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Abstract

In this paper, a pre-trained Bidirectional
Encoder Representations from Transformers
(BERT) model is applied to Transformer-
based neural machine translation (NMT).

In contrast to monolingual tasks, the number
of unlearned model parameters in an NMT
decoder is as huge as the number of learned
parameters in the BERT model. To train
all the models appropriately, we employ two-
stage optimization, which first trains only the
unlearned parameters by freezing the BERT
model, and then fine-tunes all the sub-models.

In our experiments, stable two-stage optimiza-
tion was achieved, in contrast the BLEU scores
of direct fine-tuning were extremely low. Con-
sequently, the BLEU scores of the proposed
method were better than those of the Trans-
former base model and the same model with-
out pre-training. Additionally, we confirmed
that NMT with the BERT encoder is more ef-
fective in low-resource settings.

1 Introduction

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) is a
language representation model trained in advance
on a very large monolingual dataset. We adapt
this model to our own tasks after fine-tuning
(Freitag and Al-Onaizan, 2016; Servan et al.,
2016) using task-specific data. Systems using
BERT have achieved high accuracy in various
tasks, such as the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2019) and the reading comprehension benchmark
using the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2018). However,
most tasks using BERT are monolingual because
it was originally developed for natural language
understanding.

Recently, models in which the ideas of BERT
are extended to multiple languages have been pro-
posed (Lample and Conneau, 2019). These mod-
els, which are pre-trained using multilingual data,
are called cross-lingual language models (XLMs).
We can construct a machine translation system us-
ing two XLM models as the encoder and decoder.

In this paper, we apply a pre-trained BERT en-
coder to neural machine translation (NMT) based
on the Transformer (Vaswani et al., 2017). Specif-
ically, the encoder of the Transformer NMT is re-
placed with the BERT encoder. Generally, sys-
tems using BERT, including machine translation
systems based on an XLM, are fine-tuned using
task-specific data. However, stable training is dif-
ficult using simple fine-tuning because the num-
ber of unlearned parameters is huge in our system.
Therefore, we employ two-stage training, which
first trains only unlearned parameters and then ap-
plies fine-tuning.

Our experimental results demonstrated that
two-stage optimization stabilized training,
whereas direct fine-tuning made the BLEU scores
quite low. As a result, the BLEU scores improved
in comparison with the scores of the Transformer
base model and models with the same structure
but without pre-training. Our results indicate
that we can reuse neural networks trained for one
purpose (natural language understanding, in this
case) for another purpose (machine translation, in
this case) if we use two-stage optimization. From
this viewpoint, this paper presents an example of
network recycling.

The remainder of this paper is organized as fol-
lows. In Section 2, an overview of the BERT re-
lated models is provided. In Section 3, our pro-
posal, that is, NMT using the BERT model and
its training method, is described. In Section 4,
the proposed method is evaluated through exper-
iments. In Section 5, we discuss back-translation
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and model recycling, including related work. Fi-
nally, we conclude the paper in Section 6.

2 Pre-trained Language Models

2.1 BERT

The form of the BERT model (Devlin et al., 2019)
is the same as that of a Transformer encoder, in
which the input is a word sequence and the output
consists of representations that correspond to the
input words. The input contexts are encoded by
multi-head self-attention mechanisms.

BERT models are distributed with pre-training.
The distributed models have a depth of 12 or 24
layers, which is deeper than the Transformer base
model (six layers). Users (or system develop-
ers) construct various systems by adding a small
network to adapt BERT to their own tasks and
fine-tune the system using task-specific data. For
example, when the BERT model is used for a
document classification task, a classifier is con-
structed by adding a generation layer for classi-
fication (which consists of linear and softmax sub-
layers) to the BERT model. Similarly, when a
named entity recognizer is constructed, generation
layers that convert word representations to named
entity tags are added, and the entire model is fine-
tuned. The numbers of additional parameters in
these models are much smaller than the number of
parameters in the BERT model.

The BERT model is pre-trained to perform
two tasks: masked language modeling and next-
sentence prediction. Both tasks train the model to
improve its language prediction performance.

The masked language model is trained to restore
the original word sequence from noisy input. In
this task, some words are replaced with special to-
kens, [MASK], or other words. For instance, if
the original sentence is “my dog is hairy”
and “my dog is [MASK]” is given as the in-
put word sequence, then the system predicts that
the original word for [MASK] was hairy. Dur-
ing prediction, both forward and backward con-
texts in a sentence are used.

In the next-sentence prediction task, the system
learns whether two given sentences are consecu-
tive. To implement binary classification using the
Transformer, a special token [CLS] is placed at
the head of an input sentence, and classification is
performed from the representation of [CLS]. Ad-
ditionally, [SEP] is used as a sentence separator.

BERT has achieved high accuracy on various

tasks, such as the GLUE benchmark (Wang et al.,
2019) and the reading comprehension benchmark
using SQuAD (Rajpurkar et al., 2018). However,
the above tasks are monolingual.

2.2 XLMs

XLMs, in which the ideas of BERT are extended to
multiple languages (Lample and Conneau, 2019)
have been proposed. Although the form of the
XLM model is also Transformer, it is trained from
multilingual corpora. It also learns bilingual cor-
respondences in a Transformer model by inputting
a connected bilingual sentence.

Machine translation can be realized using
XLMs by regarding two pre-trained models as an
encoder and decoder. NMT using BERT described
in this paper is fundamentally the same as XLM-
based NMT. However, our aim is to connect differ-
ent systems, and we regard our approach as model
recycling (Ramachandran et al., 2016) using the
BERT encoder and Transformer decoder.

Most pre-trained systems, including XLM-
based machine translation, are trained only using
fine-tuning (Devlin et al., 2019; Lample and Con-
neau, 2019). However, if the number of unlearned
parameters is huge compared with the number of
pre-trained parameters, then the pre-trained pa-
rameter values will be destroyed due to a phe-
nomenon called catastrophic forgetting (Goodfel-
low et al., 2013), and consequently, training will
diverge. We must suppress this problem to stably
train the model.

3 NMT with BERT

In this section, we describe our proposal: NMT
using the BERT encoder.

3.1 Model

The NMT system in this paper is an encoder-
decoder based on the Transformer. The structure
is shown in Figure 1. Because the BERT model
is also the Transformer encoder, we adopt it as the
encoder for NMT without modification. The out-
puts from the BERT encoder, which are represen-
tations of source words, are input to the context
attention mechanism in the Transformer decoder
to generate a translation. Note that we call the en-
coder of the conventional NMT the Transformer
encoder to distinguish it from the BERT encoder.
The number of layers in the Transformer decoder
is fixed to six throughout the paper.
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Figure 1: Structure of NMT using a BERT encoder.

Because the BERT encoder is pre-trained using
a specific tokenizer, we must use the BERT tok-
enizer when we apply it to machine translation.
The BERT tokenizer includes sub-word segmenta-
tion based on WordPiece (Wu et al., 2016). Addi-
tionally, the input to the encoder contains [CLS]
and [SEP] tokens at the head and tail, respec-
tively.

Although the Transformer decoder is used here,
we assume that a recurrent neural network decoder
(Sutskever et al., 2014; Bahdanau et al., 2014) can
also be applied,.

3.2 Training
When we construct a system using pre-trained
BERT models, we generally add a task-specific
network and fine-tune the system using task-
specific data. Because the additional network is
small (i.e., the number of additional parameters is
small), the models can be learned by fine-tuning.

In this paper, the additional network is the de-
coder, whose number of parameters is huge. In-
deed, the number of model parameters of the
BERT encoder (pre-trained) and Transformer de-
coder (unlearned) used in Section 4 were 110M
and 80M, respectively. We cannot train such a
large number of unlearned parameters only by
fine-tuning. Thus, we employ two-stage optimiza-
tion in this paper, that is decoder training and fine-
tuning.

3.2.1 Decoder Training
In this stage, only the decoder parameters are up-
dated while the encoder parameters are frozen.

Specifically, the model is trained using parallel
corpora, as in conventional NMTs. During train-
ing, however, backpropagation is only applied to
the decoder and is dropped before the encoder.
This means that we do not need to compute the
gradients and maintain the input/output values in
the BERT encoder, and we can train the model
using GPUs with a relatively small memory even
though the model size is huge. Dropout is only ap-
plied to the Transformer decoder, that is, it is not
applied to the BERT encoder.

Note that decoder training continues until the
loss of the development set is minimized. We dis-
cuss the efficient number of epochs for the decoder
training in Section 4.3 when we combine it with
fine-tuning.

3.2.2 Fine-Tuning

In the fine-tuning stage, model parameters in the
BERT encoder are also updated to optimize the en-
tire model.

Although the model has already been trained
until the loss of the development set is minimized
during decoder training, both the encoder and de-
coder are further optimized in an end-to-end man-
ner by updating the encoder parameters. Dropout
is applied to both the BERT encoder and Trans-
former decoder. In the fine-tuning stage, back-
propagation is applied to all layers, and a large
amount of memory is consumed.
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Task Set # Sentences # Tokens
(En)

WMT-2014 train 4,468,840 116M
En-De newstest2013 3,000 66K

newstest2014 2,737 63K
newstest2015 2,169 68K

IWSLT-2015 train 133,317 2.7M
En-Vi tst2012 1,553 34K

tst2013 1,268 34K

Table 1: Sizes of the experimental datasets.

4 Experiments

4.1 Experimental Settings
Data: In this paper, we used data for shared
tasks that were pre-processed by the Stanford NLP
Group.1 The sizes of the datasets are shown in Ta-
ble 1.

The first task is the news translation task
of English-to-German (En-De) from the Work-
shop on Statistical Machine Translation (WMT-
2014) (Bojar et al., 2014). Four sets in total
have been published. In this paper, we used
newstest2013 as the development set, and the
other two sets (newstest2014 and 2015) were
used as test sets.

Moreover, to contrast the results with those of
a low-resource setting, we also used the English-
to-Vietnamese (En-Vi) corpus used in the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT-2015) (Cettolo et al., 2015). We used
tst2012 as the development set and tst2013
as the test set.

The target sentences of the above data were fur-
ther segmented into 16K sub-words using byte-
pair encoding (Sennrich et al., 2016b). For the
source sentences, we segmented 30K sub-words
using the BERT tokenizer if the encoder model
was BERT. If the encoder was the conventional
Transformer, we segmented the source sentences
into 16K sub-words using our byte-pair encoder.

BERT Model: We used a pre-trained model
published in the BERT GitHub repository2 called
the BERT base model, whose features are uncased
inputs, 12 layers, 768 hidden units, and 12 heads.3

The number of parameters is about 110M. This
1https://nlp.stanford.edu/projects/

nmt/
2https://github.com/google-research/

bert
3https://storage.googleapis.com/bert_

models/2018_10_18/uncased_L-12_H-768_
A-12.zip

Type Option Value
Decoder Batch size Approx. 500 sents.
training Optimizer Adam

β1 = 0.9, β2 = 0.99
Learning rate 4.0× 10−4

Warm-up 5 epochs
Cool-down Inverse square root
Label smoothing 0.1
Dropout 0.15
Loss function Label-smoothed cross

entropy
Initializer Xavier uniform

Fine-tuning Identical to decoder training except for
the learning rate and warm-up

Test Beam size 10
Length penalty 1.0 (fixed)

Table 2: Hyperparameter settings.

model was trained using BookCorpus (Zhu et al.,
2015) and English Wikipedia (3.3G words in to-
tal).

Note that we converted the published model into
a model that is compatible with the PyTorch li-
brary using a tool4 because it was trained for the
TensorFlow library.

Translation System: We used fairseq5 as the
basic translator. It is an NMT system constructed
on the PyTorch library and includes Transformer
models. We replaced its encoder with the BERT
model and used the fairseq decoder without modi-
fication.

The decoder used here was six-layer Trans-
former. We set the numbers of hidden units and
heads to be the same as those of the encoder (i.e.,
768 units and 12 heads) to incorporate encoder
outputs into the decoder using the context atten-
tion mechanism.

Hyperparameters: Table 2 summarizes the hy-
perparameter settings. The hyperparameters for
fine-tuning were almost the same as those of de-
coder training, except for the learning rate (LR)
and warm-up.

Evaluation: We used BLEU (Papineni et al.,
2002) as the evaluation metric. The MultEval
tool (Clark et al., 2011)6 was used for statisti-
cal testing, which is based on the bootstrap re-
sampling method. The significance level was 5%
(p < 0.05).

4https://github.com/huggingface/
pytorch-pretrained-BERT

5https://github.com/pytorch/fairseq
6https://github.com/jhclark/multeval

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
https://github.com/google-research/bert
https://github.com/google-research/bert
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/pytorch/fairseq
https://github.com/jhclark/multeval
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BLEU ↑
System LR Dev. PPL ↓ 2013 2014 2015 Remark

Baselines Transformer base 4.0× 10−4 4.23 26.29 27.22 29.48 Stat. test baseline
Transformer BERT size 4.0× 10−4 4.04 26.15 27.09 29.32

NMT Direct fine-tuning 8× 10−5 4.28 0.13 (-) 0.10 (-) 0.12 (-) # Epochs = 33
with BERT 4.0× 10−4 4.09 0.48 (-) 0.42 (-) 0.54 (-) # Epochs = 29

Proposed:
Decoder training only 4.0× 10−4 4.76 24.13 (-) 23.62 (-) 25.74 (-) # Epochs = 65

+ Fine-tuning 4× 10−5 3.93 27.14 (+) 28.27 (+) 30.68 (+) # Epochs = 21
8× 10−5 3.92 27.05 (+) 28.90 (+) 30.89 (+) # Epochs = 9
1.2× 10−4 3.93 27.03 (+) 28.50 (+) 30.51 (+) # Epochs = 11
1.6× 10−4 3.94 26.64 28.59 (+) 30.51 (+) # Epochs = 11
2.0× 10−4 3.95 26.89 (+) 28.67 (+) 30.24 (+) # Epochs = 12
4.0× 10−4 N/A because training did not converge

Table 3: Results of the system comparison.
The bold values indicate the best results. The (+) and (-) symbols indicate that the results significantly
improved or degraded (p < 0.05) with respect to the Transformer base model, respectively.

4.2 System Comparison

In this section, we compare systems using WMT-
2014 data.

We compare the proposed methods with
Vaswani et al. (2017)’s Transformer base model
(6 layers, 512 hidden units, and 8 heads) as the
baseline. For reference, we also use another Trans-
former NMT called Transformer BERT size, in
which the model structure of the encoder agrees
with that of the BERT encoder (i.e., 12 layers, 768
hidden units, and 12 heads). This system is com-
pared to determine whether the model capacity in-
fluences translation quality.

The decoders of the proposed systems were first
trained until the loss of the development set was
minimized (newstest2013), and then the sys-
tems were fine-tuned. The learning rates during
fine-tuning were changed from 1/10 to 1 times
those of the decoder training. The warm-up pe-
riods were also changed to be proportional to the
learning rates. The results are shown in Table 3. In
the table, Dev. PPL indicates the perplexity of the
development set, and the years of the BLEU scores
denote the results of newstest2013, 2014,
and 2015, respectively.

First, we compare the baselines. Transformer
BERT size yielded a better model than that
of Transformer base because its perplexity was
lower. However, the BLEU scores were slightly
degraded (but not significantly). Increasing the
number of parameters did not lead to better trans-
lation quality.

Next, we compare the NMT system with BERT
and the Transformer base. When the entire model

was directly fine-tuned, training converged but the
BLEU scores dramatically decreased even if we
used different learning rates. This implies that the
models were broken.7 Unlike monolingual tasks
using the BERT model, it was difficult to directly
apply fine-tuning for NMT using the pre-trained
BERT encoder.

By contrast, in the decoder training-only model,
namely the model immediately after decoder train-
ing, training was successfully finished. However,
the development perplexity was higher and the
BLEU scores were lower than those of the base-
line. The entire model was not learned completely
because of the data mismatch, which was that the
pre-training and our training data were different.

After fine-tuning, by contrast, the perplexity de-
creased and the BLEU score increased. Compared
with those of Transformer base, the BLEU scores
significantly improved in almost all cases. Be-
cause the development perplexity decreased with
respect to Transformer BERT size, we can say that
these improvements resulted from learning perfor-
mance rather than the number of model parame-
ters.

We changed the learning rates from 4×10−5 to
4.0×10−4 in the fine-tuning. When the learning
rate was 4.0× 10−4 (the decoder training learn-
ing rate), we could not tune the model because
there was no convergence. For the other learn-
ing rates, there were no large differences in per-

7Indeed, very long translations were generated due to fre-
quent repetition in the case of the low learning rate (8 ×
10−5). We suppose that the decoder was not learned suffi-
ciently. In the case of the high learning rate (4.0 × 10−4),
long and completely wrong translations were generated. We
suppose that the encoder was broken.
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Decoder training Fine-tuning BLEU ↑
# Epochs Dev. PPL ↓ # Epochs Dev. PPL ↓ 2013 2014 2105 Remark

0 — 33 4.28 0.13 (-) 0.10 (-) 0.12 (-) Direct fine-tuning
1 33.05 34 4.23 26.67 28.77 30.16 (-)
2 11.47 20 4.20 26.80 28.58 30.82
3 8.12 18 4.10 27.41 28.93 30.78
5 6.69 18 4.02 27.20 28.43 (-) 30.80

10 5.50 15 3.96 27.33 28.59 30.42
20 5.08 18 3.91 27.00 28.87 30.92
30 4.89 10 3.92 27.18 28.39 (-) 30.70
40 4.86 12 3.91 27.01 29.04 30.70
50 4.81 11 3.91 27.02 28.65 30.77
65 4.76 9 3.92 27.05 28.90 30.89 Decoder training converged

Baseline for statistical testing

Table 4: Changes in the perplexity of the development set (Dev. PPL) and BLEU scores with respect to the number
of decoder training epochs.

plexity or BLEU scores. However, we confirmed
that there were some differences in convergence
time (# Epochs), and fine-tuning converged in nine
epochs when the learning rate was 8×10−5. There-
fore, we fixed the learning rate for fine-tuning to
8×10−5 in our subsequent experiments.

4.3 Number of Epochs for Decoder Training
The proposed method first performs decoder train-
ing until convergence, and then applies fine-
tuning. However, this approach may not be opti-
mal because decoder training is slow. For instance,
it took 65 epochs for decoder training in the exper-
iment in the previous section. In this section, we
investigate whether decoder training can be made
more efficient by stopping it before convergence.

Table 4 shows the results after fine-tuning when
decoder training was stopped after various num-
bers of epochs. Fine-tuning was conducted un-
til convergence in all cases. The table shows the
changes in development perplexity and the BLEU
scores, whose baselines are shown on the bottom
line. Note that zero epochs of decoder training
(the top line) mean that fine-tuning was directly
applied without decoder training (the same as in
Table 3).

As the number of epochs of decoder training de-
creased, fine-tuning required more epochs and the
final perplexity increased. However, the BLEU
scores were almost stable. Indeed, only three
scores significantly decreased with respect to the
baseline.

Because we assume that the optimal settings of
decoder training depend on the data and hyperpa-
rameters, we cannot provide explicit criteria val-
ues in this paper. At the very least, our experimen-
tal results show the following conclusions.

• To shorten the total training time, it is best
to perform decoder training for three epochs
(3 + 18 = 21 epochs in total).

• To obtain the best model (i.e., the model
with the minimum development perplexity),
20 epochs are sufficient for decoder training
(which yields a Dev. PPL of 3.91).

4.4 Experiment on a Low-resource Language
Pair

In this section, the effect of the BERT encoder on
a low-resource setting is explored using IWSLT-
2015 En-Vi data (133K sentences). All experi-
mental settings, except for the corpus, were the
same as those in Section 4.1. The results are
shown in Table 5.

In the low-resource setting, the development
perplexity decreased in comparison with the base-
line when applying the BERT encoder and per-
forming decoder training only. However, the
BLEU score degraded, as in the large data setting
(Section 4.2).

By contrast, when fine-tuning was applied, both
the perplexity and BLEU scores largely improved
with respect to the baseline. The BLEU score of
tst2013 improved by +3.45. Considering the
score of newstest2015 in the experiment in
Table 3 was +1.41 for the same settings, these re-
sults show that the BERT encoder is more effective
for improving translation quality in a low-resource
setting.

5 Discussion and Related Work

5.1 Contrast with Back-Translation
Back-translation (Sennrich et al., 2016a) is a tech-
nique to improve translation quality using mono-
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BLEU ↑
System LR Dev. PPL ↓ 2012 2013

Baseline Transformer base 4.0× 10−4 11.54 24.03 26.12
NMT with BERT Proposed: Decoder training only 4.0× 10−4 11.45 21.77 (-) 23.23 (-)

+ Fine-tuning 8× 10−5 8.98 26.77 (+) 29.57 (+)

Table 5: Results of the IWSLT-2015 data.

lingual corpora. It translates monolingual cor-
pora of the target language into the source lan-
guage, generates pseudo-parallel sentences, and
trains the source-to-target translator from a mix-
ture of pseudo- and manually created parallel cor-
pora. Because BERT encoders are trained us-
ing source monolingual corpora, they complement
each other.

However, there are differences between BERT
encoders and back-translation from the viewpoint
of parallel corpus sizes. BERT encoders them-
selves do not need parallel corpora for training.
They can be applied to low-resource language
pairs for which large parallel corpora are difficult
to obtain. However, huge monolingual corpora are
necessary to train BERT encoders. Therefore, they
are suitable for translation from resource-rich lan-
guages (e.g., English) to low-resource languages.

By contrast, back-translation requires a certain
size of parallel corpora to translate back from the
target to the source languages. This is because
back-translated results are not confident if the
parallel corpora are small (Edunov et al., 2018).
Therefore, back-translation is suitable for translat-
ing middle-resource language pairs.

Note that unsupervised machine translation can
be realized using the XLM described in Section
2.2 by connecting two autoencoders as an encoder-
decoder. Those autoencoders are trained to encode
source-target-source and target-source-target us-
ing monolingual corpora. Therefore, this approach
can be regarded as including back-translation. Be-
cause back-translation was originally developed to
enhance decoders, it is reasonable to incorporate it
into pre-training.

5.2 NMT Using Source Monolingual Corpora

There are other methods that improve translation
quality using source monolingual corpora.

Zhang and Zong (2016) proposed a multi-task
learning method that learns a sentence reorder-
ing model from source language corpora and a
translation model from parallel corpora. Cheng
et al. (2016) proposed semi-supervised NMT that

simultaneously trains a translation model and
two autoencoders using parallel and source/target
monolingual corpora. Both methods must use par-
allel and monolingual corpora during training.

Our method explicitly distinguishes training
stages: 1) pre-training of a BERT encoder using
monolingual corpora, 2) training of a decoder us-
ing parallel corpora, and 3) fine-tuning the entire
model. This means that monolingual corpora are
only necessary in the pre-training stage, and we
can focus on this stage to obtain the advantages of
large corpora.

5.3 Pre-Training versus Recycling
The BERT model used in this paper was designed
and trained for natural language understanding,
and machine translation is an unintended purpose.
Therefore, we use the word “recycle.”

We assume that pre-training and recycling are
distinguished by the number of unlearned param-
eters. The numbers of model parameters in this
paper were 110M for the BERT encoder and 80M
for the Transformer decoder. We could not opti-
mize them using fine-tuning alone. In this case,
it is appropriate to call the model recycling, and
two-stage optimization becomes effective. We be-
lieve that our study can be regarded as an example
of model recycling.

6 Conclusions

In this paper, an NMT system that incorporates a
BERT encoder was presented. We applied two-
stage optimization, that is, decoder training and
fine-tuning, because the number of unlearned pa-
rameters was as large as the number of pre-trained
model parameters. Consequently, we constructed
a higher quality NMT than that trained from given
parallel data. Moreover, it was particularly ef-
fective in a low-resource setting. We also inves-
tigated the appropriate number of epochs for de-
coder training and confirmed that several to tens
of epochs were sufficient.

There are some future directions for this study.
First, various pre-trained models have been dis-
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tributed, such as the BERT large model, multilin-
gual BERT, and XLMs. Exploring the relation-
ship between these models and translation quality
is our future work. Applying the pre-trained mod-
els to various language pairs, from low- to high-
resource language pairs, is also a curious direction.
Regarding model recycling, we plan to combine
heterogeneous models in future work.
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