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Abstract

Data scarcity is a long-standing and crucial
challenge that hinders quick development of
task-oriented dialogue systems across multiple
domains: task-oriented dialogue models are
expected to learn grammar, syntax, dialogue
reasoning, decision making, and language gen-
eration from absurdly small amounts of task-
specific data. In this paper, we demonstrate
that recent progress in language modeling pre-
training and transfer learning shows promise
to overcome this problem. We propose a task-
oriented dialogue model that operates solely
on text input: it effectively bypasses ex-
plicit policy and language generation modules.
Building on top of the TransferTransfo frame-
work (Wolf et al., 2019) and generative model
pre-training (Radford et al., 2019), we vali-
date the approach on complex multi-domain
task-oriented dialogues from the MultiWOZ
dataset. Our automatic and human evaluations
show that the proposed model is on par with
a strong task-specific neural baseline. In the
long run, our approach holds promise to miti-
gate the data scarcity problem, and to support
the construction of more engaging and more
eloquent task-oriented conversational agents.

1 Introduction

Statistical conversational systems can be roughly
clustered into two main categories: 1) task-
oriented modular systems and 2) open-domain
chit-chat neural models. The former typically con-
sist of independently trained constituent modules
such as language understanding, dialogue manage-
ment, and response generation. The main goal of
such systems is to provide meaningful system re-
sponses which are invaluable in building conversa-
tional agents of practical value for restricted do-
mains and tasks. However, data collection and
annotation for such systems is complex, time-
intensive, expensive, and not easily transferable

(Young et al., 2013). On the other hand, open-
domain conversational bots (Li et al., 2017; Serban
et al., 2017) can leverage large amounts of freely
available unannotated data (Ritter et al., 2010;
Henderson et al., 2019a). Large corpora allow
for training end-to-end neural models, which typ-
ically rely on sequence-to-sequence architectures
(Sutskever et al., 2014). Although highly data-
driven, such systems are prone to producing unre-
liable and meaningless responses, which impedes
their deployment in the actual conversational ap-
plications (Li et al., 2017).

Due to the unresolved issues with the end-to-
end architectures, the focus has been extended to
retrieval-based models. Here, the massive datasets
can be leveraged to aid task-specific applications
(Kannan et al., 2016; Henderson et al., 2017,
2019b). The retrieval systems allow for the full
control over system responses, but the behaviour
of the system is often highly predictable. It also
depends on the pre-existing set of responses, and
the coverage is typically insufficient for a mul-
titude of domains and tasks. However, recent
progress in training high-capacity language mod-
els (e.g., GPT, GPT-2) (Radford et al., 2018, 2019)
on large datasets reopens the question of whether
such generative models can support task-oriented
dialogue applications. Recently, Wolf et al. (2019)
and Golovanov et al. (2019) showed that the GPT
model, once fine-tuned, can be useful in the do-
main of personal conversations. In short, their
approach led to substantial improvements on the
Persona-Chat dataset (Zhang et al., 2018), show-
casing the potential of exploiting large pretrained
generative models in the conversational domain.1

In this paper, we demonstrate that large gener-
ative models pretrained on large general-domain

1E.g., TransferTransfo (Wolf et al., 2019) yields gains in
all crucial dialogue evaluation measures such as fluency, con-
sistency and engagingness on the Persona-Chat dataset.
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Figure 1: Dialogue-context-to-text task.

corpora can support task-oriented dialogue appli-
cations. We first discuss how to combine a set
of diverse components such as word tokenization,
multi-task learning, and probabilistic sampling to
support task-oriented applications. We then show
how to adapt the task-oriented dialogue framework
to operate entirely on text input, effectively by-
passing an explicit dialogue management module
and a domain-specific natural language generation
module. The proposed model operates entirely
in the sequence-to-sequence fashion, consuming
only simple text as input. The entire dialogue con-
text, which includes the belief state, the database
state and previous turns, is provided to the decoder
as raw text. The proposed model follows the re-
cently proposed TransferTransfo framework (Wolf
et al., 2019), and relies on pretrained models from
the GPT family (Radford et al., 2018, 2019).

Our results in the standard Dialogue-Context-to-
Text task (see Figure 1) on the multi-domain Multi-
WOZ dataset (Budzianowski et al., 2018b) suggest
that our GPT-based task-oriented dialogue model
learns to generate and understand domain-specific
tokens, which in turn leads to a seamless adapta-
tion to particular focused domains. While auto-
matic evaluation indicates that our framework still
falls slightly short of a strong task-specific neural
baseline, it also hints at the main advantage of our
framework: it is widely portable and easily adapt-
able to a large number of domains, bypassing the
intricate modular design only at a small cost in per-
formance. Furthermore, user-centered evaluations
suggest that there is no significant difference be-
tween the two models.

2 From Unsupervised Pretraining to
Dialogue Modeling

Task-oriented dialogue modeling requires substan-
tial amounts of domain-specific manually labeled

data. A natural question to ask is: Can we leverage
transfer learning through generative pretraining on
large unlabelled corpora to enable task-oriented di-
alogue modeling. In this work, we rely on the stan-
dard language modeling (LM) pretraining, where
the task is to predict the next word given the pre-
ceding word sequence (Bengio et al., 2003). The
objective maximizes the likelihood over the word
sequence S = {w1, ..., w|S|}:

L1(S) =

|S|∑
i=1

logP (wi|w0, w1, ..., wi−1). (1)

Transfer learning based on such LM pretraining
combined with the Transformer decoder model
(Vaswani et al., 2017) resulted in significant
progress across many downstream tasks (Rei,
2017; Howard and Ruder, 2018; Radford et al.,
2018, 2019).

2.1 TransferTransfo Framework
Golovanov et al. (2019) and Wolf et al. (2019)
achieved a first successful transfer of a genera-
tive pretrained GPT model to an open-domain di-
alogue task. The pretrained GPT model is fine-
tuned in a multi-task learning fashion following
the original work (Radford et al., 2018). The LM
objective from Eq. (1) is combined with the next
utterance classification task:

p(c, a) = softmax(hl ∗Wh). (2)

c and a represent the context of the conversation
(c) and a proposed answer (a), hl is the last hidden
state of the transformer decoder, and Wh is learnt
during the fine-tuning phase. The model signifi-
cantly improves upon previous baselines over all
automatic dialogue evaluation metrics as well as
in evaluation with human subjects when evaluated
on the Persona-Chat dataset (Zhang et al., 2018).

The GPT input consists of token embeddings
and positional embeddings. In order to move from
a single-speaker setting to a setting with two inter-
locutors, Wolf et al. (2019) introduced dialogue-
state embeddings. These embeddings inform the
model whether the current token comes from an
utterance of the first speaker or an utterance of the
second speaker. The dialogue-state embeddings
are learned during the fine-tuning phase.

3 Domain Transfer for (Task-Oriented)
Dialogue Modeling

We now briefly discuss several advances in model-
ing of natural language that facilitate applicability
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Figure 2: The framework for modeling task-oriented conversations based on a pretrained GPT model which uses
only unstructured simple text as input. The context, belief state, and database state are joined together without
explicit standalone dialogue policy and generation modules. The token-level (i.e., dialogue-state) embeddings are
learned following Wolf et al. (2019).

of pretrained generative models in task-oriented di-
alogue modeling. To the best of our knowledge,
this work is first to combine these existing compo-
nents to enable task-oriented dialogue modeling.

3.1 Domain Adaptation and Delexicalization
Dealing with out-of-vocabulary (OOV) words has
been a long-standing challenge in dialogue mod-
eling, e.g., it is crucial for task-oriented genera-
tion where the generated output is often delexical-
ized (Wen et al., 2015). Delexicalization replaces
slot values by their corresponding (generic) slot
tokens and it allows learning value-independent
parameters. Recently, owing to subword-level to-
kenisation (Sennrich et al., 2016), language mod-
els are now able to deal with OOVs and domain-
specific vocabularies more effectively (Radford
et al., 2018).

3.2 Simple Text-Only Input
There have been some empirical validations re-
cently which suggest that posing NLP tasks in the
form of simple text can yield improvements with
unsupervised architectures (Wolf et al., 2019; Rad-
ford et al., 2019). For instance, in task-oriented
dialogue modeling the Sequicity model (Lei et al.,
2018) sees the classification over the belief state
as a generation problem. That way, the entire dia-
logue model pipeline is based on the sequence-to-
sequence architecture: the output from one model
is the input to the subsequent recurrent model. We
follow this approach by providing both the belief
state and the knowledge base state in a simple text
format to the generator. This significantly simpli-
fies the paradigm of building task-oriented mod-
els: any new source of information can be simply

added to as another part of the text-only input pro-
vided in “natural language”.

3.3 Transferring Language Generation
Capabilities

Transformer architecture shows ability to learn
new (i.e., domain-specific) token embeddings in
the fine-tuning phase (Radford et al., 2018; Wolf
et al., 2019). This means that the GPT models can
adapt through special tokens to particular tasks.
By providing the input representation as text with
domain-specific tokens, we can use off-the-shelf
architectures and adapt to the domain-specific in-
put without the need of training new dialogue sub-
modules. As mentioned in §2.1, the token level
layer (Figure 2) informs the transformer decoder
what part of the input comes from the system side
or from the user side. In our framework, we create
two task-oriented specific tokens (System and
User tokens) that are learned during fine-tuning.

3.4 Generation Quality

Finally, the long-standing problem of dull and
repetitive response generation (Li et al., 2017) has
been in the focus of recent work (Kulikov et al.,
2018; Holtzman et al., 2019). Owing to new sam-
pling strategies, generative models are now able to
create longer and more coherent sequence outputs.
This has been validated also for open-domain di-
alogue modeling (Wolf et al., 2019; Golovanov
et al., 2019). We experiment with standard de-
coding strategies as well as with the recently
proposed nucleus sampling procedure (Holtzman
et al., 2019). A standard greedy sampling strategy
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chooses the most probable word as :

argmax
wi

= logP (wi|w0, w1, ..., wi−1).

On the other hand, nucleus sampling is restricted
only to words from the p-th percentile of the dis-
tribution during generation. The probabilities of
words for which the cumulative sum exceeds the
percentile are rescaled and the sequence is sam-
pled from this subset. We probe the ability of such
large pretrained models to generate more varied
and semantically richer responses relying on nu-
cleus sampling in lieu of greedy sampling without
hurting the actual performance.

4 Fine-Tuning GPT on MultiWOZ

To evaluate the ability of transferring the GPT gen-
eration capability to constrained/focused dialogue
tasks and domains, we rely on the multi-domain
MultiWOZ dataset (Budzianowski et al., 2018b).
MultiWOZ consists of 7 domains and 10, 438 di-
alogues and it is substantially larger than previ-
ous available datasets (Wen et al., 2017; El Asri
et al., 2017). The conversations are natural as
they were gathered through human-human inter-
actions. However, the dialogues are based on
domain-specific vocabulary such as booking IDs
or telephone numbers that need to be delexicalized
as they are entirely database-dependent.

Natural Language as (the Only) Input. GPT
operates solely on the text input. This is in oppo-
sition to the standard task-oriented dialogue archi-
tectures (Wen et al., 2017; Zhao et al., 2017) where
the belief state and the database state are encoded
in a numerical form. For example, the database
state is typically defined as n-bin encodings repre-
senting a number of available entities at the current
state of the conversation (Wen et al., 2017). There-
fore, we transform the belief state and the knowl-
edge base representation to a simple text represen-
tation. The belief state takes the following form:

Domain1 Slot1 Value1 Slot2 Value2
Domain2 Slot1 ...

and the database representation is provided as:

Domain1 # of entities
Domain2 # of entities ...

This is also similar in spirit to the Sequicity archi-
tecture (Lei et al., 2018) where the second recur-
rent model takes as input the belief state in the nat-
ural language (i.e., simple text-only) form. In this

work, we also transform the knowledge base state
to a similar natural language format. These two
pieces of information are then concatenated with
the history of the conversation forming the full di-
alogue context, see Figure 2. Following Wolf et al.
(2019), we add new token embeddings for two par-
ties involved in the conversation to inform the at-
tention layers what part of the context comes from
the user, and what part is related to the system. Fig-
ure 2 presents the final architecture.

Training Details. We use the open-source im-
plementation of the GPT architecture that provides
both GPT and GPT-2 fine-tunable checkpoints.2

Following previous work (Radford et al., 2018;
Wolf et al., 2019), we set the weight on the lan-
guage model loss to be two times higher than the
one for the response prediction. The parameters
for the batch size (24), learning rate (1e-5) and the
number of candidates per sequence (2) were cho-
sen based on the grid search. 3

5 Results and Analysis

Following prior work (Budzianowski et al., 2018b;
Zhao et al., 2019; Chen et al., 2019), our evalu-
ation task is the dialogue-context-to-text genera-
tion task (see Figure 1). Given a dialogue history,
the oracle belief state and the database state, the
model needs to output the adequate response. By
relying on the oracle belief state, prior work has
bypassed the possible errors originating from nat-
ural language understanding (Budzianowski et al.,
2018b).

The main evaluation is based on the comparison
between the following two models: 1) the base-
line is a neural response generation model with an
oracle belief state obtained from the wizard anno-
tations as in (Budzianowski et al., 2018a); 2) the
model proposed in §4 and shown in Figure 2 that
works entirely with text-only format as input (see
§4). We test all three available pretrained GPT
models - the original GPT model (Radford et al.,
2018). and two GPT-2 models referred to as small
(GPT2) and medium (GPT2-M) (Radford et al.,
2019).

2https://github.com/huggingface/
transfer-learning-conv-ai

3We searched over the following values: learning rates ∈
{1-e4, 1-e5, 5-e6, 1-e6}, batch sizes ∈ {8, 12, 16, 20, 24} and
candidate set sizes ∈ {1, 2, 4, 6}.

https://github.com/huggingface/transfer-learning-conv-ai
https://github.com/huggingface/transfer-learning-conv-ai
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Baseline GPT GPT2-S GPT2-M

Inform (%) 76.7 71.53 66.43 70.96
Success (%) 64.63 55.36 55.16 61.36
BLEU (%) 18.05 17.80 18.02 19.05

Table 1: Evaluation on MultiWOZ with the greedy
sampling procedure.

Baseline GPT GPT2-S GPT2-M

Inform (%) 72.57 70.43 69.3 73.96
Success (%) 57.63 51.0 54.93 61.20
BLEU (%) 15.75 15.65 15.64 16.55

Table 2: Evaluation on MultiWOZ with the nucleus
sampling procedure.

5.1 Evaluation with Automatic Measures

We report scores with three standard automatic
evaluation measures. Two of them relate to the
dialogue task completion: whether the system has
provided an appropriate entity (Inform) and then
answered all requested attributes (Success rate).
Finally, fluency is measured by the BLEU score
(Papineni et al., 2002).

First, three versions of GPT were fine-tuned on
MultiWOZ and evaluated with greedy sampling.
The results are summarized in Table 1). They
show that the baseline obtains the highest score on
task-related metrics while the highest BLUE score
was achieved by GPT2-M. Although the results
are lower for the GPT-based methods, we note the
design simplicity of the GPT-based task-oriented
dialogue models. Further, the gap in performance
might be partially attributed to the chosen greedy
sampling procedure which puts too much focus
on the properties of the original pretraining phase
(Holtzman et al., 2019).

Therefore, we also report the results with the
nucleus sampling method in Table 2. The scores
confirm the importance of choosing the correct
sampling method. The GPT2 models improve
the score on Inform and Success metrics. It is
worth noting the consistent drop in BLUE scores
across all models. This comes from the fact that
nucleus sampling allows for increased variability:
this might reduce the probability of generating
domain-specific tokens.

We have also qualitatively analyzed a sample
of successful dialogues. Only around 50% of di-
alogues are successful both with the baseline and
with the GPT-based models. Moreover, there are
no clearly observed distinct patterns between suc-
cessful dialogues for the two model types. This

Model 1 vs Model 2

GPT 59 % 41% Baseline
GPT 46 % 54 % Target
GPT2 46 % 54 % Target
GPT2 45 % 55 % Baseline
Baseline 43 % 57 % Target
GPT2 51 % 49 % GPT

Table 3: Human ranking of responses between all pairs
of four analyzed models and the original responses.

suggests that they might be effectively ensembled
using a ranking model to evaluate the score of each
response (Henderson et al., 2019b). We will inves-
tigate the complementarity of the two approaches
along with ensemble methods in future work.

5.2 Human Evaluation

In another, now user-centered experiment, the goal
was to analyze the generation quality. Turkers, na-
tive speakers of English, were asked to rate their
binary preference when presented with one-turn
responses from the baseline, GPT, GPT2-M and
the original dialogues (Target). The turkers were
required to choose what response they prefer when
presented with two responses from two different
models, resulting in more than 300 scores per each
model pair.

The results are summarized in Table 3, while
some example dialogues with responses are pro-
vided in Figure 3. As expected, the original re-
sponses are ranked higher than all neural models
with the largest difference observed between the
oracle and the baseline model. Although the gen-
erated output from the GPT is strongly preferred
against the neural baseline, interestingly the oppo-
site is observed with the GPT2 model. These in-
conclusive results call for further analyses in fu-
ture work, and also show that there are no sub-
stantial differences in the quality of generated re-
sponses when comparing the strong neural base-
line and the GPT-based models.

6 Conclusion

In this paper, we have made a first step towards
leveraging large pretrained generative models for
modeling task-oriented dialogue in multiple do-
mains. The simplicity of the fine-tuning proce-
dure where all necessary information can be en-
coded as simple text enables a quick adaptation
to constrained domains and domain-specific vo-
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cabularies. We hope that this framework will in-
form and guide future research in hope of simulta-
neously improving and simplifying the design of
task-oriented conversational systems.
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Tseng, and Milica Gašić. 2018a. Towards end-
to-end multi-domain dialogue modelling. Tech.
Rep. CUED/F-INFENG/TR.706, University of Cam-
bridge, Engineering Department.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018b. MultiWOZ-A
Large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. In Proceedings of
EMNLP, pages 5016–5026.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng
Yan, and William Yang Wang. 2019. Semantically
conditioned dialog response generation via hierar-
chical disentangled self-attention. arXiv preprint
arXiv:1905.12866.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. In Proceedings of SIGDIAL, pages 207–
219.

Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko,
Kyryl Truskovskyi, Alexander Tselousov, and
Thomas Wolf. 2019. Large-scale transfer learning
for natural language generation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6053–6058, Florence,
Italy. Association for Computational Linguistics.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Matthew Henderson, Paweł Budzianowski, Iñigo
Casanueva, Sam Coope, Daniela Gerz, Girish Ku-
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Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically conditioned lstm-based natural language
generation for spoken dialogue systems. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
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Figure 3: The comparison of generated responses from the baseline model and GPT2-M.


