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Abstract

Neural models have recently shown signifi-
cant progress on data-to-text generation tasks
in which descriptive texts are generated con-
ditioned on database records. In this work,
we present a new Transformer-based data-to-
text generation model which learns content se-
lection and summary generation in an end-
to-end fashion. We introduce two extensions
to the baseline transformer model: First, we
modify the latent representation of the input,
which helps to significantly improve the con-
tent correctness of the output summary; Sec-
ond, we include an additional learning objec-
tive that accounts for content selection mod-
elling. In addition, we propose two data aug-
mentation methods that succeed to further im-
prove performance of the resulting generation
models. Evaluation experiments show that our
final model outperforms current state-of-the-
art systems as measured by different metrics:
BLEU, content selection precision and con-
tent ordering. We made publicly available the
transformer extension presented in this paper1.

1 Introduction

Data-to-text generation is an important task in
natural language generation (NLG). It refers to
the task of automatically producing a descriptive
text from non-linguistic structured data (tables,
database records, spreadsheets, etc.). Table 1 illus-
trates an example of data-to-text NLG, with statis-
tics of a NBA basketball game (top) and the corre-
sponding game summary (bottom).

Traditional approaches perform the summary
generation in two separate steps: content se-
lection (“what to say”) (Duboue and McKeown,
2001, 2003) and surface realization (“how to say
it”) (Stent et al., 2004; Reiter et al., 2005). Af-
ter the emergence of sequence-to-sequence (S2S)

1https://github.com/gongliym/
data2text-transformer

learning, a variety of data-to-text generation mod-
els are proposed (Lebret et al., 2016; Mei et al.,
2015; Wiseman et al., 2017) and trained in an
end-to-end fashion. These models are actually
conditional language models which generate sum-
maries conditioned on the latent representation of
input tables. Despite producing overall fluent text,
Wiseman et al. (2017) show that NLG models per-
form poorly on content-oriented measures.

Different from other NLG tasks (e.g., machine
translation), data-to-text generation faces several
additional challenges. First, data-to-text genera-
tion models have to select the content before gen-
erating text. In machine translation, the source
and target sentences are semantically equivalent to
each other, whereas in data-to-text generation, the
model initially selects appropriate content from
the input data to secondly generate fluent sen-
tences that incorporate the selected content. Sec-
ond, the training data in data-to-text generation
task is often very limited. Unlike machine trans-
lation, where training data consist of translated
sentence pairs, data-to-text generation models are
trained from examples composed of structured
data and its corresponding descriptive summary,
which are much harder to produce.

In this paper, we tackle both challenges previ-
ously discussed. We introduce a new data-to-text
generation model which jointly learns content se-
lection and text generation, and we present two
data augmentation methods. More precisely, we
make the following contributions:

1. We adapt the Transformer (Vaswani et al.,
2017) architecture by modifying the input
table representation (record embedding) and
introducing an additional objective function
(content selection modelling).

2. We create synthetic data following two
data augmentation techniques and investigate

https://github.com/gongliym/data2text-transformer
https://github.com/gongliym/data2text-transformer
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their impacts on different evaluation metrics.

We show that our model outperforms current
state-of-the-art systems on BLEU, content selec-
tion precision and content ordering metrics.

2 Related Work

Automatic summary generation has been a topic
of interest for a long time (Reiter and Dale, 1997;
Tanaka-Ishii et al., 1998). It has interesting appli-
cations in many different domains, such as sport
game summary generation (Barzilay and Lapata,
2005; Liang et al., 2009), weather-forecast gen-
eration (Reiter et al., 2005) and recipe genera-
tion (Yang et al., 2016).

Traditional data-to-text generation approaches
perform the summary generation in two separate
steps: content selection and surface realization.
For content selection, a number of approaches
were proposed to automatically select the ele-
ments of content and extract ordering constraints
from an aligned corpus of input data and output
summaries (Duboue and McKeown, 2001, 2003).
In (Barzilay and Lapata, 2005), the content selec-
tion is treated as a collective classification problem
which allows the system to capture contextual de-
pendencies between input data items. For surface
realization, Stent et al. (2004) proposed to trans-
form the input data into an intermediary structure
and then to generate natural language text from it;
Reiter et al. (2005) presented a method to generate
text using consistent data-to-word rules. Angeli
et al. (2010) broke up the two steps into a sequence
of local decisions where they used two classifiers
to select content form database and another clas-
sifier to choose a suitable template to render the
content.

More recently, work on this topic has focused
on end-to-end generation models. Konstas and
Lapata (2012) described an end-to-end generation
model which jointly models content selection and
surface realization. Mei et al. (2015) proposed a
neural encoder-aligner-decoder model which first
encodes the entire input record dataset then the
aligner module performs the content selection for
the decoder to generate output summary. Some
other work extends the encoder-decoder model
to be able to copy words directly from the in-
put (Yang et al., 2016; Gu et al., 2016; Gulcehre
et al., 2016). Wiseman et al. (2017) investigates
different data-to-text generation approaches and
introduces a new corpus (ROTOWIRE, see Table 1)

for the data-to-text generation task along with
a series of automatic measures for the content-
oriented evaluation. Based on (Wiseman et al.,
2017), Puduppully et al. (2019) incorporates con-
tent selection and planing mechanisms into the
encoder-decoder system and improves the state-
of-the-art on the ROTOWIRE dataset.

3 Data-to-Text Generation Model

In this section, we first formulate the data-to-
text generation problem and introduce our data-
to-text generation baseline model. Next, we detail
the extensions introduced to our baseline network,
namely Record Embedding and Content Selection
Modelling.

Problem Statement
The objective of data-to-text generation is to gen-
erate a descriptive summary given structured data.
Input of the model consists of a table of records
(see Table 1, top and middle). Let s = {ri}Ii=1

be a set of records, each record ri consists of four
features:

• Entity: the name of player or team (e.g.,
Celtics, LeBron James)

• Type: the table header (e.g., WIN, PTS)

• Value: the value in the table (e.g., 14, Boston)

• Info: game information (e.g., H/W, V/L)
which represents the team or player is Home-
or Vis-team and Win- or Loss-team.

Note that there is no order relationship in s.
The output t (see Table 1, bottom) is a text

document which is a descriptive summary for the
record set s. Note t = t1 . . . tJ with J as the doc-
ument length. Pairs (s, t) constitute the training
data for data-to-text generation systems. Data-to-
text generation probability is given by:

P (t|s, θ) =
J∏

j=1

P (tj |s, t<j ; θ) (1)

where t<j = t1 . . . tj−1 is the generated partial
document and θ is the model parameters.

Data-to-Text Transformer Model
In this section, we present how we adapt the Trans-
former model for the data-to-text generation tasks.
First, the input embedding of Transformer encoder
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is replaced by our record embedding to better in-
corporate the record information. Second, a new
learning objective is added into our model to im-
prove its content-oriented performance.

3.1 Record Embedding
The input of data-to-text model encoder is a se-
quence of records. Each record is a tuple of four
features (Entity, Type, Value, Info). Inspired by
previous work (Yang et al., 2016; Wiseman et al.,
2017; Puduppully et al., 2019), we embed features
into vectors, and use the concatenation of feature
embeddings as the embedding of record.

ri = [ri,1; ri,2; ri,3; ri,4] (2)

where ri ∈ Rdim is the ith record embedding in
the input sequence and ri,j ∈ R

dim
4 is the jth fea-

ture embedding in ri.
Since there is no order relationship within the

records, the positional embedding of the Trans-
former encoder is removed.

3.2 Content Selection Modeling
Besides record embedding, we also add a new
learning objective into the Transformer model.

As presented before, we need to select the con-
tent from the input records before generating the
output summary. Some records are generally im-
portant no mater the game context, such as the
team name record and team score record, whereas
the importance of some other records depend on
the game context. For example, a player having
the highest points in the game is more likely to
be mentioned in the game summary. Within the
Transformer architecture, the self-attention mech-
anism can generate the latent representation for
each record by jointly conditioning on all other
records in the input dataset. A binary prediction
layer is added on top of the Transformer encoder
output (as shown in Figure 1) to predict whether
or not one record will be mentioned in the target
summary.

The architecture of our data-to-text Transformer
model is shown in Figure 1. As presented be-
fore, the encoder takes the record embedding as
input and generates the latent representation for
each record in the input sequence. The output of
encoder is then used to predict the importance of
each record and also serves as the context of the
decoder. The decoder of our model is the same as
the original Transformer model in machine trans-
lation. It predicts the next word conditioned on

the encoder output and the previous tokens in the
summary sequence.

In content selection modeling, the input record
sequences together with its label sequences are
used to optimize the encoder by minimizing the
cross-entropy loss. In language generation train-
ing, the encoder and decoder are trained together
to maximize the log-likelihood of the training
data. The two learning objectives are trained al-
ternatively2.

Transformer
Encoder
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Figure 1: Model Architecture

4 Data Augmentation Methods

In data-to-text generation task, the model needs to
not only generate fluent text, but also generate text
which is coherent with the input records. Several
content-oriented evaluation metrics are proposed
in (Wiseman et al., 2017) to evaluate such cohe-
sion, including the precision of record generation
and the recall rate with respect to the records in
gold summary.

In this section, we present two data augmenta-
tion methods: synthetic data generation and train-
ing data selection. Each of them has different im-
pacts on the content-oriented evaluation results.

4.1 Synthetic Data Generation
In order to improve the cohesion between the in-
put records and output summary, we need more
data to enhance the encoder-decoder attention of
the decoder. Here we introduce a method to gen-
erate synthetic training data.

We first randomly change the values of records
and the changed record set (s′) is then used to gen-
erate automatic summary (t′) by a trained data-to-
text system. The synthetic data pairs (s′, t′) are
then used to improve such system.

2An alternative approach is joint training that achieves
comparable results.
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This idea is inspired by the back-translation
technique widely used in neural machine transla-
tion, with two important differences:

First, back-translation, typically employs
monolingual human texts, which are easy found.
In our case, since it is difficult to find additional
structured (table) data for the same kind of game
matches, we use the existing data sets and intro-
duce variations in the values of the table records.
In order to keep the data cohesion in the table, the
change is constrained with the following rules:

• only numeric values are changed. Non-
numeric values such as the position of a
player or the city name of a team are kept the
same.

• after the change, the team scores should not
violate the win/loss relation

• the changed values should stay in the normal
range of its value type. It should not bigger
than its maximum value or smaller than its
minimum value through all games.

Our data generation technique doubles the amount
of training data available for learning.

Second, another difference with the back-
translation technique is the “translation direc-
tion”. In machine translation, the additional
monolingual text used is found in target lan-
guage, and back-translated into the source lan-
guage. Thus, ensuring that the target side of the
synthetic data follows the same distribution as real
human texts. In our case, the target side of syn-
thetic data is also automatically generated which
is known to introduce noise in the resulting net-
work.

4.2 Training Data Selection

A deficiency of data-to-text NLG systems is the
poor coverage of relations produced in the gener-
ated summaries. In order to increase the coverage,
a simple solution consists of learning to produce
a larger number of relations. Here, we present a
straightforward method to bias our model to out-
put more relations by means of fine-tuning on the
training examples containing a greater number of
relations.

We use an information extraction (IE) system
to extract the number of relations of each train-
ing summary. Then, we select for fine-tuning our
baseline model the subset of training data in which

each summary contains at least N relations. In
this work, we take advantage of the IE system3

provided by (Puduppully et al., 2019), and the dis-
tribution of the number of relations in the training
summary is illustrated in Figure 2.

Figure 2: relation count distribution in training data.

5 Experimental Setup

5.1 Data and Preprocessing

We run the experiments with the ROTOWIRE

dataset (Wiseman et al., 2017), a dataset of NBA
basketball game summaries, paired with their cor-
responding box- and line-score tables. Table 1 il-
lustrates an example of the dataset. In the box-
score table, each team has at most 13 players and
each player is described by 23 types of values.
In the line-score table, each team has 15 differ-
ent types of values. In addition, the date of each
game is converted into the day of the week (such
as “Saturday”) as an additional record. In the pre-
processing step, the input box- and line-score ta-
bles are converted into a fix-length sequence of
records. Each sequence contains 629 records.4 As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The
ROTOWIRE dataset contains 4853 summaries in
total, in which 3398 summaries are for training,
727 for validation and 728 for test.

In content selection modelling, we need the la-
bels of input records to indicate which records in
the input will be mentioned in the output sum-
mary. Here we use a very simple method to gener-

3The model is publicly available at https://github.
com/ratishsp/data2text-plan-py

4In the 629 records, 598 records are for players, 30
records for teams and 1 record for the date.

https://github.com/ratishsp/data2text-plan-py
https://github.com/ratishsp/data2text-plan-py
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NAME POS MIN PTS FGM FGA FG PCT FG3M FG3A FG3 PCT FTM FTA FT PCT OREB DREB REB AST TO STL BLK PF
Matt Barnes F 26 0 0 3 0 0 3 0 0 0 0 1 4 5 4 1 0 0 0
Blake Griffin F 34 24 10 17 59 0 0 0 4 5 80 4 2 6 8 4 1 0 3
DeAndre Jordan C 34 9 4 8 50 0 0 0 1 4 25 5 11 16 0 1 1 2 4
JJ Redick G 34 23 9 15 60 5 8 63 0 0 0 0 3 3 2 1 1 0 2
Chris Paul G 36 27 6 16 38 4 6 67 11 12 92 1 2 3 9 2 2 1 3
Glen Davis N/A 13 2 1 2 50 0 0 0 0 0 0 0 4 4 1 0 3 0 0
Jamal Crawford N/A 29 17 5 16 31 3 8 38 4 6 67 0 2 2 2 1 2 1 2
Hedo Turkoglu N/A 6 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 1
Reggie Bullock N/A 14 2 1 1 100 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Jordan Farmar N/A 12 2 1 3 33 0 1 0 0 0 0 0 0 0 2 1 0 0 3
Jared Cunningha N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Chris Douglas-R N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Ekpe Udoh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Giannis Antetok F 38 18 8 12 67 0 1 0 2 3 67 1 8 9 6 3 2 0 3
Johnny O’Bryant F 6 4 2 3 67 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Larry Sanders C 26 10 5 6 83 0 0 0 0 2 0 2 5 7 3 0 1 1 5
O.J. Mayo G 23 3 1 6 17 0 2 0 1 3 33 0 1 1 3 2 0 0 4
Brandon Knight G 27 8 3 10 30 2 6 33 0 0 0 1 4 5 5 4 0 0 3
Jared Dudley N/A 30 16 7 12 58 2 4 50 0 0 0 2 6 8 3 3 2 0 2
Zaza Pachulia N/A 20 5 1 3 33 0 0 0 3 4 75 2 5 7 2 2 0 0 1
Jerryd Bayless N/A 28 16 7 13 54 2 3 67 0 0 0 1 3 4 2 1 0 0 4
Khris Middleton N/A 24 12 5 10 50 1 5 20 1 1 100 1 3 4 2 0 1 0 2
Kendall Marshal N/A 18 10 4 6 67 1 3 33 1 2 50 0 1 1 3 3 0 0 0
Damien Inglis N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Jabari Parker N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Nate Wolters N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

TEAM-NAME CITY P QTR1 P QTR2 P QTR3 P QTR4 PTS FG PCT FG3 PCT FT PCT REB AST TOV WINS LOSSES
Clippers Los Angeles 28 22 32 24 106 46 46 74 41 29 12 19 8
Bucks Milwaukee 24 28 31 19 102 53 33 53 46 29 18 14 14

The Los Angeles Clippers (19-8) defeated the Milwaukee Bucks (14-14) 106-102 on Saturday. Los
Angeles has won three of their last four games. Chris Paul paced the team with a game-high 27 points and
nine assists. DeAndre Jordan continued his impressive work on the boards, pulling down 16 rebounds,
and Blake Griffin and J.J. Redick joined Paul in scoring over 20 points. The Clippers have a tough
stretch of their schedule coming up with the Spurs, Hawks, Warriors and Raptors all on this week’s
docket. Even with the loss, Milwaukee finished their four-game Western Conference road trip 2-2, a job
well done by the developing squad. In the three games since Jabari Parker went down with a season-
ending ACL injury, coach Jason Kidd has cut the umbilical cord they had on Giannis Antetokounmpo.
He played over 37 minutes for the second straight game Saturday, which is ten more minutes than his
season average of 27 minutes per game. Larry Sanders returned to the starting lineup after sitting out
Thursday’s game on a league mandated one-game suspension. Ersan Ilyasova (concussion) and John
Henson (foot) remain out, and it seems Ilyasova may be closer to returning than Henson.

Table 1: An example of box-score (top), line-score (middle) and the corresponding summary (bottom) from
ROTOWIRE dataset. The definition of table header could be found at https://github.com/harvardnlp/
boxscore-data

ate such labels. First, we label the entity records5.
An entity record is labeled as 1 if its value is men-
tioned in the associated summary, otherwise it is
labeled as 0. Second, for each player or team men-
tioned in the summary, the rest of its values in the
table are labeled as 1 if they occur in the same sen-
tence in the summary.

5.2 Evaluation metrics

The model output is evaluated with BLEU (Pa-
pineni et al., 2002) as well as several content-
oriented metrics proposed by (Wiseman et al.,
2017) including three following aspects:

5Record whose Value feature is an entity (see Section 3),
for example: “LeBron James|NAME|LeBron James|H/W”.
The labeling is according to the Value feature

• Relation Generation (RG) evaluates the num-
ber of extracted relations in automatic sum-
maries and their correctness (precision) w.r.t
the input record dataset;

• Content Selection (CS) evaluates the preci-
sion and recall rate of extracted relations in
automatic summaries w.r.t that in the gold
summaries;

• Content Ordering (CO) evaluates the normal-
ized Damerau-Levenshtein Distance (Brill
and Moore, 2000) between the sequence of
extracted relations in automatic summaries
and that in the gold summaries.

All these content-oriented metrics are based on
an IE system which extracts record relations from

https://github.com/harvardnlp/boxscore-data
https://github.com/harvardnlp/boxscore-data
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Model
RG CS CO

BLEU
# P% P% R% DLD%

GOLD 23.32 94.77 100 100 100 100
TEMPL 54.29 99.92 26.61 59.16 14.42 8.51
WS-2017 23.95 75.10 28.11 35.86 15.33 14.57
NCP-2019 33.88 87.51 33.52 51.21 18.57 16.19
DATA-TRANS 23.31 79.81 36.90 43.06 22.75 20.60
+DATA GEN 22.59 82.49 39.48 42.84 23.32 19.76
+DATA SEL 26.94 79.54 35.27 47.49 22.22 19.97
+BOTH 24.24 80.52 37.33 44.66 23.04 20.22

Table 2: Automatic evaluation on ROTOWIRE devel-
opment set using relation generation (RG) count (#)
and precision (P%), content selection (CS) precision
(P%) and recall (R%), content ordering (CO) in nor-
malized Damerau-Levenshtein distance (DLD%), and
BLEU.

summaries. For the purpose of comparison, we
directly use the publicly available IE system of
(Puduppully et al., 2019) to evaluate our models.

5.3 Training Details
In all experiments, we use our model with 1 en-
coder layer and 6 decoder layers, 512 hidden
units (hence, the record feature embedding size
is 128, see Section 3), 8 heads, GELU activa-
tions (Hendrycks and Gimpel, 2016), a dropout
rate of 0.1 and learned positional embedding for
the decoder. The model is trained with the Adam
optimizer (Kingma and Ba, 2014), learning rate is
fixed to 10−4 and batch size is 6. As for inference,
we use beam size 4 for all experiments, and the
maximum decoding length is 600.

We implement all our models in Pytorch, and
train them on 1 GTX 1080 GPU.

6 Results

The results of our model on the development
set are summarized in Table 2. GOLD repre-
sents the evaluation result on the gold summary.
The RG precision rate is 94.77%, indicating that
the IE system for evaluation is not perfect but
has very high precision. After that, results of
three contrast systems are reported, where TEMPL

and WS-2017 are the updated results6 of Wise-
man et al. (2017) models. TEMPL is template-
based generator model which generates a sum-
mary consisting of 8 sentences: a general de-
scription sentence about the teams playing in the
game, 6 player-specific sentences and a conclusion
sentence. WS-2017 reports an encoder-decoder

6Here we all use the IE system of (Puduppully et al., 2019)
which is improved from the original IE system of (Wiseman
et al., 2017)

model with conditional copy mechanism. NCP-
2019 is the best system configuration (NCP+CC)
reported in (Puduppully et al., 2019) which is a
neural content planning model enhanced with con-
ditional copy mechanism. As for our model, re-
sults with four configurations are reported.

DATA-TRANS represents our data-to-text
Transformer model (as illustrated in Figure 1)
without any data augmentation. Comparing to
NCP-2019, our model performs 3.4% higher
on content selection precision, 4.2% higher on
content ordering metric and 4.4 points higher
on BLEU. Our model performs better on the
CO metric, we attribute this improvement to that
our model generates nearly the same number of
relations as the gold summary which reduces
the edit distance between the two sequences of
relations. However, our model is 7.7% lower on
RG precision. And on the CS recall rate, our
model is 8.2% lower than NCP-2019. This is
probably due to the fact that NCP-2019 generates
much more records than our model (33.88 vs.
23.31) which could result higher coverage on the
relations in gold summary.

Comparing to TEMPL and WS-2017, our
model is much better on BLEU and CS precision.
Our model generates nearly the same number of
relations as WS-2017, but with 7.2% higher on
recall rate and 7.4% higher on CO metric.

By synthetic data generation (+DATA GEN), we
generate synthetic table records as described in se-
cion 4.1. These synthetic table records are then
used as input to the DATA-TRANS model to gener-
ate summaries. All training table records are used
to generate synthetic data. The synthetic data is
then combined with the original training data to
fine-tune the DATA-TRANS model. From Table 2,
we can see that the RG and CS precisions are both
improved by 2.7% and 2.6% respectively. There is
no significant change on others metrics. The CO
metric is slightly improved due to higher RG and
CS precisions. The CS recall rate is slightly de-
graded with the number of extracted relations.

By training data selection (+DATA SEL), we se-
lect the data whose summary contains the num-
ber of relations N >= 16 as the new training
data. The result training data size is 2242 (original
size: 3398). It is then used to fine-tune the DATA-
TRANS model. As shown in Table 2, as expected,
the model after fine-tuning generates more rela-
tions in the output summaries. The average num-
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Model
RG CS CO

BLEU
# P% P% R% DLD%

TEMPL 54.23 99.94 26.99 58.16 14.92 8.46
WS-2017 23.72 74.80 29.49 36.18 15.42 14.19
NCP-2019 34.28 87.47 34.18 51.22 18.58 16.50
DATA-TRANS 24.12 79.17 36.48 42.74 22.40 20.16
+DATA GEN 24.01 83.89 38.98 42.85 23.02 19.48
+DATA SEL 27.47 80.70 35.33 46.25 21.87 20.03
+BOTH 24.80 81.08 37.10 43.78 22.51 20.14

Table 3: Automatic evaluation on ROTOWIRE test set.

Model
RG CS CO

BLEU
# P% P% R% DLD%

DATA-TRANS 23.31 79.81 36.90 43.06 22.75 20.60
-CS OBJ 23.37 72.70 32.67 41.99 21.14 20.28
-REC EMB 18.00 63.14 32.94 37.71 21.15 20.24

Table 4: Ablation results on ROTOWIRE dev set.

ber of relations in the output summaries increases
from 23.31 to 26.94. Respectively, the CS recall is
increased from 43.06% to 47.49%. However, the
CS precision is slightly degraded by 1.6%.

Finally, we combine both of the data augmen-
tation methods (+BOTH). Synthetic data genera-
tion improves the RG and CS precisions. Train-
ing data selection improves the CS recall rate by
making the model generate more relations. To
combine the two methods, we choose to fine-tune
the +DATA GEN model with the selected train-
ing data of +DATA SEL (so this configuration is
actually +DATA GEN+DATA SEL). As shown in
Table 2, all content-oriented evaluation metrics
are improved compared to DATA-TRANS but not
as much as each single of the data augmentation
method. This configuration is like a trade-off be-
tween the two data augmentation configurations.

Results on the test set are reported in Table 3.
They follow the same pattern as those found on
the development set. Our DATA-TRANS model
outperforms all other contrast systems on BLEU,
CS precision and content ordering metrics. The
synthetic data generation method helps to improve
the RG and CS precisions. The training data se-
lection method improves the CS recall by mak-
ing the model generate more relations. Combining
these two data augmentation methods, all content-
oriented evaluation results are improved compared
to DATA-TRANS. However, there is no significant
change on BLEU.

7 Ablation Experiments

Next we evaluate the extensions introduced in our
data-to-text Transformer model (DATA-TRANS)
by means of ablation experiments. This is:

• The concatenation of feature embeddings as
input of the encoder presented in Section 3.1
in order to generate a better representation of
the input records.

• The secondary learning objective presented
in Sectioin 3.2 aiming at improving the
content-oriented results.

Removing the content selection additional ob-
jective function In this configuration, we keep
the same data embedding and the model architec-
ture as the DATA-TRANS, but the model is trained
without the content selection objective. The eval-
uation results are shown in Table 4 (-CS OBJ). We
can see that the CS precision and CS recall are de-
graded by 4.2% and 1% respectively. The model
extracts nearly the same number of records as the
baseline system, but with much lower precision.
The content ordering metric is also degraded by
1.6%. Surprisingly, there is no significant change
on BLEU.

Removing Record Encoding In this configu-
ration, the record encoding is removed from the
DATA-TRANS model. Instead, we directly use the
Value feature (see Section 3) sequence as the in-
put. To keep model size unchanged, the dimen-
sion of embedding for the Value feature sequence
is four times bigger than the original feature em-
bedding size (see Equation 2). In addition, we also
add back the positional embedding for the input
sequence. Since the record sequence has a fixed
length of 629, the positional embedding could help
to build a 1-to-1 mapping from the position in
record sequence and the position in the real table.

The model is trained with the same data and the
same configuration as DATA-TRANS. From the re-
sults in Table 4 (-REC EMB), we can see that with-
out record embedding all content-oriented evalu-
ation results are degraded, especially the RG pre-
cision and CS recall. And again, the model still
achieves comparable BLEU score with DATA-
TRANS which demonstrates the effectiveness of
Transformer model on language modeling.

An example output of -REC EMB system is
shown in Table 5 (left). The generation has high
precision at the beginning, and many erroneous re-
lations are generated after several sentences. Our
DATA-TRANS performs much better, but we can
also observe such problem. The generation has
high precision at the beginning and the quality de-
graded after several sentences. We believe this is
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The Los Angeles Clippers (19-8) defeated the Milwaukee

Bucks (14-14) 106-102 on Saturday. Milwaukee has won

four straight games. They were paced by J.J. Redick’s game

with 23 points, five assists and five rebounds. Chris Paul had

a nice game with 27 points and nine assists to go along with a

double-double with nine points and nine assists. The Clippers

shot 53 percent from the field and 46 percent from beyond

the arc. Milwaukee will wrap up their two-game road trip

in Houston against the Grizzlies on Tuesday. Milwaukee has

lost four straight games. They’ve lost five of their last five

games. Chris Paul (ankle) and Blake Griffin (knee) sat out

Saturday’s game. The Clippers missed their last two games

with a hamstring strain. Jordan had to leave the lead the team

with a foot injury but were able to return for the Clippers to

action on Friday.

The Los Angeles Clippers (19-8) defeated the Milwaukee

Bucks (14-14) 106-102 on Saturday. Los Angeles stopped

their two-game losing streak with the win. Jamal Crawford

paced the team with a game-high 17 points in 29 minutes off

the bench. Crawford shot 9-of-16 from the field and 3-of-8

from downtown. He had nine assists, two rebounds and two

steals in 29 minutes. Blake Griffin had 24 points, eight as-

sists, six rebounds and one steal in 34 minutes. The Clippers

will go on the road to face the Denver Nuggets on Monday.

Milwaukee has lost two straight, and are now 9-2 in their last

10 games. Jabari Parker (ankle) didn’t play Saturday as he

recorded a double-double with 18 points and nine rebounds.

Giannis Antetokounmpo (8-12 FG, 2-1 3Pt, 2-3 FT) and nine

rebounds in 38 minutes off the bench. The Clippers will stay

home and host the Brooklyn Nets on Monday.

Table 5: Example output from DATA-TRANS (right) and ablation model -REC EMB (left). The corresponding
box- and line-table are given in Table 1. Text that accurately reflects a record in the associated table data is in blue,
erroneous text is in red. Text in black is not contradictory to the table records and text in orange is self-contradictory
within the summary.

caused by the error accumulation effect in autore-
gressive decoding.

Another problem we have observed, not only
in Table 5 but also in other output summaries, is
repetition and self-contradictory. In the left ex-
ample of Table 5, it contains two sentences (in
orange color) which are completely contradictory
with each other. And in the right example, the sen-
tence in orange color contains contradictory infor-
mation within the sentence.

8 Conclusions

We presented a Transformer-based data-to-text
generation model. Experimental results have
shown that our two modifications on the Trans-
former model significantly improve the content-
oriented evaluation metrics. In addition, we pro-
posed two data augmentation methods, each of
them improves different aspects of the model. Our
final model outperforms current state-of-the-art
system on BLEU, content selection precision and
content ordering metics. And we believe it has
great potential for the future work. In the next step,
we would like to apply some experimental tech-
niques of machine translation such as right-to-left
decoding and system ensemble to the data-to-text
generation task.
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