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Abstract

Neural models that eliminate the softmax
bottleneck by generating word embeddings
(rather than multinomial distributions over a
vocabulary) attain faster training with fewer
learnable parameters. These models are cur-
rently trained by maximizing densities of pre-
trained target embeddings under von Mises-
Fisher distributions parameterized by corre-
sponding model-predicted embeddings. This
work explores the utility of margin-based loss
functions in optimizing such models. We
present syn-margin loss, a novel margin-
based loss that uses a synthetic negative sam-
ple constructed from only the predicted and
target embeddings at every step. The loss
is efficient to compute, and we use a geo-
metric analysis to argue that it is more con-
sistent and interpretable than other margin-
based losses. Empirically, we find that syn-
margin provides small but significant improve-
ments over both vMF and standard margin-
based losses in continuous-output neural ma-
chine translation.

1 Introduction

A new approach to conditional language mod-
eling (Kumar and Tsvetkov, 2019) generates
continuous-valued embeddings in place of discrete
tokens (such as words or subwords). These em-
beddings are trained to lie in a pretrained word
embedding space by maximizing, at each step of
training, the von Mises-Fisher (vMF) probability
density of the target pretrained embedding given
the model-predicted embedding (§2). This elimi-
nates the softmax bottleneck to ensure time- and
memory-efficient training.

We investigate alternative loss functions for this
new class of models, specifically margin-based
formulations. These have been used to train em-
beddings for a range of tasks (Bojanowski et al.,
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2017; Bredin, 2017; Wu et al., 2018), and stan-
dard margin-based losses yield slight but incon-
sistent improvements over VMF on continuous-
output neural machine translation (NMT). We pro-
pose syn-margin, a novel margin-based loss for
which negative samples are synthesized using only
the predicted and target embeddings, without sam-
pling from or searching through the large pre-
trained embedding space (§3). These samples
are constructed by extracting the portion of the
predicted embedding that is not along the tar-
get embedding; intuitively, suppressing this com-
ponent will increase the predicted embedding’s
similarity to the target. We use a geometric
analysis to argue that this principled construc-
tion renders syn-margin loss more consistent and
interpretable than standard margin-based losses
that select negative samples randomly or heuris-
tically (Collobert et al., 2011; Hadsell et al., 2006;
Schroff et al., 2015; Mikolov et al., 2013a). Em-
pirically, we find that syn-margin attains small but
statistically significant improvements over vMF
(§4) on continuous-output neural machine trans-
lation (NMT).

The key contributions of this work are: (1) the
formulation of syn-margin loss, which is applica-
ble across natural language processing and com-
puter vision tasks for which the targets lie in pre-
trained embedding spaces (2) a geometric analysis
of the functionality of syn-margin loss, which pro-
vides insights into the mechanism of margin-based
losses in general and (3) the empirical result of im-
proved performance on continuous-output NMT.

2 Continuous-output models

Conditional language models generate text condi-
tioned on some input, e.g., produce translations of
input sentences (Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015). State-of-the-art
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neural models generate the text as a sequence of
discrete tokens such as words. !

A traditional model, at every step of genera-
tion, produces a context vector c that encodes both
the conditioning input and the output from previ-
ous generation steps. It then transforms c into a
discrete distribution over the target vocabulary V'
using a softmax-activated linear transformation of
size |c| x |V|. These models are typically trained
using cross-entropy loss, and inference uses either
greedy or beam decoding.

Instead of the multinomial distribution over
V', continuous-output conditional language mod-
els generate a d-dimensional word embedding @i
(Kumar and Tsvetkov, 2019). For this purpose,
the |c| x |V transformation is replaced by a lin-
ear layer of size |c| x d. This design enables the
model to have far fewer parameters than the origi-
nal (d € V).

The model is trained and decoded in conjunc-
tion with a table of pretrained embeddings for
words in V. Proposing that the predicted embed-
ding 0 parametrizes a von Mises-Fisher distribu-
tion over all d-dimensional vectors, Kumar and
Tsvetkov (2019) train the model by maximizing
the probability density at the target word’s pre-
trained embedding u under this distribution cen-
tered at {i:

where
4>
(2m)4/21,5_1 ([|100]])

with I, being the modified Bessel function of the
first kind of order v.

Thus, every predicted embedding is driven to-
wards its target embedding u, which can be iden-
tified since target words are available during train-
ing. This is much faster than training in the
discrete-output case, since VMF densities are im-
plicitly normalized. During inference, choosing
the most likely word reduces to finding the pre-
dicted embedding’s nearest neighbour (by cosine
similarity) in the La-normalized pretrained em-
bedding space.”

Cr(llal) =

The discrete units may be words, sub-word units (Sen-
nrich et al., 2016), characters (Ling et al., 2015; Kim et al.,
2016) or tokens of any other granularity. We focus on the
generation of words, since pretrained embeddings spaces at
this granularity are interpretable and semantically coherent
across languages.

’In line with the inference mechanism, all references we
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Figure 1: Synthesizing negative samples. Consider
predicted and target embeddings G (blue) and u (solid
black), respectively. To synthesize a negative exam-
ple for the margin-based loss by projection (top), we
project 1 onto u (dotted blue), use this to find compo-
nent of G that is orthogonal to u (dotted orange) and
normalize it to obtain uq, (solid orange). To synthe-
size by difference (bottom), we normalize i — u to
obtain ug;g (long orange).

3 Margin-based loss formulations

To explore the space of additional loss functions
for continuous-output models, we study margin-
based losses commonly used to compare embed-
dings in both natural language and image process-
ing (Collobert et al., 2011; Schroff et al., 2015)
tasks:

£ =max{0, A+ v a—u’a} (1)

This requires G to be closer to u than to some
negative sample u' by a margin of \. (Since the
embeddings are normalized, inner product corre-
sponds to cosine similarity.) Here A is a hyperpa-
rameter that, along with u’, decides whether 1 is
‘close enough’ to u.

The negative sample u’ is usually chosen by (1)
stochastic processes such as negative sampling:
randomly choosing an embedding from the pre-
trained embedding table, and averaging loss over
k random draws or (2) heuristic selections such as
the most informative negative sample introduced
by Lazaridou et al. (2015): the embedding in the
table that is closest to @t — u.

3.1 The role of negative samples

What is the role of the negative sample in this
margin-based loss? We investigate with a geomet-

make to ‘similarity’ or ‘closeness’ will be in the cosine, not
Euclidean sense. In a slight change of notation, we will
henceforth use 1 to refer to the unit vector along a predicted
embedding rather than the predicted embedding itself.



ric analysis.

At the outset, consider predicted and target em-
beddings @1 and u, both of unit length. The pre-
dicted embedding’s components parallel and or-
thogonal to u are (17 u)u and G — (i’ u)u (dotted
blue and dotted orange lines respectively in Fig-
ure 1, which illustrates this decomposition). Let
the unit vector along this orthogonal component
be ug¢n (solid orange line). It follows that (1)
Uorth L u and (2) 0 is a linear combination of
these orthogonal vectors, say, Aju + AgUgth-

Now, choose any embedding x of unit length
from the d-dimensional space (not necessarily the
pretrained embedding of any word) to use as
the negative sample in a margin-based loss. Let
its projections along u and ug, be Asu and
AqUortn Since these are orthogonal, x decomposes
as Asu + AqUgth + Y Where y is some vector or-
thogonal to both u and u,t, (y = 0 when d = 2).

Using the decomposed forms of @i and ug¢p
in the margin-based loss, the second argument of
equation 1 becomes

)\+)\4uorthTﬁ_ (1 _)‘3)uTﬁ+yT()\1u+)\2uorth)

Applying orthogonality to set the final term to
Zero gives

£ = max{0, A + Mugen @ — (1 — A3)ul @}

Thus, regardless of the actual negative sample
chosen, the loss reduces to a form wherein some
scalar multiples of u and u,,}, are the positive and
negative samples respectively. The loss essentially
penalizes the component of i that is orthogonal to
u.

3.2 Synthesized negative samples

Drawing on this insight, we propose to use the syn-
thesized vector ugy, as the negative sample in a
margin-based loss. This sets A4 and A3 at 1 and 0
respectively, providing a steady training signal. In
contrast, these coefficients fluctuate during train-
ing if heuristic or stochastic methods are used to
select negative samples. We also propose a second
closely related negative sample ug;g, synthesized
by subtraction rather than projection: the unit vec-
tor along the difference 1 — u (see Figure 1 for
a visualization). Synthesizing ug¢n and ugig is
efficient since it does not require any sampling
from or searching through the pretrained embed-
ding space. We refer to the loss formulations us-
ing uqn and ugig as syn-margin by projection
(SMP) and difference (SMD) respectively.
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Although ug.¢p and ugig are functions of 1,
they are plugged into £ as constant vectors de-
tached from the computational graph; this pre-
vents them from being optimized to minimize L.
We highlight that using these synthesized nega-
tive samples cannot lead to a degenerate state in
which all the word embeddings collapse to a single
point. This is because the target embeddings are,
unlike in some previous work that uses margin-
based losses, pretrained and fixed.

4 Experimental Setup

We follow Kumar and Tsvetkov (2019) to conduct
experiments on neural machine translation.
Datasets We evaluate our models on IWSLT’16
(Cettolo et al.,, 2015) French—English and
German—English datasets. We pretrain target em-
beddings on a large English-language corpus (4B+
tokens) using FastText on default settings (Bo-
janowski et al., 2017) and Lo-normalize the em-
beddings. Vocabulary sizes are limited to 50000.
We follow Kumar and Tsvetkov (2019) in using
the standard development (tst2013 and tst2014)
and test (tst2015 and tst2016) sets associated with
the parallel corpora and in processing the data;
train, development and test splits contain roughly
200K, 2300 and 2200 parallel sentences each.
Setup We use a neural machine translation
system with attention (Bahdanau et al., 2015),
set up to match that described in Kumar and
Tsvetkov (2019). The encoder and decoder are 1-
layer bidirectional and 2-layer LSTMs with 1024-
dimensional hidden and output states. Word em-
beddings are 512-dimensional on the encoder side
and 300-dimensional on the decoder side. De-
coder input and target embeddings are tied to
the same parameter matrix, these embeddings are
transformed to the correct dimensions with a lin-
ear layer when used as inputs to the decoder. Gen-
erated embeddings are normalized before comput-
ing margin-based losses (VMF loss accounts sepa-
rately for embedding norm). We train for up to 20
epochs with Adam (Kingma and Ba, 2015), an ini-
tial learning rate of 0.0005 and no dropout. Dur-
ing inference, vMF density is used to choose an
output word given an embedding predicted by the
VMF system, and the predicted embedding’s near-
est neighbour is chosen as the output for margin-
trained systems. Hyperparameters are selected us-
ing performance on the development set and we
report means and standard deviations of BLEU



. IWSLT IWSLT
Output Type Loss Function Fr—En De—En
Discrete Cross-entropy: untied embeddings | 31.3 + 0.4 25.1+£0.2
Cross-entropy: tied embeddings 31.3+09 248 £0.2
von Mises-Fisher 31.8+0.3 25.0+£0.2
Most informative negative sample | 32.0 + 0.2 2511 +0.1
Continuous | Negative sampling 322+04 | 2484+0.2
Syn-margin by difference (SMD) 32.0+ 0.3 | 2541t £0.3
Syn-margin by projection (SMP) 3231 +£02 | 2531+ 05

Table 1: Experimental results. Means and standard deviations of BLEU scores across 4 runs of each experiment,
for the (1) discrete-output baseline, (2) continuous-output models trained using vMF, most informative negative
example (Lazaridou et al., 2015) and negative sampling, and (3) proposed syn-margin losses constructed using
vector projection and vector difference, on IWSLT’ 16 Fr—En and De—En datasets. Asterisks, daggers and double
daggers indicate significant gains over vMF, most informative negative sample and negative sampling respectively

(p = 0.05).

scores (Papineni et al., 2002) over 4 runs of each
experiment.

Baselines and benchmarks We compare syn-
margin losses constructed using projection (SMP)
and difference (SMD) techniques against: (1)
vMF loss (specifically, the negative log-likelihood
formulation in the original paper), (2) margin-
based loss averaged over 5 negative samples
drawn uniformly at random from the pretrained
word embeddings and (3) margin-based loss using
the most informative negative sample (Lazaridou
et al., 2015). We also report results on a softmax-
based system with identical architecture except in
the last layer, initializing the softmax parameters
with pretrained embeddings, with and without tied
embeddings.

5 Results and Analysis

Syn-margin methods show small (4-0.4 and +0.5
BLEU) and statistically significant gains over
vMF on both datasets, although there is no con-
sistent winner among the two syn-margin vari-
ants (Table 1). The improvement over most infor-
mative negative sample and negative sampling is
less prominent, and significant only in some cases.
Syn-margin’s computational efficiency matches
that of vMF (Figure 2).

Comparing translations produced by vMF and
syn-margin models in the Fr—En task, we find
SMP translations to be more grammatical. They
better preserve grammatical information such as
gender (SMP correctly predicts the fragment ‘her
personality’ while vMF generates ‘his personal-
ity’) and tense (SMP generates ‘does it predict’
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Samples/sec

512 184 128 64 32
Batch Size

B Softmax Laz. WmvMF ENS ®mSMD ®mSMP

Figure 2: Speed comparisons. We compare the num-
ber of training instances that can processed per second
for each loss formulation. Syn-margin is found to be
faster than other margin-based methods, and compara-
ble in speed to vMF.

while vMF produces ‘does it predicted’), and are
better-formed without cascading errors.

Next, to develop a qualitative understanding of
the synthesized negative samples, we identify pre-
dicted embeddings’ and SMP negative samples’
nearest neighbours (NN) among the pretrained tar-
get embeddings. Either both embeddings share a
common NN, or in a weak pattern, the SMP’s NN
captures U’s semantic or grammatical divergence
from u. For instance, where the target is ‘means’
and the prediction’s NN is ‘meant’, the negative
sample’s NN ‘held’ penalizes past-tense informa-
tion in the predicted embedding. Similarly, tar-
get ‘Hollywood’ and prediction ‘movies’ are as-
sociated with negative sample ‘concerts’. This
confirms our intuition about the functionality of



vMF Laz Random SMD SMP
Correct prediction: similarity to nearest neighbour | 0.96 0.87 0.88 091 0.88
Wrong prediction: similarity to nearest neighbour | 0.91 0.80 0.83 0.88 0.86
Wrong prediction: similarity to target embedding | 0.39 028  0.21 041 042

Accuracy (%) | 23.55 23.18 23.39 23.89 24

Accuracy @2 (%) | 28.91 28.04 28.28 29.59 29.89

Accuracy @5 (%) | 32.23 3145 31.16 3296 33.22
Accuracy @10 (%) | 34.77 33.85 3342 3549 35.6

Table 2: Error margins and accuracies. The average similarity of predicted embeddings to their nearest neigh-
bours is lower in SMP/SMD-trained models than in vMF-trained models. Among predicted embeddings whose
nearest neighbours are not the targets, similarity to the targets increases when we switch from vMF to syn-margin
loss. This is potentially linked to the increase in accuracies @2, 5 and 10 that results from the switch to syn-margin

loss.

margin-based losses in general and syn-margin in
particular.

We briefly analyze the properties of embeddings
predicted by vVMF and SMP Fr—En systems.
Among incorrect predictions (cases in which the
pretrained embedding closest to 1 is not u), the
average cosine similarity between predicted em-
beddings and their nearest pretrained embeddings
falls from vMF to SMP (0.91 to 0.86), while that
between the predicted and target embeddings rises
(0.39 to 0.42). This is accompanied by increases
in accuracy @2, @5 and @10 (Table 2).

6 Related Work

Pretrained embeddings trained in an unsupervised
manner (Mikolov et al., 2013a) are used as in-
put and intermediate representations of data for
natural language processing tasks such as part-of-
speech tagging and named entity recognition (Ma
and Hovy, 2016), sentiment analysis (Tang et al.,
2016) and dependency parsing (He et al., 2018).
We build on (Kumar and Tsvetkov, 2019), one
of the first instances of using pretrained embed-
dings as model outputs for complex sequence-
generation tasks. Closely related work on em-
bedding prediction includes zero-shot learning for
word translation (Nakashole, 2018; Conneau et al.,
2018) and image labeling (Lazaridou et al., 2015),
as well as rare word prediction (Pinter et al., 2018)
and classification (Card et al., 2019).
Margin-based losses are commonly used to train
neural networks that predict dense vectors for clas-
sification tasks, and have long been used in com-
puter vision. Standard formulations include con-
trastive (Hadsell et al., 2006) and triplet (Schroff
et al., 2015) losses; triplet loss is identical to the
max-margin framework we use. Other closely re-
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lated approaches are the imposition of an angu-
lar margin constraint and the minimization of dis-
tance to the farthest intra-class example coupled
with maximization of distance to the nearest inter-
class example (Liu et al., 2016; Deng et al., 2017).
In contrast to syn-margin, many of these losses
pertain to trainable target embedding spaces.

The triplet loss has also been used in various
NLP applications (Collobert et al., 2011). Tech-
niques used to pick negative samples include per-
turbing training data (Smith and Eisner, 2005),
sampling according to word frequency (Mikolov
etal., 2013b), sampling until a non-zero loss is ob-
tained (Weston et al., 2011) and searching for the
negative sample that gives the largest (Rao et al.,
2016) or most informative (Lazaridou et al., 2015)
loss. These techniques also correspond to train-
able target embedding spaces, and are all equally
or less efficient than syn-margin.

7 Conclusion

We explore the use of margin-based loss functions
to train continuous-output neural models, provid-
ing a geometric analysis of their functionality in
this framework. Through this analysis, we develop
a principled method to synthesize negative sam-
ples for margin-based losses, efficiently and on the
fly. We argue that these negative samples are more
consistent and interpretable than those picked us-
ing stochastic or heuristic techniques. Experi-
ments on neural machine translation show that the
proposed syn-margin loss improves over vMF and
is either comparable or preferable to other margin-
based losses. The analysis and loss function we
propose are more generally applicable to neural
models whose outputs lie in pretrained embedding
spaces.
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