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Abstract

The University of Edinburgh participated
in all six tracks: NLG, MT, and MT+NLG
with both English and German as tar-
geted languages. For the NLG track,
we submitted a multilingual system based
on the Content Selection and Planning
model of Puduppully et al. (2019). For
the MT track, we submitted Transformer-
based Neural Machine Translation mod-
els, where out-of-domain parallel data was
augmented with in-domain data extracted
from monolingual corpora. Our MT+NLG
systems disregard the structured input data
and instead rely exclusively on the source
summaries.

1 Track 1/2: Natural Language
Generation

The Natural Language Generation (NLG) track re-
volved around systems that take structured data in
the form of tabular data from a basketball game
as input, and generate a summary of this game in
the target language. We entered one multilingual
system which outputs summaries in both English
and German. A multilingual model allows us to
overcome the limited amount of German training
data.

We adopted the content selection and planning
approach of Puduppully et al. (2019), made ex-
tensions to the model and parameterized the de-
coder with a language tag, indicating the target
language. The training was done using the full
ROTOWIRE English dataset and the ROTOWIRE

English-German dataset. We first explain the ap-
proach of Puduppully et al. (2019), describe the

∗Ratish worked on Tracks 1/2 and Jonathan on Tracks
3/4/5/6.

extensions to their model and show how language
tags can be added to the decoder to indicate the
target language.

1.1 The Content Selection and Planning
Approach of Puduppully et al. (2019)

Puduppully et al. (2019) model p(y|r) as the
joint probability of text y and content plan z,
given input r. They further decompose p(y, z|r)
into p(z|r), a content selection and planning
phase, and p(y|r, z), a text generation phase:

p(y|r) =
∑
z

p(y, z|r) =
∑
z

p(z|r)p(y|r, z)

Given input records, probability p(z|r) is modeled
using Pointer Networks (Vinyals et al., 2015). The
probability of output text y conditioned on previ-
ously generated content plan z and input table r is
modeled as follows:

p(y|r, z) =
|y|∏
t=1

p(yt|y<t, z, r)

where y<t = y1 . . . yt−1. They use an encoder-
decoder architecture with an attention mechanism
to compute p(y|r, z). The architecture is shown in
Figure 1.

The content plan z is encoded into {ek}
|z|
k=1

using a bidirectional LSTM. Because the con-
tent plan is a sequence of input records, they
directly feed the corresponding content selected
record vectors {rcsj }

|r|
j=1 as input to the LSTM

units, which share the record encoder with the first
stage. For details of the content selection stage,
please refer Puduppully et al. (2019).

The text decoder is also based on a recurrent
neural network with LSTM units. The decoder is
initialized with the hidden states of the final step
in the encoder. At decoding step t, the input of
the LSTM unit is the embedding of the previously
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Figure 1: Generation model with content selection and planning. The text is generated conditioned on
the input content plan. At any time step, output token is generated from vocabulary or copied from the
content plan.

predicted word yt−1. Let dt be the hidden state of
the t-th LSTM unit. The probability of predicting
yt from the output vocabulary is computed via:

βt,k ∝ exp(dᵀ
tWbek) (1)

qt =
∑
k

βt,kek

dattt = tanh(Wd[dt;qt])

pgen(yt|y<t, z, r)=softmaxyt(Wyd
att
t + by) (2)

where
∑

k βt,k = 1, Wb ∈ Rn×n,Wd ∈
Rn×2n,Wy ∈ Rn×|Vy |,by ∈ R|Vy | are parame-
ters, and |Vy| is the output vocabulary size.

They further augment the decoder with a copy
mechanism, allowing the ability to copy words di-
rectly from the value portions of records in the
content plan (i.e., {zk}

|z|
k=1). They experimented

with joint (Gu et al., 2016) and conditional copy
methods (Gulcehre et al., 2016). Specifically, they
introduce a variable ut ∈ {0, 1} for each time step
to indicate whether the predicted token yt is copied
(ut = 1) or not (ut = 0). The probability of gen-
erating yt is computed by:

p(yt|y<t, z, r) =
∑

ut∈{0,1}

p(yt, ut|y<t, z, r)

where ut is marginalized out.

1.2 Copying from Table and Plan
We extended the copy mechanism further such that
ut can take three values: yt is generated from the

vocabulary (ut = 0), yt is copied from the content
plan (ut = 1) and yt is copied from the table (ut =
2).

Conditional Copy The variable ut is first com-
puted as a switch gate, and then is used to obtain
the output probability:

p(ut|y<t, z, r) = softmax(wu · dattt + bu)

αt,j ∝ exp(dt
ᵀWcr

cs
j ) (3)

p(yt, ut|y<t, z, r) =
p(ut|y<t, z, r)

∑
yt←zk βt,k ut = 1

p(ut|y<t, z, r)
∑

k βt,k
∑

yt←rj
,j∈γk

αt,j ut = 2

p(ut|y<t, z, r)pgen(yt|y<t, z, r) ut = 0

where
∑

j∈γk αt,j = 1. yt ← zk indicates
that yt can be copied from zk, yt ← rj indi-
cates that yt can be copied from rj . γk indi-
cates records in table corresponding to the kth
record in plan, for example: if k is ‘PTS’ value
of player Jeff Teague, then γk corresponds to all
the records for the entity Jeff Teague in the ta-
ble including ‘PTS’, ‘REB’, ‘NAME1’, ‘NAME2’
etc. βt,k and pgen(yt|y<t, z, r) are computed as in
Equations (1)–(2), and wu ∈ R3×n, bu ∈ R3 are
parameters.
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Figure 2: Generation model with content selection and planning and attention over table and content
plan. The text is generated conditioned on the content plan and the table. At any time step, output token
is generated from vocabulary, copied from the content plan or copied from input table.

1.3 Attending to the Table and Content Plan
The output text is generated by attending to both
the content plan and the input table (See Figure 2.)

δt,j ∝ exp(dᵀ
tWcr

CS
j ) (4)

st =
∑
j

δt,jr
CS
j

dattt = tanh(Wd[dt;qt; st])

pgen(yt|y<t, z, r)=softmaxyt(Wyd
att
t + by) (5)

where
∑

j δt,j = 1, Wc ∈ Rn×n,Wd ∈
Rn×3n,Wy ∈ Rn×|Vy |,by ∈ R|Vy | are parame-
ters, and |Vy| is the output vocabulary size.

1.4 Feature for Team Points and Ranking of
Player Points

Upon inspection of the ROTOWIRE game sum-
maries in the development set, we observed that
the summaries often describe the statistics of the
winning team followed by the statistics of the los-
ing team. The highest ranked players of either
team are also often described in sequence in the
summaries. Currently, we rely on the word em-
beddings of the team and player points to help
the model disambiguate the winning from the los-
ing team and to learn the relative performances of
the players. We hypothesize that explicitly provid-
ing information about the relative performance of
players and teams should make the learning easier.

We thus experimented with a feature for the
winning/losing team and the ranking of player

points within a team. Specifically, we added a bi-
nary feature for team records: win for each record
in the winning team, loss for each record in the
losing team. We further rank players in a team
on the basis of their points and we add a feature
indicating their rank in the team. For instance,
Kyle Lowry scored the highest number of points
in the home team and we add feature hometeam-0
to each of his records. Player Jahlil Okafor was
the second highest scorer in the visiting team and
we add the feature visteam-1 to each of his records
and so on.

1.5 Training a Single Multilingual Model

We trained a single model for English and German
data-to-text with a common BPE (Sennrich et al.,
2015b) vocabulary of 2000 symbols for the output
summaries. Player names and values of records
in summaries were not BPEd. The target text was
prefixed with token indicating the language of out-
put ‘EN’ or ‘DE’. During inference, we forced the
model to generate output in the desired language.

1.6 Dataset

We made use of the full ROTOWIRE English
dataset of Wiseman et al. (2017) and the German
dataset provided as part of the shared task. The
statistics of the dataset are given in Table 1.
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Train Dev Test
English 3398 727 728
German 242 240 241

Table 1: Count of examples in Training, Devel-
opment and Test sections of English and German
dataset.

Model
RG CS CO

BLEU
P% P% R% DLD%

EN 91.41 30.91 64.13 21.72 17.01
DE 70.23 23.40 41.83 16.08 10.95

Table 2: Automatic evaluation for track 1/2 on
the ROTOWIRE test set using record generation
(RG) precision, content selection (CS) precision
and recall, content ordering (CO) in normalized
Damerau-Levenshtein distance, and BLEU.

1.7 Results

Table 2 shows our results for English and German
datasets on the Test set as provided by the shared
task organizers.

2 Track 3/4 : Machine Translation

The Machine Translation (MT) track revolves ar-
round systems that translate source summaries to
the target language. Our submission takes advan-
tage of existing state-of-the-art techniques in ma-
chine translation, including (1) transformer net-
works (Vaswani et al., 2017). (2) subword units
(Sennrich et al., 2015b) and (3) the inclusion
of in-domain monolingual data used via back-
translation (Sennrich et al., 2015a).

For our submission, we focus on finding in-
domain basketball summary data from within
general-purpose monolingual datasets. We de-
velop several heuristics allowing us to extract mil-
lions of in-domain monolingual sentences, which
are then back-translated and included within the
training data. This additional monolingual data
improves bleu scores between 5 and 7 points.

2.1 Data

The translation models were trained on both the
ROTOWIRE English-German and all WMT19 par-
allel training data. A summary of the training data
can be found in table 3. For ease of comparison
to the NLG task, tokenization was done using the
tokenizer provided by the shared task organizers.
BPE was employed with a joint BPE subword vo-
cabulary of 50k.

Dataset Size
Europarl v9 18.39
Common Crawl corpus 24.00
News Commentary v14 3.38
Document-split Rapid corpus 14.01
Wikititles 13.05
ParaCrawl 162.64
ROTOWIRE EN-DE 0.033
Total 235.47

Table 3: Size (number of parallel training sen-
tences) in 100,000 of the EN-DE training data.

2.1.1 In-Domain Parallel Data
Table 3 highlights the extremely limited amount of
in-domain parallel training data used; ROTOWIRE

English-German makes up only 0.001% the paral-
lel training data. To ensure our translation system
produces in-domain translation, we supplemented
the parallel data with in-domain monolingual data.
We used back-translation to translate clean mono-
lingual data from the target language to the source
language.

Finding in-domain data for basketball is not
trivial, as there are no explicit basketball WMT19
monolingual training sets. Therefore, we ex-
tracted in-domain basketball data from the avail-
able general-purpose monolingual datasets.

We considered all documents within the News
Crawl 2007-2018 dataset and included all sen-
tences which appeared within a document where
any of the following conditions were met: (1)
Contains a player’s name, as taken from the RO-
TOWIRE English-German training data; (2) Con-
tains two team names; (3) the title contains the
word NBA. For German, 1.1 million monolingual
target sentences were collected, and for English,
4.32 million monolingual target sentences. These
sentences were then back-translated via sampling
(Edunov et al., 2018) and used to augment the par-
allel training data.

2.2 Model Description

For our submissions, we used the Transformer
model as implemented within OpenNMT-py
(Klein et al., 2017). Transformers are state-of-the-
art NMT approaches which rely on multi-headed
attention applied to both the source and target sen-
tences. All experiments are performed with 6
encoder-decoder layers, with an embedding layer
of size 512, a feed-forward layer size of 2048, and
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EN-DE DE-EN
Monolingual 34.44 40.72
Parallel 28.65 33.48

Table 4: Track 3-6: ROTOWIRE dev set results,
showing BLEU without monolingual data Parallel
and with monolingual data Monolingual.

Model
RG CS CO

BLEU
P% P% R% DLD%

EN-DE 81.01 77.32 78.49 62.21 36.85
DE-EN 91.40 78.99 63.04 51.73 41.15

Table 5: Automatic evaluation for track 3-6 on
the ROTOWIRE test set using record generation
(RG) precision, content selection (CS) precision
and recall, content ordering (CO) in normalized
Damerau-Levenshtein distance, and BLEU.

8 attentional heads. We set the batch size to 4096
tokens and maximum sentence length to 100 BPE
subwords. Dropout and label smoothing were also
both set to 0.1. All other settings were set their
default values as specified in OpenNMT-py. De-
coding was performed with a beam size of ~15,
length penalty averaging, and the decoder was
constrained to block repeating 4-grams. Model
selection was done using the BLEU score on the
development set.

2.3 Results

Results on the development set in Table 4 show
that the inclusion of monolingual data leads to
a significant increase in bleu (between 5 and 7
points). Table 5 shows test set results for both En-
glish and German target languages. The results
were provided by the shared task organizers.

3 Track 5/6: MT + NLG

The MT + NLG track combines the previous
tracks, models take in as input both the structured
data and the summary in the source language and
produce a summary in the target language as out-
put. We chose to disregard the structured data and
instead exclusively use the source summary, trans-
lating it to the target language. As such this sub-
mission to this track is a replication of our MT
submission with results shown in Table 5.
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