SYSTRAN @ WNGT 2019: DGT Task

Li Gong, Josep Crego, Jean Senellart
SYSTRAN / 5 rue Feydeau, 75002 Paris, France
firstname.lastname@systrangroup.com

Abstract

This paper describes SYSTRAN participation
to the Document-level Generation and Trans-
lation (DGT) Shared Task of the 3rd Workshop
on Neural Generation and Translation (WNGT
2019). We participate for the first time using
a Transformer network enhanced with modi-
fied input embeddings and optimising an addi-
tional objective function that considers content
selection. The network takes in structured data
of basketball games and outputs a summary of
the game in natural language.

1 Introduction

Data-to-text generation is an important task in
natural language generation (NLG). It refers to
the task of automatically producing a descriptive
text from non-linguistic structured data (tables,
database records, spreadsheets, efc.). Table 1 illus-
trates an example of data-to-text NLG, with statis-
tics of a NBA basketball game (top) and the corre-
sponding game summary (bottom).

Different from other NLG tasks (e.g., machine
translation), data-to-text generation faces several
additional challenges: First, data-to-text genera-
tion models have to select the content before gen-
erating text. In machine translation, the source
and target sentences are semantically equivalent to
each other, whereas in data-to-text generation, the
model initially selects appropriate content from
the input data to secondly generate fluent sen-
tences that incorporate the selected content; Sec-
ond, the training data in data-to-text generation
task is often very limited. Unlike machine trans-
lation, where training data consist of translated
sentence pairs, data-to-text generation models are
trained from examples composed of structured
data and its corresponding descriptive summary,
which are much harder to produce.

In this paper, we tackle both challenges previ-
ously discussed. We introduce a new data-to-text

262

generation model which jointly learns content se-
lection and text generation. In addition, we present
two data augmentation methods that further boost
performance of the NLG system.

2 Data Resources

We use the official data set made available for the
WNGT 2019 DGT task (Hayashi et al., 2019). It
consists of the the ROTOWIRE dataset (Wiseman
et al., 2017), a dataset of NBA basketball game
summaries, paired with their corresponding box-
and line-score tables. Table 1 illustrates an ex-
ample of the dataset. In the box-score table, each
team has at most 13 players and each player is de-
scribed by 23 types of values. In the line-score ta-
ble, each team has 15 different types of values. As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The
ROTOWIRE dataset contains 4, 853 summaries in
total, in which 3, 398 summaries are for training,
727 for validation and 728 for test. In addition,
the next monolingual resources were considered
usable in all tracks:

e Any monolingual data allowable by the
WMT 2019 English-German news task,

e Pre-trained word/subword/character embed-
dings (e.g., GloVe, fastText),

e Pre-trained contextualized embeddings (e.g.,
ELMo, BERT),

e Pre-trained language models (e.g., GPT-2).

3 Data-to-Text Transformer Model

In this section, we present how we adapt the Trans-
former model for the data-to-text generation tasks.
First, the input embedding of Transformer encoder
is replaced by our record embedding to better in-
corporate the record information. Second, a new

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 262-267
Hong Kong, China, November 4, 2019. (©2019 Association for Computational Linguistics
www.aclweb.org/anthology/D19-56%2d

TEAM-NAME WIN LOSS PTS AST

Cavaliers 51 28 90 25
Celtics 37 42 99 30
NAME POS PTS FGM FGA CITY
LeBron James F 14 5 14 Cleveland
Kevin Love F 19 6 12 Cleveland
Kyrie Irving N/A N/A N/A N/A Cleveland
Brandon Bass F 12 6 8 Boston
Avery Bradley G 15 7 12 Boston
Marcus Smart G 19 7 10 Boston

POS: position, PTS: points, FGM: Player field goals
made; FGA: Player field goals attempted; AST: assists;
CITY: player team city.

The Boston Celtics (37-42) defeated the Cleveland Cavaliers (51-28) 99-90
on Friday in Cleveland. With the Cavaliers solidified as the No.2 seed for
the Eastern Conference playoffs , they did not try particularly hard to win this
game, starting with sitting Kyrie Irving (hip) to make sure he stays healthy.
Regardless, the Celtics took advantage, picking up a huge victory as they fight
to stay in the playoffs. Marcus Smart led the way scoring for Boston, posting
19 points on 7-0f-10 shooting in 34 minutes. Avery Bradley was close behind,
scoring 15 points (7-12 FG) in 31 minutes. The Celtics starting frontcourt of
Tyler Zeller and Brandon Bass combined to score 25 points and grab 11
rebounds. Boston’s final starter, Evan Turner, struggled shooting the ball and
only scored four points, but still managed to dish out 13 assists and grab six
rebounds. Isaiah Thomas, as he has done so well since joining the Celtics,
provided solid production off the bench, scoring 17 points (4-12 FG, 2-6 3Pt)
in 23 minutes. ...

Table 1: Example of data-records (left) and document summary (right) from the ROTOWIRE dataset. Entities and

values corresponding to data-records are boldfaced.

learning objective is added into our model to im-
prove its content-oriented performance.

3.1 Record Embedding

The input of data-to-text model encoder is a se-
quence of records. Each record is a tuple of four
features (Entity, Type, Value, Info). Inspired by
previous work (Yang et al., 2016; Wiseman et al.,
2017; Puduppully et al., 2019), we embed features
into vectors, and use the concatenation of feature
embeddings as the embedding of record.
r; = [r1;05,2; 13, 4] (D
where r; € R%™ ig the ith reco_rd embedding in
the input sequence and r; ; € R is the jth fea-
ture embedding in r;.
Since there is no order relationship within the
records, the positional embedding of the Trans-
former encoder is removed.

3.2 Content Selection Modeling

Besides record embedding, we also add a new
learning objective into the Transformer model.

As presented before, we need to select the con-
tent from the input records before generating the
output summary. Some records are generally im-
portant no mater the game context, such as the
team name record and team score record, whereas
the importance of some other records depend on
the game context. For example, a player having
the highest points in the game is more likely to
be mentioned in the game summary. Within the
Transformer architecture, the self-attention mech-
anism can generate the latent representation for
each record by jointly conditioning on all other
records in the input dataset. A binary prediction

263

layer is added on top of the Transformer encoder
output (as shown in Figure 1) to predict whether
or not one record will be mentioned in the target
summary.

The architecture of our data-to-text Transformer
model is shown in Figure 1. As presented be-
fore, the encoder takes the record embedding as
input and generates the latent representation for
each record in the input sequence. The output of
encoder is then used to predict the importance of
each record and also serves as the context of the
decoder. The decoder of our model is the same as
the original Transformer model in machine trans-
lation. It predicts the next word conditioned on
the encoder output and the previous tokens in the
summary sequence.

In content selection modeling, the input record
sequences together with its label sequences are
used to optimize the encoder by minimizing the
cross-entorpy loss. In language generation train-
ing, the encoder and decoder are trained together
to maximize the log-likelihood of the training
data. The two learning objectives are trained al-
ternatively.

4 Data Augmentation Methods

In data-to-text generation task, the model needs to
not only generate fluent text, but also generate text
which is coherent with the input records. Several
content-oriented evaluation metrics are proposed
in (Wiseman et al., 2017) to evaluate such cohe-
sion, including the precision of record generation
and the recall rate with respect to the records in
gold summary.

In this section, we present two data augmenta-
tion methods: synthetic data generation and train-

0/1 0/1 0/1 Y1 Yz --..<eos>

t +r t t r

Pred_layer Softmax
Transformer Transformer
Encoder —» Decoder
bt ! ot !
r Tro ... Ty <bos> Y1 --- YT

Figure 1: Model Architecture

ing data selection. Each of them has different im-
pacts on the content-oriented evaluation results.

4.1 Synthetic Data Generation

In order to improve the cohesion between the in-
put records and output summary, we need more
data to enhance the encoder-decoder attention of
the decoder. Here we introduce a method to gen-
erate synthetic training data.

We first randomly change the values of records
and the changed record set (s') is then used to gen-
erate automatic summary (t') by a trained data-to-
text system. The synthetic data pairs (s', t') are
then used to improve such system.

In order to keep the data cohesion in the table,
the change is constrained with the following rules:

e only numeric values are changed. Non-
numeric values such as the position of a
player or the city name of a team are kept the
same.

e after the change, the team scores should not
violate the win/loss relation

e the changed values should stay in the normal
range of its value type. It should not bigger
than its maximum value or smaller than its
minimum value through all games.

Our data generation technique doubles the amount
of training data available for learning.

4.2 Training Data Selection

A deficiency of data-to-text NLG systems is the
poor coverage of relations produced in the gener-
ated summaries. In order to increase the coverage,
a simple solution consists of learning to produce
a larger number of relations. Here, we present a

264

140

120

100

examples
8

0 10 20 30 40 50 60 70 80
relation count

Figure 2: relation count distribution in training data.

straightforward method to bias our model to out-
put more relations by means of fine-tuning on the
training examples containing a greater number of
relations.

We use an information extraction (IE) system
to extract the number of relations of each train-
ing summary. Then, we select for fine-tuning our
baseline model the subset of training data in which
each summary contains at least N relations. In
this work, we take advantage of the IE system!
provided by (Puduppully et al., 2019), and the dis-
tribution of the number of relations in the training
summary is illustrated in Figure 2.

S Experimental Setup

5.1 Data and Preprocessing

We run the experiments with the ROTOWIRE
dataset (Wiseman et al., 2017), a dataset of NBA
basketball game summaries, paired with their cor-
responding box- and line-score tables. Table 1 il-
lustrates an example of the dataset. In the box-
score table, each team has at most 13 players and
each player is described by 23 types of values.
In the line-score table, each team has 15 differ-
ent types of values. In addition, the date of each
game is converted into the day of the week (such
as “Saturday”) as an additional record. In the pre-
processing step, the input box- and line-score ta-
bles are converted into a fix-length sequence of
records. Each sequence contains 629 records.” As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The

"The model is publicly available at ht tps: //github.
com/ratishsp/data2text-plan-py

YIn the 629 records, 598 records are for players, 30
records for teams and 1 record for the date.

https://github.com/ratishsp/data2text-plan-py
https://github.com/ratishsp/data2text-plan-py

ROTOWIRE dataset contains 4853 summaries in
total, in which 3398 summaries are for training,
727 for validation and 728 for test.

In content selection modelling, we need the la-
bels of input records to indicate which records in
the input will be mentioned in the output sum-
mary. Here we use a very simple method to gener-
ate such labels. First, we label the entity records?.
An entity record is labeled as 1 if its value is men-
tioned in the associated summary, otherwise it is
labeled as 0. Second, for each player or team men-
tioned in the summary, the rest of its values in the
table are labeled as 1 if they occur in the same sen-
tence in the summary.

5.2 Evaluation metrics

The model output is evaluated with BLEU (Pa-
pineni et al., 2002) as well as several content-
oriented metrics proposed by (Wiseman et al.,
2017) including three following aspects:

e Relation Generation (RG) evaluates the num-
ber of extracted relations in automatic sum-
maries and their correctness (precision) w.r.t
the input record dataset;

e Content Selection (CS) evaluates the preci-
sion and recall rate of extracted relations in
automatic summaries w.r.t that in the gold
summaries;

e Content Ordering (CO) evaluates the normal-
ized Damerau-Levenshtein Distance (Brill
and Moore, 2000) between the sequence of
extracted relations in automatic summaries
and that in the gold summaries.

All these content-oriented metrics are based on
an IE system which extracts record relations from
summaries. For the purpose of comparison, we
directly use the publicly available IE system of
(Puduppully et al., 2019) to evaluate our models.

5.3 Training Details

In all experiments, we use our model with 1 en-
coder layer and 6 decoder layers, 512 hidden
units (hence, the record feature embedding size
is 128, see Section 3), 8 heads, GELU activa-
tions (Hendrycks and Gimpel, 2016), a dropout
rate of 0.1 and learned positional embedding for

3Record whose Value feature is an entity (see Section ??),
for example: “LeBron_James|NAME|LeBron_James/H/W”.
The labeling is according to the Value feature

265

RG CS CcO

Model 4 P% | P% R% |DLD% | BIEV
GOLD 23.32 9477 | 100 100 100 100

TEMPL 5429 99.92 | 26.61 59.16 | 14.42 8.51

WS-2017 2395 75.10 | 28.11 3586 | 1533 | 14.57
NCP-2019 33.88 87.51 | 33.52 51.21 | 18.57 | 16.19
DATA-TRANS | 23.31 79.81 | 36.90 43.06 | 22.75 20.60
+DATA_GEN | 22.59 82.49 | 3948 42.84 | 23.32 | 19.76
+DATA_SEL 2694 79.54 | 3527 4749 | 2222 19.97
+BOTH 24.24 80.52 | 37.33 44.66 | 23.04 | 20.22

Table 2: Automatic evaluation on ROTOWIRE devel-
opment set using relation generation (RG) count (#)
and precision (P%), content selection (CS) precision
(P%) and recall (R%), content ordering (CO) in nor-
malized Damerau-Levenshtein distance (DLD%), and
BLEU.

the decoder. The model is trained with the Adam
optimizer (Kingma and Ba, 2014), learning rate is
fixed to 10~* and batch size is 6. As for inference,
we use beam size 4 for all experiments, and the
maximum decoding length is 600.

We implement all our models in Pytorch, and
train them on 1 GTX 1080 GPU.

6 Results

The results of our model on the development
set are summarized in Table 2. GOLD repre-
sents the evaluation result on the gold summary.
The RG precision rate is 94.77%, indicating that
the IE system for evaluation is not perfect but
has very high precision. After that, results of
three contrast systems are reported, where TEMPL
and WS-2017 are the updated results* of Wise-
man et al. (2017) models. TEMPL is template-
based generator model which generates a sum-
mary consisting of 8 sentences: a general de-
scription sentence about the teams playing in the
game, 6 player-specific sentences and a conclusion
sentence. WS-2017 reports an encoder-decoder
model with conditional copy mechanism. NCP-
2019 is the best system configuration (NCP+CC)
reported in (Puduppully et al., 2019) which is a
neural content planning model enhanced with con-
ditional copy mechanism. As for our model, re-
sults with four configurations are reported.
DATA-TRANS represents our data-to-text
Transformer model (as illustrated in Figure 1)
without any data augmentation. Comparing to
NCP-2019, our model performs 3.4% higher
on content selection precision, 4.2% higher on

“Here we all use the IE system of (Puduppully et al., 2019)
which is improved from the original IE system of (Wiseman
etal., 2017)

content ordering metric and 4.4 points higher
on BLEU. Our model performs better on the
CO metric, we attribute this improvement to that
our model generates nearly the same number of
relations as the gold summary which reduces
the edit distance between the two sequences of
relations. However, our model is 7.7% lower on
RG precision. And on the CS recall rate, our
model is 8.2% lower than NCP-2019. This is
probably due to the fact that NCP-2019 generates
much more records than our model (33.88 vs.
23.31) which could result higher coverage on the
relations in gold summary.

Comparing to TEMPL and WS-2017, our
model is much better on BLEU and CS precision.
Our model generates nearly the same number of
relations as WS-2017, but with 7.2% higher on
recall rate and 7.4% higher on CO metric.

By synthetic data generation (+DATA_GEN), we
generate synthetic table records as described in se-
cion 4.1. These synthetic table records are then
used as input to the DATA-TRANS model to gener-
ate summaries. All training table records are used
to generate synthetic data. The synthetic data is
then combined with the original training data to
fine-tune the DATA-TRANS model. From Table 2,
we can see that the RG and CS precisions are both
improved by 2.7% and 2.6% respectively. There is
no significant change on others metrics. The CO
metric is slightly improved due to higher RG and
CS precisions. The CS recall rate is slightly de-
graded with the number of extracted relations.

By training data selection (+DATA_SEL), we se-
lect the data whose summary contains the num-
ber of relations N >= 16 as the new training
data. The result training data size is 2242 (original
size: 3398). It is then used to fine-tune the DATA-
TRANS model. As shown in Table 2, as expected,
the model after fine-tuning generates more rela-
tions in the output summaries. The average num-
ber of relations in the output summaries increases
from 23.31 to 26.94. Respectively, the CS recall is
increased from 43.06% to 47.49%. However, the
CS precision is slightly degraded by 1.6%.

Finally, we combine both of the data augmen-
tation methods (+BOTH). Synthetic data genera-
tion improves the RG and CS precisions. Train-
ing data selection improves the CS recall rate by
making the model generate more relations. To
combine the two methods, we choose to fine-tune
the +DATA_GEN model with the selected train-

266

RG s Co
Model 4 p% | P% R% | DLD% | PFEU
TEMPL 5423 99.94 | 2699 58.16 | 1492 | 8.46
WS-2017 2372 74.80 | 2949 36.18 | 1542 | 14.19
NCP-2019 | 3428 87.47 | 3418 5122 | 1858 | 16.50
DATA-TRANS | 24.12 79.17 | 3648 4274 | 2240 | 20.16
+DATA_GEN | 24.01 83.89 | 38.98 42.85 | 23.02 | 19.48
+DATA_SEL | 27.47 80.70 | 35.33 46.25 | 21.87 | 20.03
+BOTH 2480 81.08 | 37.10 4378 | 22.51 | 20.14

Table 3: Automatic evaluation on ROTOWIRE test set.

ing data of +DATA_SEL (so this configuration is
actually +DATA_GEN+DATA_SEL). As shown in
Table 2, all content-oriented evaluation metrics
are improved compared to DATA-TRANS but not
as much as each single of the data augmentation
method. This configuration is like a trade-off be-
tween the two data augmentation configurations.

Results on the test set are reported in Table 3.
They follow the same pattern as those found on
the development set. Our DATA-TRANS model
outperforms all other contrast systems on BLEU,
CS precision and content ordering metrics. The
synthetic data generation method helps to improve
the RG and CS precisions. The training data se-
lection method improves the CS recall by mak-
ing the model generate more relations. Combining
these two data augmentation methods, all content-
oriented evaluation results are improved compared
to DATA-TRANS. However, there is no significant
change on BLEU.

7 Conclusions

We present an enhanced Transformer-based data-
to-text generation model for the WNGT2019 En-
glish NLG task. Experimental results have shown
that our enhanced transformer model outperforms
current state-of-the-art system on BLEU, content
selection precision and content ordering metics.
In addition, we proposed two data augmentation
methods, each of them improves different content-
oriented evaluation metrics.

References

Eric Brill and Robert C Moore. 2000. An improved er-
ror model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, pages 286—293.
Association for Computational Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and

translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908—
6915.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2016. Reference-aware language models.
arXiv preprint arXiv:1611.01628.

267

