sonntag Februar 2017 <HOME> Portland Trail Blazers <LOSER> Memphis Grizzlies <PTS>
102 <WINS> 30 <LOSSES> 22 <REB> 29 <AST> 21 <TO> 12 <FG> 40 83 48 <FG3> 3 19 16 <FT> 19 22 86 <NEXT> Samstag Februar 2017
<VIS> Minnesota Timberwolves <WINNER> <PLAYER> Russell Westbrook <PTS> 38 <REB> 13 <AST> 12 <STL> 3 <PF> 2 <FG> 8 20 40 <FG3>
5 7 71 <FT> 17 17 100 <POS> Guard <PLAYER> Steven Adams <PTS> 16 <REB> 12 <AST> 2 <STL> 1 <BLK> 2 <PF> 4 <FG> 7 13 54 <FT>
2 6 33 <POS> Center <PLAYER> Joffrey Lauvergne <PTS> 16 <REB> 8 <AST> 2 <PF> 3 <FG> 6 7 86 <FG3> 3 4 75 <FT> 1 2 50 <POS>
Bank <LOSER> <PLAYER> Marc Gasol <PTS> 31 <REB> 4 <AST> 8 <STL> 2 <BLK> 1 <PF> 4 <FG> 14 24 58 <FG3> 0 4 0 <FT> 3 3 100 <POS>
Center <PLAYER> Mike Conley <PTS> 18 <REB> 1 <AST> 2 <STL> 3 <FG> 7 16 44 <FG3> 1 5 20 <FT> 3 5 60 <POS> Guard <PLAYER> Zach
Randolph <PTS> 16 <REB> 10 <AST> 3 <STL> 1 <PF> 4 <FG> 6 14 43 <FG3> 0 1 0 <FT> 4 4 100 <POS> Bank

Reference story The Oklahoma City Thunder defeated the visiting Memphis Grizzlies 114 - 102 , at Chesapeake Energy Arena on Friday evening . The Grizzlies led by four after three
quarters , but then Russell Westbrook went absolutely ballistic in the fourth quarter , scoring 19 points in the quarter , including 15 points straight and unanswered , to
take his team from down 102 - 99 to the final score of 114 - 102 . This snaps the Grizzlies three-game win streak , while Westbrook added to his ridiculous triple-double
count , as he notched his 25th of the season . The Thunder ( 29 - 22 ) only scored 21 points in the first quarter , before outscoring the Grizz by 12 in the second , to
take an eight-point lead into half time . They were then outscored by 12 in the third , and entered the fourth down by four . The Thunder outscored the Grizz by 14
in the fourth , behind Russell Westbrook and his takeover .Westbrook finished with 38 points , 13 rebounds , 12 assists and three steals to lead his squad to a big win .
Westbrook also matched a career-best as he went 17-of-17 from the foul line . Three other players scored in double digits for the Thunder , including Steven Adams and
Joffrey Lauvergne , who pitched in 16 points each . The Thunder go on to visit Portland on Sunday . Meanwhile , the Grizzlies ( 30 - 22 ) saw their win streak come
to an end as they went scoreless in the last 2:50 as they were stifled by an overwhelming push of energy and intensity from the Thunder and their home crowd . Marc
Gasol finished with a team-high 31 points , to go along with eight assists , four rebounds , two steals and one block , in 42 minutes . Zach Randolph came up big in 29
minutes off the bench , with 16 points and 10 rebounds , while Mike Conley chipped in 18 points , three steals and two assists . Chandler Parsons added 12 points on
3-of-6 shooting , in 25 minutes . The Grizzlies will have to put this one in the past , as they go right back in action on Saturday , when they visit Minnesota to take on
the Timberwolves .

Generated story The Oklahoma City Thunder defeated the Memphis Grizzlies , 114 - 102 , at Chesapeake Energy Arena on Friday . Despite there being just five ties and six lead
changes in this game , it was close throughout . In fact , neither team led by more than 12 points , as the nine-point final margin was one of the largest leads of the game
. Oklahoma City actually won this game , despite being out shot from the field , from three-point range and from the free-throw line . Rebounding was the decisive
statistic , with the Thunder winning that battle , 47 - 29 . They also dominated the assist-to-turnover ratio , recording 10 more assists and committing three less turnovers
. The Grizzlies ( 30 - 22 ) have now lost three of their last four games , as they continue to fall down the standings . Marc Gasol did all he could for Memphis , as he
led the team with 31 points , four rebounds , eight assists and two steals . Mike Conley finished second on the team , totaling 18 points , two assists and three steals
. Mike Conley finished second on the team , amassing 18 points and three steals . Zach Randolph was huge off the bench , providing 16 points , 10 rebounds and
three assists . The Grizzlies will be off until Saturday , when they play the Minnesota Timberwolves on the road for their next game . The Thunder ( 29 - 22 ) have
rode Russell Westbrook ’s triple-double train all year and they got another one here . Westbrook collected 38 points , 13 rebounds , 12 assists and three steals . Steven
Adams recorded a double-double , amassing 16 points and 12 rebounds . Joffrey Lauvergne was a nice spark off the bench , providing 16 points and eight rebounds .
The Thunder will look to keep rolling on Sunday against the Portland Trail Blazers .

Table 2: Metadata: our metadata encoding. Reference story: story #48 from DGT-valid. Generated story:
output of the English NLG model (3-player). Green: text based on facts from the metadata. Blue: correct facts
which are not explicitly in the metadata. Red: hallucinations or incorrect facts. Orange: repetitions.

Track Target Constrained Valid Test
NLG

EN
no 23.5 20.5

MT yes 60.2 58.2
MT no 64.2 62.2
MT+NLG yes 64.4 62.2
NLG

DE
no 16.9 16.1

MT yes 49.8 48.0
MT+NLG yes 49.4 48.2

Table 3: Doc-level BLEU scores on the DGT valid and
test sets of our submitted models in all tracks.

batches. When fine-tuning on DGT-train or Ro-
towire + DGT-train (Step 5 of the MT track, or
NLG/MT+NLG fine-tuning), we use a fixed learn-
ing rate schedule (Adam with 0.00005 LR) and a
much smaller batch size (1500 tokens on a sin-
gle GPU without delayed updates). We train for
100 epochs, compute DGT-valid perplexity at each
epoch, and DGT-valid BLEU every 10 epochs.

4.3 BLEU evaluation
Submitted models. For each track, we selected
the best models according to their BLEU score on
DGT-valid. The scores are shown in Table 3, and
a description of the submitted models is given in
Table 4. We compute BLEU using SacreBLEU
with its tokenization set to none,4 as the model
outputs and references are already tokenized with
NLTK. Hayashi et al. (2019) give the full results of

4SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.none+version.1.3.1

the task: the scores of the other participants, and
values of other metrics (e.g., ROUGE). Our NLG
models are “unconstrained” because the WMT19
parallel data, which we used for pre-training, was
not allowed in this track. Similarly, we do two sub-
missions for DE-EN MT: one constrained, where
we fine-tuned the doc-level MT model on DGT-
train only, and one unconstrained, where we also
used back-translated Rotowire-train and valid. All
the MT and MT+NLG models are ensembles of
5 fine-tuning runs. Cascading the English NLG
model with the ensemble of EN-DE MT models
gives a BLEU score of 14.9 on DGT-test, slightly
lower than the end-to-end German NLG model
(16.1). We see that in the same data conditions
(unconstrained mode), the MT+NLG models are
not better than the pure MT models. Furthermore,
we evaluated the MT+NLG models with MT-only
source, and found only a slight decrease of ≈ 0.3
BLEU, which confirms our suspicion that the NLG
information is mostly ignored.

NMT analysis. Table 5 shows the BLEU scores
of our MT models at different stages of training
(sent-level, doc-level, fine-tuned), and compares
them against one of the top contestants of the
WMT19 news translation task (Ng et al., 2019).

English NLG analysis. Table 6 shows a 5.7
BLEU improvement on Rotowire-test by our En-
glish NLG model compared to the previous state
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Track N best players Details
NLG (EN) 4 Rotowire BT + DGT-train + tags
NLG (DE) 6 Rotowire BT + DGT-train + tags

MT (DE-EN) N/A

Unconstrained: Rotowire BT +
DGT-train + tags + ensemble
Constrained: DGT-train only +
ensemble

MT (EN-DE) N/A DGT-train only + ensemble

MT+NLG (EN) 3 Rotowire BT + DGT-train + 20%
text masking + tags + ensemble

MT+NLG (DE) 3 Rotowire BT + DGT-train +
tags + ensemble

Table 4: Description of our submissions.

Model Target Valid Test News 2019
FAIR 2019

EN
48.5 47.7 41.0

Sent-level 55.6 54.2 40.9
Doc-level 56.5 55.0 38.5
Fine-tuned 61.7 59.6 21.7
FAIR 2019

DE
37.5 37.0 40.8

Sent-level 47.3 46.7 42.9
Doc-level 48.2 47.5 41.6
Fine-tuned 48.0 46.7 41.3

Table 5: BLEU scores of the MT models at different
stages of training, and comparison with the state of the
art. Scores on DGT-valid and DGT-test are doc-level,
while News 2019 is sent-level (and so is decoding).
On the latter, we used the DGT corpus tag for DE-EN,
and the Paracrawl tag for EN-DE (we chose the tags
with best BLEU on newstest2014). Scores by the “fine-
tuned” models are averaged over 5 runs.

of the art. Figure 1 shows the DGT-valid BLEU
scores of our English NLG models when varying
the number of players selected in the metadata. We
see that there is a sweet spot at 4, but surprisingly,
increasing the number of players up to 8 does not
degrade BLEU significantly. We hypothesize that
because the players are sorted from best to worst,
the models learn to ignore the last players.

From Table 7, we see that sorting players helps,
but only slightly. Using only team-level informa-
tion, and no information about players gives worse
but still decent BLEU scores.

Week day, player position or team-level ag-
gregated scores can be removed without hurting
BLEU. However, information about next games

Model Rotowire test
Wiseman et al. (2017) 14.5

Puduppully et al. (2019) 16.5
Ours (4-player) 22.2

Table 6: English NLG comparison against state-of-the-
art on Rotowire-test. BLEU of submitted NLG (EN)
model, averaged over 3 runs. Because Rotowire tok-
enization is slightly different, we apply a set of fixes to
the model outputs (e.g., 1-of-3 → 1 - of - 3).

0 1 2 3 4 5 6 7 8
Maximum players per team

20

21

22

23

D
G

T-
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lid
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Figure 1: DGT-valid BLEU (by the best checkpoint) de-
pending on the maximum number of selected players
for the English NLG track.

Model Valid Test
Baseline (3 players, sorted) 22.7 20.4
No player 20.1 18.8
All players, sorted 22.7 20.9
All players, shuffled 22.0 20.0
(1) No next game 22.0 19.9
(2) No week day 22.2 20.5
(3) No player position 22.6 20.5
(4) No team-level sums 22.5 20.5
(5) Remove most tags 22.6 20.8
(1) to (5) 21.3 19.7

Table 7: English NLG ablation study, starting from a
3 best player baseline (the submitted NLG model has 4
players). BLEU averages over 3 runs. Standard devia-
tion ranges between 0.1 and 0.4.

seems useful. Interestingly, relying on position
only and removing most tags (e.g., <PTS>, <FT>)
seems to be fine. In this case, we also print all-zero
stats, for the position of each statistic to be consis-
tent across players and games.

Train-test overlap on Rotowire. We found a
significant overlap between Rotowire train and
test: 222 out of 728 Rotowire-test games are also in
Rotowire-train (68/241 for DGT-test). The corre-
sponding stories are always different but bear many
similarities (some sentences are completely identi-
cal). Rotowire-train gets 24.2 BLEU when evalu-
ated against Rotowire-test (subset of 222 stories).
This gives us an estimate of human-level perfor-
mance on this task. Our submitted NLG model
gets 21.8 on the same subset. This overlap may
cause an artificial increase in BLEU, that would
unfairly favor overfitted models. Indeed, when fil-
tering Rotowire-train to remove games that were
also in DGT test, we found a slight decrease in
BLEU (19.8 instead of 20.4).
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Stadium name (+)

REF: The Golden State Warriors ( 56 - 6 ) defeated the Orlando Magic ( 27 - 35 ) 119 - 113
at Oracle Arena on Monday .
NLG: The Golden State Warriors ( 56 - 6 ) defeated the Orlando Magic ( 27 - 35 ) 119 - 113
on Monday at Oracle Arena .

Team alias (+)
REF: The Heat held the Sixers to 38 percent shooting and blocked 14 shots in the win .
NLG: The Sixers shot just 38 percent from the field and 32 percent from the three-point line ,
while the Heat shot 44 percent from the floor and a meager 28 percent from deep .

Double-doubles or
triple-doubles (+)

REF: Kevin Love ’s 29-point , 13-rebound double-double led the way for the Cavs , who ’d
rested Kyrie Irving on Tuesday .
NLG: Love led the way for Cleveland with a 29-point , 13-rebound double-double that also
included three assists and two steals .

Player injuries (-) NLG: The Timberwolves ( 28 - 44 ) checked in to Saturday ’s contest with an injury-riddled
frontcourt , as Ricky Rubio ( knee ) and Karl-Anthony Towns ( ankle ) were sidelined .

Ranking (-) NLG: The Heat ( 10 - 22 ) fell to 10 - 22 and remain in last place in the Eastern Conference ’s
Southeast Division .

Season-level
player stats (-)

NLG: It was a season-high in points for Thomas , who ’s now averaging 17 points per game
on the season

Table 8: Correctly predicted information that is not explicitly in the metadata (+), or hallucinations (-).

4.4 Qualitative evaluation

As shown in Table 2, the NLG model (3-
player) has several good properties besides coher-
ent document-level generation and the ability to
“copy” metadata. It has learned generic informa-
tion about the teams and players. As such, it can
generate relevant information which is absent from
metadata (see Table 8). For example, the model
correctly predicts the name of the stadium where
the game was played. This implies that it knows
which team is hosting (this information is encoded
implicitly by the position of the team in the data),
and what is the stadium of this team’s city (not in
the metadata). Other facts that are absent from the
metadata, and predicted correctly nonetheless, are
team aliases (e.g., the Sixers) and player nicknames
(e.g., the Greek Freak). The model can also gen-
erate other surface forms for the team names (e.g.,
the other Cavalier).

The NLG model can infer some information
from the structured data, like double-digit scores,
“double-doubles” (e.g., when a player has more
than 10 points and 10 assists) and “triple-doubles”.
On the other hand, some numerical facts are in-
accurate (e.g., score differences or comparisons).
Some facts which are not present in the structured
data, like player injuries, season-level player statis-
tics, current ranking of a team, or timing infor-
mation are hallucinated. We believe that most of
these hallucinations could be avoided by adding
the missing facts to the structured data. More
rarely, model duplicates a piece of information.

Another of its flaws is a poor generalization to
new names (team, city or player). This can quickly

be observed by replacing a team name by a fictional
one in the metadata. In this case, the model almost
always reverts to an existing team. This may be
due to overfitting, as earlier checkpoints seem to
handle unknown team names better, even though
they give lower BLEU. This generalization prop-
erty could be assessed by doing a new train/test
split, that does not share the same teams.

5 Conclusion
We participated in the 3 tracks of the DGT task:
MT, NLG and MT+NLG. Our systems rely heav-
ily on transfer learning, from document-level MT
(high-resource task) to document-level NLG (low-
resource task). Our submitted systems ranked first
in all tracks.

For the MT task, the usual domain adaptation
techniques performed well. The MT+NLG mod-
els did not show any significant improvement over
pure MT. The MT models are already very good
and probably do not need the extra context (which
is generally encoded in the source-language sum-
mary already). Finally, our NLG models, boot-
strapped from the MT models, do fluent and co-
herent text generation and are even able to in-
fer some facts that are not explicitly encoded in
the structured data. Some of their current limi-
tations (mostly hallucinations) could be solved by
adding extra information (e.g., injured players, cur-
rent team rank, number of consecutive wins, etc.)

Our aggressive fine-tuning allowed us to spe-
cialize MT models into NLG models, but it will
be interesting to study whether a single model can
solve both tasks at once (i.e., with multi-task learn-
ing), possibly in both languages.
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