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Abstract

Attention models have become a crucial com-

ponent in neural machine translation (NMT).

They are often implicitly or explicitly used to

justify the model’s decision in generating a

specific token but it has not yet been rigor-

ously established to what extent attention is

a reliable source of information in NMT. To

evaluate the explanatory power of attention for

NMT, we examine the possibility of yielding

the same prediction but with counterfactual at-

tention models that modify crucial aspects of

the trained attention model. Using these coun-

terfactual attention mechanisms we assess the

extent to which they still preserve the genera-

tion of function and content words in the trans-

lation process. Compared to a state of the art

attention model, our counterfactual attention

models produce 68% of function words and

21% of content words in our German-English

dataset. Our experiments demonstrate that at-

tention models by themselves cannot reliably

explain the decisions made by a NMT model.
1

1 Introduction

One shortcoming of neural machine translation

(NMT), and neural models in general, is that it is

often difficult for humans to comprehend the rea-

sons why the model is making predictions (Feng

et al., 2018; Ghorbani et al., 2019). The main

cause of such a difficulty is that in neural mod-

els, information is implicitly represented by real-

valued vectors, and conceptual interpretation of

these vectors remains a challenge. Why do we

want neural models to be interpretable? In order

to debug a neural model during the error analy-

sis process in research experiments, it is neces-

sary to know how much each part of the model is

1The source code to reproduce the experiments is
available at: https://github.com/sfu-natlang/

attention_explanation

contributing to the error in the prediction. Being

able to interpret the deficiencies of a model is also

crucial to further improve upon it. This requires

an explainable understanding of the internals of

the model, including how certain concepts are be-

ing modeled or represented. Therefore developing

methods to interpret and understand neural models

is an important research goal.

Visualizing and interpreting neural models has

been extensively studied in computer vision (Si-

monyan et al., 2013; Bach et al., 2015; Zeiler and

Fergus, 2014; Montavon et al., 2017), and more

recently in natural language processing (NLP)

(Karpathy et al., 2015; Li et al., 2016a; Strobelt

et al., 2017, 2018). Recently, the integration of at-

tention mechanism (Bahdanau et al., 2014) with

an NMT sequence to sequence model (Sutskever

et al., 2014) has led to significant improvements

in translation quality especially for longer sen-

tence lengths. The attention mechanism provides

a weighted average over the information from the

source encodings to be used at each translation

step. These weights are often regarded as a mea-

sure of importance, and are implicitly or explicitly

used as an explanation for the model’s decision.

However it has not yet been established to what

extent such explanations are reliable.

The example in Figure 1 shows a model trans-

lating the German sentence “und wir wollen dieses

material für alle verfügbar machen.” (and we

want to make this material accessible to every-

one.). At the time that the model is translating

“verfügbar” to “accessible”, it is mostly attending

to “verfügbar” (left heatmap). It is tempting to

conclude that “verfügbar” having the most atten-

tion is why the model is generating the token “ac-

cessible”. However, we manipulate the attention

weights such that the “verfügbar” receives no at-

tention and “alle” is given the most attention (right

heatmap). We observe that in the second case, the

https://github.com/sfu-natlang/attention_explanation
https://github.com/sfu-natlang/attention_explanation
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und wir wollen dieses material für verfügbar machen .

and we want to make 

this material to be
Model 

current state 

of translation

accessible

attention
output

alle und wir wollen dieses material für verfügbar machen .

and we want to make 

this material to be
Model 

current state 

of translation

accessible

attention
output

alle

Figure 1: Two distinct attention weights yielding the same prediction. The model is translating the source word

“verfügbar” to “accessible”. In the left attention heatmap, the focus of the attention is on the word “verfügbar”.

However, in the right heatmap, “verfügbar” is not attended to at all and “alle” has received the most attention.

model makes the same decision again and outputs

“accessible”. This example shows that using at-

tention weights to reason about the model’s pre-

dictions can be misleading, as these two heatmaps

convey different explanations.

There are relatively few previous studies on in-

vestigating the power of attention mechanism in

rationalizing a model’s predictions in NLP (Jain

and Wallace, 2019; Serrano and Smith, 2019) and

they all target text classification tasks where atten-

tion is over the input document. Their findings do

not generalize easily to NMT due to the difference

in how the decoder works in the translation task

which produces a sequence rather than a class la-

bel. NMT is a sequence-to-sequence (Seq2Seq)

task, which is different from text classification.

Also, the size of the output space is quite limited

in text classification, whereas in NMT, it is equal

to the vocabulary size of the target language that

can be very large. Furthermore, different neural

architectures (e.g., presence of an encoder and de-

coder in NMT), require different analysis and in-

terpretations. To the best of our knowledge there is

no existing work on addressing the question of in-

terpretability of attention models for the machine

translation task.

To investigate if the explanation implied by at-

tention weights faithfully justifies why a model

produced its output, we study to what extent it

is possible to yield the same prediction by us-

ing counterfactual attention weights that suggest

a contradictory explanation. The intuition behind

this approach is that multiple contradictory jus-

tifications should not exist for a decision. To

be specific, in the setting of an encoder-decoder

model (Sec 2), we propose several counterfactual

attention weighting methods that suggest differ-

ent explanations compared to the original attention

weights (Sec 3) and analyze their performance in

preserving the generation of function2 and content

words (Sec 4). Function words (e.g., a, the, is)

have little lexical meaning in contrast to content

words and thus we are curious whether explana-

tory power of the attention mechanism differs for

generation of these two groups of words.

2 Encoder-Decoder Model with

Attention Mechanism

Given a training sentence pair (x, y) where x =
[x1, x2, ..., xm] is a sentence in the source lan-

guage and y = [y1, y2, ..., yn] is its correspond-

ing translation in the target language, the encoder,

which is a recurrent neural network (RNN), runs

over the source sentence to calculate the contextu-

alized representation of the source words. Here,

we use a bidirectional encoder, and concatenate

the forward and backward hidden states to build

the final representation.

−→
ht =

−−→
fenc(xt,

−−→
ht−1)

←−
ht =

←−−
fenc(xt,

←−−
ht+1)

ht = [
−→
ht ,
←−
ht ]

(1)

Then the decoder starts to generate output to-

kens using the following probability distribution:

p(yt|y<t, x) = softmax(gdec(st, ct))

with gdec being a transformation function that

produces a vocabulary-sized vector, and st is the

hidden unit of the decoder’s RNN updated as:

st = fdec(yt−1, st−1, ct−1)

2The reference for function words (we added new func-
tion words including the EOS token to this) can be found at:
semanticsimilarity.files.wordpress.com/

2013/08/jim-oshea-fwlist-277.pdf

semanticsimilarity.files.wordpress.com/2013/08/jim-oshea-fwlist-277.pdf
semanticsimilarity.files.wordpress.com/2013/08/jim-oshea-fwlist-277.pdf
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where fdec is a RNN. Here ct is the context vec-

tor calculated by attention mechanisms:

ct =

m∑

i=1

αtihi

where αt is the normalized attention weights

over the source context:

αti =
ea(st,hi)

∑
j e

a(st,hj)

Here, a is a scoring function that determines

the contribution of each source context vector to

the final context vector. Implementation of a de-

pends on the choice of the attention method. In

this work, we use general attention (Luong et al.,

2015) as the scoring function:

a(st, hi) = s⊤t Wahi

3 Approach

Given a trained NMT model M , a test sentence

x with y being its translation generated by M at

the decoding step t in which αt is the attention

vector, attending to the source word at position

mt = argmaxi αt[i] or k-best attended-to words

in the source are often implicitly or explicitly re-

garded as a justification for the model’s prediction

at the time step t.

A vital criteria for such a justification is that one

should not be able to find a contradictory expla-

nation for the model’s decision. More precisely,

if at the time of inference, it is possible to ma-

nipulate the original attention weights to consti-

tute an alternative attention vector α′
t, such that

argmaxi α
′
t[i] 6=mt and the decision of the model

is preserved, then these weights cannot be used

for justification as they are contradictory. Thus,

we are interested in assessing for what percentage

of the words in the translation, counterfactual at-

tention weights exist. These percentages can shed

light on the reliability of the attention weights as

a potential explanation. Note that at the inference

time we manipulate attention vector for each out-

put token separately and in isolation to make sure

the output tokens at time steps t+ 1 and after will

not be affected by the change at time step t. This

means that our output translations are unaffected

by our counterfactual attention models which are

purely for the examination of how attention might

explain the model’s decision.

The main task here is to find a counterfactual

attention vector if it exists at all. An exhaustive

search approach in which every possible attention

vector is examined is computationally intractable

and unlikely to provide much insight. Instead we

experiment with a few specific counterfactual at-

tention weighting methods that we think provide

the most insight. It is important to note that in this

case, the calculated percentage of the preserved

words will be a lower-bound estimation for the

true percentage. As a result, the explanation of-

fered by attention weights are more unreliable than

what we’ll find. We experiment with the following

attention methods to create counterfactual atten-

tion weights:

• RandomPermute (Jain and Wallace, 2019):

We set α′
t = random permute(αt) such

that argmaxi α
′
t[i] 6= mt.

• Uniform: In this method, α′
t =

1
m
~1. Here,

m is the length of the source sentence.

• ZeroOutMax: A simple approach to create

a counterfactual attention vector is to remove

the maximum attention weight. So we set

a(st, hmt
) = −∞.

We also experiment with four additional atten-

tion methods where our motivation is not finding

counterfactual attention weights, but to improve

our understanding of how attention weights influ-

ence the model’s prediction:

• ZeroOut: In what conditions does the de-

coder overlook the information provided by

attention mechanism? To answer this ques-

tion, we set all attention weights to zero at

inference time (attention is still used while

training the model).

• LastEncoderState: Here, we only use

the final hidden state of the encoder as the

context vector to be used in the decoder. Note

that this is different from seq2seq without at-

tention in which final hidden state of the en-

coder is used to initialize the decoder. When

the focus is on the final hidden state of the

encoder in the original attention weights, this

method does not produce a counterfactual at-

tention vector, which is why we don’t intend

to use this method to create a contradictory

explanation, but rather to gain more insight

into the sensitivity of the model to attention

weights.
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• OnlyMax: In this and the following method,

the source hidden state with the maximum

attention still receives the highest attention,

and so these two methods do not output

counterfactual attention vectors. However

we are curious to what extent other attention

weights are required to preserve the model’s

output. Note that the weights produced by

these methods can be counted as contra-

dictory when multiple attention weights are

used for justifying predictions. Because al-

though the most attended source context is

not changed, the relative ranking of the rest

of the source context in terms of attention

weights is changed. However, these kinds

of justifications are mostly discussed in text

classification. In this specific method we only

keep the most attended source hidden state:

α′
t[mt]=1.

• KeepMaxUniformOthers: Here, we set

α′
t[mt] = αt[mt], but for all other positions

α′
t[i] = (1−α′

t[mt])/m. This is to investigate

if using other source hidden states uniformly

has any added benefit.

4 Experiments

4.1 Data

In this work we use the German-English dataset

from IWSLT20143. We concatenate dev2010,

dev2012, tst2010, tst2011 and tst2012 to be used

as the test data. Data is tokenized using Moses

(Koehn et al., 2007).

4.2 Model Details

OpenNMT (Klein et al., 2017) is used for our

Seq2Seq implementation. We use Long Short-

Term Memory (LSTM) as RNN units. Each

LSTM unit has 2 layers, and the dimension size

for LSTM units and word embeddings is set to

500. The model is trained using Adam trainer with

learning rate 0.001 for 50000 steps using early

stopping. Vocabulary size for both the source and

target language is set to 50000. Sentences longer

that 50 tokens are pruned.

5 Results

Table 1 shows the percentage of function and con-

tent words generated by the trained model. As ex-

pected, the majority of the generated tokens are

3https://sites.google.com/site/

iwsltevaluation2014/

function words. We discuss our findings in more

detail in the subsequent subsections.

Number of tokens (+EOS) 139465

Percentage of function words 68%

Percentage of content words 32%

Table 1: Percentage of function and content words in

the generated translation.

Method % for FWs % for CWs

1 RandomPermute 33% 6%
2 Uniform 53% 11%
3 ZeroOutMax 52% 15%

4 Aggregate(1+2+3) 68% 21%

5 ZeroOut 9% 0%
6 LastEncoderState 20% 2%
7 OnlyMax 71% 83%
8 KeepMaxUniformOthers 86% 86%

Table 2: Percentage of the preserved function and content
words in the proposed attention methods: Trying out all the
methods to find a counterfactual attention vector maximizes
the chance of success. We use methods in row 5-8 only to
shed light on the sensitivity of the model’s output to pertur-
bation in attention weight. They are not necessarily counted
as counterfactual attention methods. Higher preservation rate
stands for better performance.

5.1 Effectiveness of the proposed

counterfactual attention methods

Table 2 shows the percentage of function and

content words for which counterfactual attention

weights were found using the proposed attention

methods. The Uniform method (row 2) is the

most effective method to create counterfactual at-

tention weights for function words. However, for

content words, the ZeroOutMax method (row 3)

is the most successful method.

From Table 2, we also derive that

RandomPermute is not as effective as the

Uniform and ZeroOutMax methods. Our

justification is that in the RandomPermute

method, it is highly probable that the context

vector is biased toward a random source hidden

state. Such bias can lead to misleading noise in

the context vector. However, there isn’t such a

bias in the Uniform or ZeroOutMax methods.

To maximize the chance of finding a counter-

factual attention, for each output token, we try out

all the proposed methods to check if we can find a

counterfactual attention (row 4). As evident from

Table 2, this approach greatly increases the chance

of finding a counterfactual attention. Note that as

previously stated, these percentages are a lower-

bound for the true percentage.

https://sites.google.com/site/iwsltevaluation2014/
https://sites.google.com/site/iwsltevaluation2014/
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5.2 Function words are more easily

generated compared to content words

An important observation in Table 2 is that the

proposed methods are considerably more effective

in preserving function words compared to con-

tent words. The production of function words

rely more on the target context, in contrast to con-

tent words which rely more on the source context.

Accordingly, perturbation in the original attention

weights likely has significantly more impact on

diminishing content words compared to function

words.

This ties well with the main idea behind con-

text gates in which the influence of source con-

text and target context is controlled dynamically

(Tu et al., 2017). Since the generation of func-

tion words relies more on the target context, one

may wonder to what extent attention is needed for

preserving function words? To answer this ques-

tion, we completely zero out the attention using

ZeroOut. Row 5 shows that only 9% of function

words were preserved in this method.

Moreover it can be seen that the model could

not preserve any content word when this method

is employed. Interestingly, we found that the pre-

served function words in this method were all oc-

currences of “,”. Apparently the decoder’s lan-

guage model is so strong in predicting “,” without

attention. This finding suggests that a basic repre-

sentation of the source context is still necessary to

preserve function words.

5.3 Highlighting top preserved tokens

An important question that may arise is whether

each attention method tends to preserve a spe-

cific group of words. To address this question, we

listed the top preserved function words and con-

tent words for all the proposed methods. We ob-

served that they mostly preserve the same group

of words but with different percentages. As a re-

sult, we only list the top preserved tokens for the

aggregate method.

Table 3 contains the top 20 content words sorted

by the number of times they were preserved. It

is interesting to note that for many of these fre-

quent tokens, more than half of their total occur-

rences are preserved without focusing on their cor-

responding translation in the source sentence (e.g.,

“going”, “know”, “thing”, etc).

In Table 4, we sort such tokens based on their

coverage, which is the percentage of their total

Token # preserved Coverage

going 310 70%

people 237 46%

know 219 62%

world 215 67%

like 189 47%

think 176 50%

way 162 68%

get 160 53%

thing 147 79%

things 142 56%

time 139 54%

see 137 51%

years 136 64%

make 126 49%

little 113 55%

just 109 29%

really 93 37%

bit 92 88%

said 89 59%

got 86 59%

Table 3: Top 20 content words preserved by the aggre-

gate method sorted by the number of times they were

preserved.

Token Coverage Total

bit 88% 105

course 87% 91

thank 83% 89

thing 79% 186

fact 78% 74

half 78% 27

own 75% 75

ones 73% 30

states 73% 30

difference 71% 21

going 70% 444

turns 69% 26

way 68% 237

able 67% 85

world 67% 323

doing 66% 103

planet 65% 37

years 64% 212

know 62% 353

united 62% 21

Table 4: Top 20 content words preserved by the aggre-

gate method sorted by percentage of their total occur-

rences that are preserved (coverage).
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occurrences that are not affected when a counter-

facual attention is applied4. We repeat the same

process for function words (Table 5 and Table 6).

As evident from Table 5, we have successfully

yielded the same token in 94% of the occurrences

of the EOS token but with a contradictory expla-

nation. This can be explained by the previous find-

ings suggesting special hidden units keep track

of translation length (Shi et al., 2016). As a re-

sult, EOS token is generated upon receiving signal

from these units rather than using attention. This

indicates that attention weights are highly unreli-

able for explaining the generation of EOS tokens.

This is worth noting because early generation of

the EOS token is often a major reason of the under-

translation problem in NMT (Kuang et al., 2018).

Thus, attention weights should not be used to de-

bug early generation of EOS, and that some other

underlying influence in the network (Ding et al.,

2017) might be responsible for the model’s deci-

sion in this case.

5.4 Last encoder hidden state is a poor

representation of the source context in

the attentional model

The last encoder state in a non-attentional model

is passed to the decoder as the representation

of the source context (Cho et al., 2014) al-

though the accuracy of this representation has

been shown to degrade as sentence length in-

creases (Bahdanau et al., 2014). We experiment

with the LastEncoderState method to inves-

tigate how well the last encoder state can be rep-

resentative of the source context in the attentional

setting, and if exclusively attending to it can be

used as a counterfactual attention.

Row 6 in Table 2 shows that there is a signifi-

cant gap between the LastEncoderState and

the counterfactual methods proposed in Table 2.

A possible explanation for this result is that in

the presence of attention mechanism, the model

is trained to distribute the source-side information

among the encoder states to be easier to select the

relevant parts of the information with respect to

the decoding state. Consequently, the last encoder

state does no longer capture the whole informa-

tion.

4We consider only the tokens that have appeared more
than 20 times. The reason is that there are many preserved
words that have appeared only once (coverage=1) and it is
not clear if the coverage remains the same when frequency
increases.

Token # preserved Coverage

, 7329 85%

EOS 6364 94%

the 5210 82%

. 3947 60%

of 3003 87%

to 2923 86%

and 2639 67%

a 2187 65%

that 1936 69%

i 1737 76%

&apos;s 1732 95%

you 1501 72%

it 1497 72%

is 1496 88%

in 1364 64%

we 1246 64%

they 624 69%

&quot; 620 81%

have 613 70%

be 582 91%

&apos;t 580 96%

&apos;re 542 86%

this 541 42%

so 531 57%

are 526 77%

was 514 66%

do 433 77%

about 417 65%

what 415 61%

can 400 54%

Table 5: Top 30 function words preserved by the aggre-

gate method sorted by the number of times they were

preserved.

If we look at Table 7, we can see that the most

covered functions words, are the words that usu-

ally appear at the end of the sentence (e.g., “EOS”,

“.”, “?”, “!”). This is because most of the con-

text captured by the last encoder state is centered

around the last part of the sentence in which these

tokens appear.

5.5 Attention of non-maximum source

hidden states

Row 7 shows that a majority of output tokens

can be preserved even when the model attends

to a single source hidden state. Row 8 shows

that when other source hidden states are uniformly

combined, although the ratio of unaffected content

words has increased by 3%, ratio of unaffected
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Token Coverage Total

&apos;t 96% 602

&apos;s 95% 1819

EOS 94% 6748

be 91% 641

is 88% 1707

of 87% 3450

to 86% 3383

&apos;re 86% 631

, 85% 8582

&apos;m 84% 311

been 82% 233

lot 82% 148

the 82% 6386

&quot; 81% 770

are 77% 679

do 77% 565

i 76% 2290

who 73% 300

it 72% 2089

you 72% 2099

have 70% 876

up 70% 235

they 69% 904

that 69% 2812

well 67% 153

and 67% 3922

was 66% 774

were 65% 240

same 65% 154

a 65% 3369

Table 6: Top 30 function words preserved by the aggre-

gate method sorted by coverage.

function words has increased by 15%. This again

underlines the importance of the basic representa-

tion of the source context for generation of func-

tion words.

5.6 Summary

Our findings can be summarized as follows:

• It is possible to generate 68% of function

words and 21% of content words with a coun-

terfactual attention indicating unreliability of

using attention weights as explanation.

• The generation of function words relies more

on the target context, whereas the generation

of content words relies more on the source

context. This results in a higher likelihood of

Token Coverage Total

EOS 99% 6748

. 98% 6526

? 88% 589

&apos;t 86% 602

! 68% 22

&quot; 60% 770

&apos;s 24% 1819

; 24% 63

are 18% 679

is 18% 1707

Table 7: Top 10 unaffected function words in the

LastEncoderState method.

generation of preserved function words com-

pared to that of preserved content words.

• Generation of EOS tokens cannot be reliably

explained by using attention weights. In-

stead, this depends on the length of the tar-

get translation which is implicitly pursued by

special hidden units. As a result, EOS token

is emitted upon receiving a signal from these

units rather than information from attention.

• The last encoder state is a poor representation

of the source sentence and cannot be effec-

tively used as the source context vector.

• It is possible to generate 86% of tokens by

only using the source hidden state with the

maximum attention and using other source

hidden states uniformly suggesting that it

may not be necessary to assign highly tuned

weights to each source hidden state.

6 Related Work

Relevance-based interpretation is a common tech-

nique in analyzing predictions in neural models.

In this method, inputs of a predictor are assigned

a scalar value quantifying the importance of that

particular input on the final decision. Saliency

methods use the gradient of the inputs to define

importance (Li et al., 2016a; Ghaeini et al., 2018;

Ding et al., 2019). Layer-wise relevance propa-

gation that assigns relevance to neurons based on

their contribution to activation of higher-layer neu-

rons is also investigated in NLP (Arras et al., 2016;

Ding et al., 2017; Arras et al., 2017). Another

method to measure relevance is by removing the

input, and tracking the difference in in network’s
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output (Li et al., 2016b). While these methods fo-

cus on explaining a model’s decision, Shi et al.

(2016); Kádár et al. (2017); Calvillo and Crocker

(2018) investigate how a particular concept is rep-

resented in the network.

Analyzing and interpreting the attention mech-

anism in NLP (Koehn and Knowles, 2017; Ghader

and Monz, 2017; Tang and Nivre, 2018; Clark

et al., 2019; Vig and Belinkov, 2019) is another

direction that has drawn major interest. Although

attention weights have been implicitly or explic-

itly used to explain a model’s decisions, the re-

liability of this approach is not proven. Several

attempts have been made to investigate the reli-

ability of this approach for explaining a models’

decision in NLP (Serrano and Smith, 2019; Baan

et al., 2019; Jain et al., 2019; Jain and Wallace,

2019), and also in information retrieval (Jain and

Madhyastha, 2019).

Our work was inspired by Jain and Wallace

(2019). However, in this work we have focused on

similar issues in neural machine translation which

is has different challenges compared to text clas-

sification in terms of objective and architecture.

Moreover, our paper studies the effect of different

counterfactual attention methods.

7 Conclusion

Using attention weights to justify a model’s pre-

diction is tempting and seems intuitive at the first

glance. It is, however, not clear whether attention

can be employed for such purposes. There might

exist alternative attention weights resulting in the

same decision by the model but promoting differ-

ent contradictory explanation.

We propose several attention methods to create

counterfactual attention weights from the original

weights, and we measure to what extent these new

contradictory weights can yield the same output

as the original one. We find that in many cases,

an output token can be generated even though a

counterfactual attention is fed to the decoder. This

implies that using attention weights to rationalize

a model’s decision is not a reliable approach.

8 Future Work

In the future, we intend to study the extent to

which attention weights correlate with importance

measured by gradient-based methods. While we

have separated function and content words in this

work, we would like to extend our findings to other

categories such as parts of speech (POS) or out-of-

vocabulary (OOV) words. Another logical investi-

gation for future would be to address interpretabil-

ity of copy mechanism in NMT (Gu et al., 2016).

Proving the correlation between attention and the

model predictions in more sophisticated attention

models such as Transformer (Vaswani et al., 2017)

is also worth exploring.
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