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Abstract

Additive compositionality of word embedding
models has been studied from empirical and
theoretical perspectives. Existing research on
justifying additive compositionality of exist-
ing word embedding models requires a rather
strong assumption of uniform word distribu-
tion. In this paper, we relax that assumption
and propose more realistic conditions for prov-
ing additive compositionality, and we develop
a novel word and sub-word embedding model
that satisfies additive compositionality under
those conditions. We then empirically show
our model’s improved semantic representation
performance on word similarity and noisy sen-
tence similarity.

1 Introduction

Previous word embedding studies have empiri-
cally shown linguistic regularities represented as
linear translation in the word vector space, but they
do not explain these empirical results mathemat-
ically (Mikolov et al., 2013b; Pennington et al.,
2014; Bojanowski et al., 2017).

Recent studies present theoretical advances to
interpret these word embedding models. Levy and
Goldberg (2014b) show that the global optimum
of SGNS (Skip-Gram with Negative Sampling) is
the shifted PMI (PMI(i, j)−k). Arora et al. (2016)
propose a generative model to explain PMI-based
distributional models and presents a mathemati-
cal explanation of the linguistic regularity in Skip-
Gram (Mikolov et al., 2013a). Gittens et al. (2017)
provide a theoretical justification of the additive
compositionality of Skip-Gram and shows that the
linguistic regularity of Skip-Gram is explained by
additive compositionality of Skip-Gram (Mikolov
et al., 2013a). One property of the word vectors
that equates to satisfying additive compositional-
ity is the following:

~uc =

n∑
i=1

~uci

where word c is the paraphrase word of the set of
words {c1, ..., cn}, and ~u is the vector representa-
tion of a word. We explain additive composition-
ality in more detail in section 3.3.

In this paper, we provide a more sound math-
ematical explanation of linguistic regularity to
overcome the limitations of previous theoretical
explanations. For instance, Levy and Goldberg
(2014b) do not provide a connection between
shifted-PMI and linguistic regularity, and Arora
et al. (2016) and Gittens et al. (2017) require
strong assumptions in their mathematical explana-
tion about linguistic regularity. Arora et al. (2016)
assume isotropy, a uniformly distributed word vec-
tor space, and Gittens et al. (2017) assume a uni-
form word frequency distribution within a corpus,
p(w) = 1/|V |.

We propose a novel word/sub-word embedding
model which we call OLIVE that satisfies exact
additive compositionality. The objective function
of OLIVE consists of two parts. One is a global
co-occurrence term to capture the semantic simi-
larity of words. The other is a regularization term
to constrain the size of the inner product of co-
occurring word pairs. We show that the global
optimum point of OLIVE is the exact PMI ma-
trix under certain condition unlike SGNS whose
optimum approximates PMI due to the sampling
process in training (Levy and Goldberg, 2014b).
The source code and pre-trained word vectors
of OLIVE are publicly available 1. By being a
more theoretically sound word embedding model
OLIVE shows improved empirical performance
for semantic representation of word vectors, and
by eliminating sampling process in SGNS, OLIVE
shows robustness on the size of the vocabulary

1https://github.com/yeonsw/OLIVE

https://github.com/yeonsw/OLIVE
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and sentence representation performance on var-
ious noisy settings. We evaluate the semantic rep-
resentation performance with the word similarity
task, and we show the robustness of our model by
conducting word similarity task on various vocab-
ulary size and sentence similarity task on various
noisy settings.

The contributions of our research are as follows:

• We present a novel mathematical explanation
of additive compositionality of SGNS.

• We propose a word/sub-word embedding
model that theoretically satisfies additive
compositionality. We provide the code for
this model for reproducibility.

• In addition to theoretical justification, we
show the empirical performance of our model
and its robustness.

2 Related Work

Learning word co-occurrence distribution is
known as an effective method to capture the se-
mantics of words (Baroni and Lenci, 2010; Har-
ris, 1954; Miller and Charles, 1991; Bullinaria and
Levy, 2007).

Based on this word co-occurrence distribution,
two major types of word embedding research have
been conducted. One is to use the local context
of words in a corpus to train a neural network
(Mikolov et al., 2013a,b; Bojanowski et al., 2017;
Xu et al., 2018; Khodak et al., 2018). The other
is to use the global statistics (Huang et al., 2012;
Pennington et al., 2014). Aside from the general
purpose embedding, some approaches are specific
to a domain (Shi et al., 2018) or use extra human
labeled information (Wang et al., 2018). In this
paper, we focus on the general purpose word em-
bedding.

Among those, SGNS (Skip-Gram with Negative
Sampling) (Mikolov et al., 2013b) and FastText
(Bojanowski et al., 2017) are widely-used neu-
ral network based word and sub-word embedding
models that use negative sampling (Gutmann and
Hyvärinen, 2012; Mnih and Kavukcuoglu, 2013).
With the argument that global co-occurrence
statistics, overlooked in SGNS and FastText, are
important in capturing the word semantics, Pen-
nington et al. (2014) propose GloVe.

There were empirical studies of linguistic regu-
larity in word embedding vector space (Levy and

Goldberg, 2014a; Socher et al., 2012; Botha and
Blunsom, 2014; Mikolov et al., 2013c; Socher
et al., 2013).

Although Skip-Gram and GloVe seem to cap-
ture the linguistic regularity sufficiently, from the
theoretical perspective of additive compositional-
ity of word vectors, both models are lacking be-
cause they require extra and strong assumptions
(Gittens et al., 2017; Arora et al., 2016).

Recently, (Allen and Hospedales, 2019) claim
strong assumptions in the previous word embed-
ding studies (Gittens et al., 2017; Arora et al.,
2016) and propose theoretical explanation about
linguistic regularity in SGNS based on paraphrase
definition in (Gittens et al., 2017). Although their
theory explains linguistic regularity in SGNS,
there are remaining mathematical properties in
SGNS: uniqueness of the paraphrase vector, and
the meaning of the negative sampling parameter.

In this paper, we recognize the importance of
additive compositionality of word vectors which
connects word vectors, and their linguistic regu-
larity and we provide a novel mathematical expla-
nation of SGNS’s additive compositionality and
uniqueness property in additive compositionality.
Further, we propose a novel word/sub-word em-
bedding model that satisfies additive composition-
ality based on our theory and show its capabilities
in capturing the semantics of words.

3 Preliminaries

In this section, we describe three important con-
cepts about word vectors and how they are used
in existing word embedding models. First, we de-
scribe the PMI matrix which is an approximated
global optimum point of SGNS (Skip-Gram with
Negative Sampling) (Levy and Goldberg, 2014b)
and known to capture the semantic meaning of
words in vector space (Arora et al., 2016). Second,
we describe sub-sampling, a word frequency bal-
ancing method to increase word embedding per-
formance. Third, we describe additive composi-
tionality, the notion that a paraphrase word vec-
tor is a vector sum of its context word set (Gittens
et al., 2017).

3.1 Objective Function

There are two major types of objective functions
used in word embedding models. One is used in
SGNS and is based on the PMI; and the other is
used in GloVe, based on the joint probability dis-
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tribution of word pairs, p(w1, w2).

3.1.1 Skip-Gram with Negative Sampling
SGNS iteratively trains word vectors for each co-
occurring word pair in the same local context win-
dow (Mikolov et al., 2013b). The objective func-
tion for each word pair is as follows,

LSG(i, j) = log σ(~uTi ~vj)

+
k∑

i=1

En∼p(w)[log σ(−~uTi ~vn)].
(1)

By minimizing (1), we get the global optimum
point of SGNS as follows, Levy and Goldberg
(2014b)

~uTi ~vj = PMI(i, j)− log k,

where k is the number of negative samples.
One problem of SGNS which trains word vec-

tors for each independent context window is that
it cannot utilize the global statistics of a corpus
(Pennington et al., 2014).

3.1.2 GloVe
To capture the global co-occurrence statistics of
word pairs, Pennington et al. (2014) propose
GloVe with the following objective function,

LGloVe =
∑
i,j∈D

f(i, j)(~uTi ~vj + b̃i + b̃j−logXij)
2,

which learns the word vectors that capture the
global co-occurrences of word pairs (Xij). Note
that this model does not result in the optimum be-
ing the PMI statistic, which is the condition for
additive compositionality described in section 4.

3.2 Sub-sampling

Word embedding models such as SGNS, Fast-
Text, and GloVe use various balancing methods
that reduce the frequencies of very frequent words.
These balancing methods are known to improve
the semantic structure learned by a word embed-
ding model. GloVe uses a clipping method to
their weighting function that has an upper bound
on the number of co-occurrences of word pairs.
SGNS and FastText use a sub-sampling method
that probabilistically discards frequent words dur-
ing the learning procedure with the discard proba-
bility of word i as follows (Mikolov et al., 2013b),

ps(i) = 1−
(√ s

p(i)
+

s

p(i)

)
. (2)

Here, p(i) is word frequency of word i in a cor-
pus. s is a sub-sampling parameter. In this paper,
we propose a statistical sub-sampling method that
is based on sub-sampling method in SGNS. Our
proposed method can be applied to a model that
uses global statistics.

3.3 Additive Compositionality of Gittens
et al. (2017)

Gittens et al. (2017) provide a mathematical defi-
nition of additive compositionality and a theoreti-
cal framework to justify the additive composition-
ality of Skip-Gram. They define additive compo-
sitionality by formulating a link between a para-
phrase word and its context words, where the def-
inition of paraphrase words is,

c = argmin
w∈V

DKL(p(·|C)|p(·|w)). (3)

Here, c is a word and C = {c1, ..., cn} is a set of
words. So, if a word c minimizes (3) for given set
of wordsC, then we say the word c is a paraphrase
of the word set, C. If paraphrase vector ~uc is cap-
tured by vector addition of words {c1, ..., cn}, we
call the word vectors, ~u satisfy additive composi-
tionality. Gittens et al. (2017) introduce two con-
ditions of a paraphrase word vector c to be vector
sum of a set C, ~uc =

∑n
i=1 ~uci .

• Given context word c, the probability that
word w occurs within the same window can
be calculated as follows,

p(w|c) = 1

Zc
exp (~uTw~vc). (4)

• Given the set of words C, the probability dis-
tribution of word w can be calculated as fol-
lows,

p(w|C) = p(w)1−m

ZC

m∏
i=1

p(w|ci) (5)

where Zc and ZC are normalization vari-
ables (Zc =

∑
w∈V exp (~uTw~vc), ZC =∑

w∈V p(w)
1−m∏m

i=1 p(w|ci)).

We are inspired by this mathematical definition of
additive compositionality, and our work is based
on their problem definition.

4 Additive Compositionality

To prove additive compositionality of word vec-
tors, i.e., (4) and (5) are satisfied, Gittens et al.
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(2017) assume uniform word frequency distribu-
tion, p(w) = 1/|V |. We know from Zipf’s law
that this assumption is not realistic, so we propose
to replace (4) with the following such that the word
embedding model satisfies additive composition-
ality without the uniform distribution assumption:

p(w|c) = p(w)

Zc
exp (~uTw~vc) (6)

where Zc =
∑

w∈V p(w) exp (~u
T
w~vc).

Theorem 1. If a word embedding model satisfies
(5) and (6), then the embedding vector of a para-
phrase word, ~uc can be represented by the vec-
tor sum of its context word set, c1, ..., cm, ~uc =∑m

i=1 ~uci .

Proof. The KL divergence (3) between (5) and (6)
is computed as follows,

DKL = −
∑
w∈V

p(w) exp(~uTC~vw)
{
(~uc − ~uC)T~vw

− log
(∑
w′∈V

p(w′) exp(~uTc ~vw′)
)
+ logZ

} 1
Z
.

(7)

Here, Z = ZC
∏m

i=1 zci . ~uC =
∑m

i=1 ~uci . Differ-
entiating (7) by ~uc, we get

∂DKL

∂~uc
=− 1

Z

∑
w∈V

p(w) exp(~vTw~uC)~vw

+
1

Z

∑
w∈V

p(w) exp(~vTw~uc)~vw

×
∑

w∈V p(w) exp(~v
T
w~uC)∑

w∈V p(w) exp(~v
T
w~uc)

(8)

Since (7) is convex and (8) becomes 0 when ~uc =
~uC , a paraphrase word vector can be represented
by the vector sum of its context words set, C. We
explain the details of the proof about convexity of
(7) in the Appendix.

From (4) and (6), we can show that SGNS
approximately satisfies additive compositionality
without the uniform word frequency distribution
assumption.

Theorem 2. SGNS (Skip-Gram with Negative
Sampling) approximately satisfies additive compo-
sitionality.

Proof. The approximated global optimum point
of SGNS is shifted-PMI (Levy and Goldberg,

Symbol Description

V Vocabulary
Gi Set of sub-words in word i
i, j Index of a word in vocabulary
D Set of co-occurring word pairs
σ Sigmoid function
~ui, ~vj Embedding vector of word i, j
~gi,~hj Embedding vector of sub-word i, j
k Regularization parameter
s Statistic sub-sampling parameter

Sij
Regularization coefficient
of word pair (i, j)

Table 1: Summary of the symbols

2014b). We can rewrite the approximated global
optimum point as follows,

p(i|j) = p(i)

k−1
exp(~uTi ~vj). (9)

Since (9) is the same as (6) and we can prove (5)
with Bayes’ theorem, we prove that SGNS approx-
imately satisfies additive compositionality.

5 Model

In this section, we describe our word embedding
model OLIVE which satisfies additive composi-
tionality described in section 4. We first describe
our word level embedding model and its proper-
ties, then we expand the model to the sub-word
level.

5.1 Word Level Embedding
5.1.1 Loss Function
The loss function in OLIVE consists of two parts:
1) a global co-occurrence term to capture the se-
mantic similarity of co-occurring word pairs, and
2) a regularization term with sigmoid function and
a different coefficient value for each word pair.
Here, we use the regularization term to control the
global optimal point of our model. Our proposed
loss function is

LOLIVE =

−
∑
ij∈D

p(i, j) log σ(~uTi ~vj) +
∑
ij∈D

Sijσ(~u
T
i ~vj).

(10)

Here, D is the set of co-occurring word pairs,
p(i, j) is the probability that the words (i, j) oc-
cur in the same context window, ~u,~v are the word
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embedding vectors, and Sij is the regularization
coefficient for word pair (i, j). The notations used
in our model are summarized in Table 1. By mini-
mizing this loss function, we get the word embed-
ding vectors ~u and ~v.

5.1.2 Properties
The global optimum of (10) depends on the value
Sij . When Sij is p(i, j)+p(i)p(j)k, our model has
a single local optimum – the global optimum point
which is the shifted PMI. Also, OLIVE satisfies
additive compositionality when Sij = p(i, j) +
p(i)p(j)k. We describe the theorem and the proof
below.

Theorem 3. If Sij = p(i, j) + p(i)p(j)k and
the dimension of word embedding vector ~u,~v is
sufficiently large to get global optimum point of
LOLIV E , then LOLIVE has a unique local opti-
mum with respect to ~uTi ~vj , and ~uTi ~vj becomes
PMI(i, j)− log k at the local optimum.

Proof. Let r = ~uTi ~vj . First derivative of (10) is as
follows,

∂LOLIVE

∂r

= p(i)p(j)kσ(−r)σ(r)e−r × (er − p(i, j)

p(i)p(j)k
)

(11)

Since p(i)p(j)kσ(−r)σ(r)e−r is always positive,
∂LOLIVE

∂r is positive when r satisfies the following
condition:

r ∈ (log
p(i, j)

p(i)p(j)k
,∞). (12)

Second derivative of LOLIVE is as follows,

∂LOLIVE

∂r2
=− p(i)p(j)kσ(−r)σ(r)2e−r

× (er − (2
p(i, j)

p(i)p(j)k
+ 1))

(13)

Since p(i)p(j)kσ(−r)σ(r)2e−r is always posi-
tive, ∂LOLIVE

∂r2
is positive when r satisfies following

condition:

r ∈ (−∞, log( 2p(i, j)

p(i)p(j)k
+ 1)) (14)

which leads to the following properties:

(a) ∂LOLIVE
∂r2

> 0 if r ∈ (−∞, log( 2p(i,j)
p(i)p(j)k + 1))

(b) ∂LOLIVE
∂r > 0 if r ∈ (log( p(i,j)

p(i)p(j)k ),∞)

Since log( 2p(i,j)
p(i)p(j)k + 1) > log( p(i,j)

p(i)p(j)k ), LOLIVE

has a unique local optimum with respect to ~uTi ~vj .
By simply finding r that makes (11) 0, we can
show that the global optimum is PMI(i, j) −
log k.

Theorem 4. If Sij = p(i, j) + p(i)p(j)k, then
LOLIVE satisfies additive compositionality.

Proof. From Theorem 1, we can prove Theorem 4
by showing that LOLIVE satisfies (5) and (6).

(a) We can simply prove (5) with Bayes’ theo-
rem.

(b) From Theorem 3, we can rewrite the global
optimum of our model as

p(i|j) = p(i)

k−1
exp(~uTi ~vj). (15)

Since (15) is the same as (6), we prove that
our model satisfies (6).

5.2 Sub-word Level Embedding

We can expand (10) to a sub-word level embed-
ding model without losing the properties in sec-
tion 5.1.2. Let ~ui =

∑
x∈Gi ~gx/|Gi| and ~vj =∑

y∈Gj
~hy/|Gj |. Then, the expanded sub-word

level model can be defined by the loss funtion

Lsub =

−
∑
ij∈D

p(i, j) log σ((
1

|Gi|
∑
x∈Gi

~gx)
T (

1

|Gj |
∑
y∈Gj

~hy))

+
∑
ij∈D

Sijσ((
1

|Gi|
∑
x∈Gi

~gx)
T (

1

|Gj |
∑
y∈Gj

~hy)),

(16)

where x, y are sub-word indicators in words i, j.
~g,~h are sub-word embedding vectors, and Gi is the
set of sub-words in word i.

5.3 Statistical Sub-sampling

Similar to SGNS and FastText, we apply sub-
sampling to improve word embedding perfor-
mance, but because SGNS sub-samples words in
each iteration of the learning process, we cannot
directly apply it to OLIVE which uses the global
statistics. Instead we propose a statistical sub-
sampling based on the same discard probability
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form as (2) but considering for each word whether
it needs to be sub-sampled, as follows:

ps(i) =


√

s
p(i) +

s
p(i) if p(i) > s · (

√
5+1
2 )2

1 otherwise
(17)

Here, s is the sub-sampling parameter. By mul-
tiplying the above probability to the frequency of
the word, we can get the sub-sampled global statis-
tic of a word. The statistics can be calculated by

N s
i = Ni ·ps(i), N s

i,j = Ni,j ·ps(i) ·ps(j) (18)

whereNi is the frequency of word i andNi,j is the
co-occurrence frequency of word pair (i, j).

5.4 Updating Rule
In the learning process of (10) and (16), the word
vectors are updated by gradient descent, where the
gradient of a word vector ~ui in (10) is

∂L

∂~ui
=
∑
j∈Di

p(i)p(j)k~vjσ(−~uTi ~vj)σ(~uTi ~vj)

−
∑
j∈Di

p(i, j)σ(−~uTi ~vj)2~vj .

(19)

In (16), the gradient of the sub-word vector ~gx and
~hy can be simply calculated by (19) as

∂L

∂~gx
=

∑
{i|x∈Gi}

∂L

∂~ui
,

∂L

∂~hy
=

∑
{j|y∈Gj}

∂L

∂~vj
. (20)

We update the word vectors with the normalized
gradient of the word vector. The updating rule is

~ui := ~ui − η ·
∂L

∂~ui
·
∣∣∣∣ ∂L∂~ui

∣∣∣∣−1 (21)

where η is the learning rate.

6 Experiment

In this section, we conduct three experiments to
show the empirical effects of theoretical improve-
ment on OLIVE. First, we conduct an experiment
on the word similarity task to verify the seman-
tic representation performance of OLIVE. Sec-
ond, we report the word similarity performance
of OLIVE on various vocabulary sizes and noisy
sentence representation performance to show the
robustness of OLIVE.

6.1 Training Settings
We train our model and baseline models with the
Wikipedia English corpus with 4 billion tokens.
We preprocess the corpus with Matt Mahoney’s
perl script 2. We use Skip-Gram, FastText, GloVe,
and Probabilistic-FastText (Athiwaratkun et al.,
2018) as baseline models. For all word and sub-
word experiments, we set dimension = 300 and
windowsize = 5. To train our word/sub-word
model, we set s = 10−5, k = 50, the number of
iterations to 500, and the initial learning rate, η0 to
0.5. For every iteration, we decrease the learning
rate by the following formula:

ηt = η0 ×
1

(t+ 1)0.25
(22)

In Skip-Gram and FastText, we set the number of
negative samples to 5, the sub-sampling parameter
to 10−5 and the initial learning rate to 0.025. In
GloVe, we set the parameter x max to 100 follow-
ing their paper (Pennington et al., 2014). In Prob-
FastText (Athiwaratkun et al., 2018), we set the
parameters to the default settings in their code3.
In the sub-word experiment, we extract sub-words
whose length is in the range [2, 7].

6.2 Word Similarity
We evaluate our word embedding performance
with the word similarity task using three word
similarity datasets: MTurk-(287, 771) (Radinsky
et al., 2011), and SL-999 (Hill et al., 2015). We
compare our model with four models: Skip-Gram,
FastText, GloVe, and Probabilistic-FastText, a
multisense sub-word embedding model (Athi-
waratkun et al., 2018).

Table 3 shows the results of the word similar-
ity experiment with words that occur two or more
times in the corpus for a vocabulary size of 6.2
million words. Table 2 shows the results for the
same experiment but with words that occur five or
more times in the corpus for a vocabulary size of
2.8 million words. With both of these tables, we
can see that OLIVE outperforms all four compari-
son models.

6.2.1 Effect of Vocabulary Size
When we compare tables 2 and 3 we see sig-
nificant performance decreases in FastText, Skip-
Gram, and Prob-FastText for the larger vocab-

2http://mattmahoney.net/dc/textdata
3https://github.com/benathi/

multisense-prob-fasttext

http://mattmahoney.net/dc/textdata
https://github.com/benathi/multisense-prob-fasttext
https://github.com/benathi/multisense-prob-fasttext
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FastText Skip-Gram GloVe Prob-FastText OLIVE-sub OLIVE-word

MTurk-287 64.73 66.30 60.62 66.49 65.69 66.54
MTurk-771 63.92 65.32 62.30 65.81 65.43 66.31
SL-999 35.09 36.01 32.53 36.54 34.86 36.18

Table 2: Spearman’s rank correlation coefficient of word similarity task on 2.8× 106 vocabulary size.

FastText Skip-Gram GloVe Prob-FastText OLIVE-sub OLIVE-word

MTurk-287 62.46 63.38 60.77 63.17 64.33 67.22
MTurk-771 59.60 61.67 61.91 64.56 65.32 66.66
SL-999 33.04 34.20 31.98 33.83 34.99 35.81

Table 3: Spearman’s rank correlation coefficient of word similarity task on 6.2× 106 vocabulary size.

2 106 3 106 4 106 5 106 6 106

Vocabulary size
54
56
58
60
62
64
66
68

Sp
ea

rm
an

's 
ra

nk
 c

or
re

la
tio

n

Our model
Skip-Gram
FastText

GloVe
Prob-FastText

Figure 1: Spearman correlation of our model, Skip-
Gram, and FastText on various vocabulary size in
MTurk-771 testset.

ulary size. On the other hand, our model and
GloVe show consistent performance, and we in-
terpret that as a result of using the global word
co-occurrence statistics. To visualize that more
clearly, we plot in Figure 1 the word similarity
scores for the MTurk-771 dataset on various vo-
cabulary sizes for the different models. This figure
clearly shows the robustness of our model with re-
spect to the vocabulary size.

6.3 Noisy Sentence Representation

In sections 4 and 5.1.2, we have shown that
our model satisfies additive compositionality and
SGNS’s approximated additive compositionality.
Theorem 1 implies equality between finding para-
phrase vector of context words and finding sen-
tence vector, which makes the sentence vector that
minimizes the KL divergence (7) to ~usentence =∑

w∈sentence ~uw. To see robustness on additive
compositionality of OLIVE that comes from re-
moving the approximation in SGNS, we measure
sentence similarity on various noise settings with

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Misspelling probability

5
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25
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40
45
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55
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OLIVE-word

OLIVE-sub

Skip-Gram

FastText

GloVe

Figure 2: Pearson correlation of OLIVE, SGNS,
GloVe, and FastText on SICK-dataset. We misspell
words with probability between [0.1, 0.4].

the sentence vectors calculated by the sum of word
vectors in the sentence.

We use SICK dataset (Marelli et al., 2014) and
all the STS-English dataset (Cer et al., 2017):
STS-train, STS-dev, and STS-test. These datasets
contain sentence pairs and human-annotated simi-
larity scores for each sentence pair. To make noise
in a sentence, we use two types of noise settings:
typo and omitted-word. We use misspelling gen-
eration method proposed in Piktus et al. (2019) to
make typos in a sentence with probability p. Pik-
tus et al. (2019) use query logs of a search engine
to build probabilistic distribution of misspelled
words of a word, p(misspelled word|word). In
omitted-word setting, we randomly discard words
in each sentence with probability p. In both
typo/omitted-word settings, we measure sentence
similarity on various noise probability settings,
p ∈ [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].

To compute the similarity of a pair of sentences,
we first calculate the sentence vector and take the
cosine similarity of the sentence vector pair. Then
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Word Vector Model Sub-word Vector Model

SGNS GloVe OLIVE-word FastText OLIVE-sub

Typo

STS-Train 55.80/58.45 44.68/44.18 54.95/58.00 52.77/55.58 52.03/57.45
STS-Dev 56.79/54.27 44.59/38.53 58.80/57.82 57.85/54.87 65.05/65.16
STS-Test 46.21/48.07 34.88/34.65 42.22/45.21 52.30/52.89 54.35/57.10
SICK 42.15/47.70 39.75/42.19 44.56/48.99 43.58/50.21 45.05/52.70

Omit

STS-Train 52.63/53.53 43.06/41.93 52.40/54.49 45.73/45.34 46.44/50.72
STS-Dev 55.92/49.09 45.00/34.72 57.19/54.98 49.82/44.13 59.37/59.42
STS-Test 42.57/42.20 31.65/31.23 39.14/40.89 44.83/42.05 47.28/49.35
SICK 48.22/53.98 44.44/46.51 49.92/55.14 38.63/41.38 42.15/48.48

Table 4: Spearman/Pearson correlation of sentence similarity on typo/omitted-word setting. We misspell/discard
words with probability 0.15. The left is Spearman correlation and the right is Pearson correlation.
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Figure 3: Pearson correlation of OLIVE, SGNS,
GloVe, and FastText on SICK-dataset. We discard
words with probability between [0.1, 0.4].

we calculate the Spearman and Pearson correla-
tions between the human-annotated similarity and
the cosine similarity of the sentence vector pair.
We report results on various typo/omitted-word
setting in figure 2, 3 and results of typo/omit-word
setting on 0.15 noise probability in table 4.

Table 4 show that OLIVE outperforms in each
sub-word and word embedding group on both
typo/omitted-word settings. When we com-
pare the performance of GloVe, Skip-Gram, and
OLIVE in table 4, we get an empirical evidence of
approximate and exact additive compositionality
in (2) and (4). Since GloVe does not theoretically
satisfy additive compositionality, the correlation
of GloVe is lower than Skip-Gram. Overall, we
establish that our model captures noisy sentence
representation better than Skip-Gram, GloVe, and
FastText.

Since OLIVE-sub and FastText are character
n-gram embedding models, ~ui = 1

|Gi|
∑

x∈Gi ~gx,
misspelling in a word tends to affect vector rep-

resentation of a word insignificantly. In figure 2,
we empirically show significant performance dif-
ference between sub-word embedding models and
word embedding models on typo setting. Also,
figure 2 and 3 show that OLIVE outperforms in
each sub-word and word embedding group on both
typo/omit-word settings with various noise set-
tings.

7 Conclusion

In this paper, we proposed 1) novel theoretical
conditions of additive compositional word embed-
ding model and 2) novel word/sub-word embed-
ding model which we call OLIVE that satisfies
additive compositionality. The loss function of
OLIVE consists of a term for learning semantic
similarity and a regularization term. From the loss
function, we derived three properties of OLIVE:
additive compositionality, uniqueness of local op-
timum, and shifted-PMI as the global optimum.
Through several experiments, we showed OLIVE
outperforms other existing embedding models on
various word similarity task and showed robust-
ness with respect to the size of the vocabulary.
With sentence similarity task on various noisy set-
tings, we showed robustness on additive composi-
tionality of OLIVE.
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A Convexity of (7)

The second derivative of DKL is as follows,

∂2DKL

∂~uc∂~uTc

=K
∂

∂~uc

∑
w∈V p(w) exp(~v

T
w~uc)~vw∑

w∈V p(w) exp(~v
T
w~uc)

=K

∑
w∈V p(w) exp(~v

T
w~uc)~vw~v

T
w∑

w∈V p(w) exp(~v
T
w~uc)

−K
∑

w∈V p(w) exp(~v
T
w~uc)~vw∑

w∈V p(w) exp(~v
T
w~uc)

×
∑

w∈V p(w) exp(~v
T
w~uc)~v

T
w∑

w∈V p(w) exp(~v
T
w~uc)

,

where K is 1
Z

∑
w∈V p(w) exp(~v

T
w(
∑m

i=1 ~uci)).
To prove the second derivative of DKL is posi-

tive definite matrix, we multiply non-zero vector ~x
to the Hessian matrix ( ∂

2DKL

∂~uc∂~uT
c

).

~xT
∂2DKL

∂~uc∂~uTc
~x

= K

∑
w∈V p(w) exp(~v

T
w~uc)~x

T~vw~v
T
w~x∑

w∈V p(w) exp(~v
T
w~uc)

−K
∑

w∈V p(w) exp(~v
T
w~uc)~x

T~vw∑
w∈V p(w) exp(~v

T
w~uc)

×
∑

w∈V p(w) exp(~v
T
w~uc)~v

T
w~x∑

w∈V p(w) exp(~v
T
w~uc)

= K
∑
w∈V

rwq
2
w −K(

∑
w∈V

rwqw)
2

(23)

Where,

rw =
p(w) exp(~vTw~uc)∑

w∈V p(w) exp(~v
T
w~uc)

, qw = ~xT~vw.

By Jensen’s inequality,

K
∑
w∈V

rwq
2
w > K(

∑
w∈V

rwqw)
2.

Now, we get

~xT
∂2DKL

∂~uc∂~uTc
~x > 0

for all non-zero vector ~x. So, the Hessian of DKL
is positive definite matrix which leads to convexity
of the DKL.


