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Abstract

We introduce the task of algorithm class pre-
diction for programming word problems. A
programming word problem is a problem writ-
ten in natural language, which can be solved
using an algorithm or a program. We define
classes of various programming word prob-
lems which correspond to the class of algo-
rithms required to solve the problem. We
present four new datasets for this task, two
multiclass datasets with 550 and 1159 prob-
lems each and two multilabel datasets having
3737 and 3960 problems each. We pose the
problem as a text classification problem and
train neural network and non-neural network
based models on this task. Our best perform-
ing classifier gets an accuracy of 62.7 per-
cent for the multiclass case on the five class
classification dataset, Codeforces Multiclass-5
(CFMC5). We also do some human-level anal-
ysis and compare human performance with
that of our text classification models. Our best
classifier has an accuracy only 9 percent lower
than that of a human on this task. To the best
of our knowledge, these are the first reported
results on such a task. We make our code and
datasets publicly available.

1 Introduction

In this paper we introduce and work on the prob-
lem of predicting algorithms classes for program-
ming word problems (PWPs). A PWP is a prob-
lem written in natural language which can be
solved using a computer program. These prob-
lems generally map to one or more classes of al-
gorithms, which are used to solve them. Binary
search, disjoint-set union, and dynamic program-
ming are some examples. In this paper, our aim
is to automatically map programming word prob-
lems to the relevant classes of algorithms. We ap-

* denotes equal contribution
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Problem Title: Hit the Lottery

time limit per test: 1 second
memery limit per test: 256 megabytes

Problem Statement:
Allen has a LOT of money. He has n dollars in the
bank. For security reasons, he wants to withdraw
it in cash (we will not disclose the reasons here).

The denominations for dollar bills are 1, 5, 10,
20, 100. What is the minimum number of bills
Allen could receive after withdrawing
his entire balance?

Input: The first and only line of input
contains a single integer n(1=n=s10"9).

Output: Output the minimum number of bills
that Allen could receive.

Tags/Classes: dp (dynamic programming), greedy

Figure 1: An example programming word problem.
Note that the example shown here is one of the
easy Codeforces problems — most problems are much
harder.

proach this problem by treating it as a classifica-
tion task.

Programming word problems A program-
ming word problem (PWP) requires the solver to
design correct and efficient programs. The cor-
rectness and efficiency is checked by various test-
cases provided by the problem writer. A PWP
usually consists of three parts — the problem state-
ment, a well-defined input and output format, and
time and memory constraints. An example PWP
can be seen in Figure 1.

Solving PWPs is difficult for several reasons.
One reason is, the problems are often embedded
in a narrative, that is, they are described as quasi
real-world situations in the form of short stories or
riddles. The solver must first decode the intent of
the problem, or understand what the problem is.
Then the solver needs to apply their knowledge of
algorithms to write a solution program. Another
reason is that, the solution programs must be effi-
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cient with respect to the given time and memory
constraints. An outgrowth of this is that, the al-
gorithm required to solve a particular problem not
only depends on the problem statement, but also
the constraints. Consider that there may be two
different algorithms which will generate the cor-
rect output, for example, linear search, and binary
search, but only one of those will abide by the time
and memory constraints.

With the growing popularity of these prob-
lems, various competitions like ACM-ICPC, and
Google CodeJam have emerged. Additionally,
several companies including Google, Facebook,
and Amazon evaluate problem-solving skills of
candidates for software-related jobs (McDowell,
2016) using PWPs. Consequently, as noted by
Forisek (2010), programming problems have been
becoming more difficult over time. To solve a
PWP, humans get information from all its parts,
not just the the problem statement. Thus, we pre-
dict algorithms from the entire text of a PWP. We
also try to identify which parts of a PWP con-
tribute the most towards predicting algorithms.

Significance of the Problem Many interesting
real-world problems can be solved and optimised
using standard algorithms. Time spent grocery
shopping can be optimised by posing it as a graph
traversal problem (Gertin, 2012). Arranging and
retrieving items like mail, or books in a library
can be done more efficiently using sorting and
searching algorithms. Solving problems using al-
gorithms can be scaled by using computers, trans-
forming the algorithms into programs. A program
is an algorithm that has been customised to solve a
specific task under a specific set of circumstances
using a specific language. Converting textual de-
scriptions of such real-world problems into algo-
rithms, and then into programs has largely been
a human endeavour. An Al agent that could au-
tomatically generate programs from natural lan-
guage problem descriptions could greatly increase
the rate of technological advancement by quickly
providing efficient solutions to the said real-world
problems. A subsystem that could identify algo-
rithm classes from natural language would signif-
icantly narrow down the search space of possible
programs. Consequently, such a subsystem would
be a useful feature for, or likely be even part of,
such an agent. Therefore, building a system to
predict algorithms from programming word prob-
lems is potentially an important first step toward
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an automatic program generating Al. More imme-
diately, such a system could serve as an applica-
tion to help people in improving their algorithmic
problem-solving skills for software job interviews,
competitive programming, and other uses.

As per our knowledge, this task has not been
addressed in the literature before. Hence, there
is no standard dataset available for this task. We
generate and introduce new datasets by extracting
problems from Codeforces!, a sport programming
platform. We release the datasets and our experi-
ment code at 2.

Contribution The major contributions of this
paper are: Four datasets on programming word
problems - two multiclass® datasets having 5 and
10 classes and two multilabel* datasets having 10
and 20 classes. Evaluation of Classifiers on var-
ious multiclass and multilabel classifiers that can
predict classes for programming word problems
on our datasets along with the human baseline.
We define our problem more clearly in section 2.
Then we explain our datasets — their generation
and format along with human evaluation in sec-
tion 3. We describe the models we use for mul-
ticlass and multilabel classification in section 4.
We delineate our experiments, models, and eval-
uation metrics in section 5. We report our clas-
sification results in section 6. We analyse some
dataset nuances in section 7. Finally, we discuss
related work and the conclusion in sections 8 and
9 respectively.

2 Problem Definition

The focus of this paper is the problem of mapping
a PWP to one or more classes of algorithms. A
class of algorithms is a set containing more spe-
cific algorithms. For example, breadth-first search,
and Dijkstra’s algorithm belong to the class of
graph algorithms. A PWP can be solved using one
of the algorithms in the class it is mapped to. Prob-
lems on the Codeforces platform have tags that
correspond to the class of algorithms.

Thus, our aim is to find a tagging function, f* :
S — P(T) which maps a PWP string, s € S, to a
set of tags, {t1,t2,...} € P(T). We also consider
another variant of the problem. For the PWPs that
only have one tag, we focus on finding a tagging

!codeforces.com
Zhttps://github.com/aayn/codeforces-clean
3each problem belongs to only one class
4each problem belongs to one or more classes



Dataset | Size | Vocab | classes | Avg. words | Class percentage

CFMC5 | 550 | 9326 |5 504
greedy: 20%, implementation:20%, data struc-
tures: 20%, dp: 20%, math: 20%

CFEMCI10 | 1159 | 14691 | 10 485

implementation: 34.94%, dp: 12.42%, math:
11.38%, greedy: 10.44%, data structures:
9.49%, brute force: 5.60%, geometry: 4.22%,
constructive algorithms: 5.52%, dfs and simi-
lar: 3.10%, strings: 2.84%

Table 1: Dataset statistics for multiclass datasets. CFMCS5 has 550 problems with a balanced class distribution.
CFMCI10 has 1159 problems and has a class imbalance. CFMCS is a subset of CFMC10. Red classes belong to
the solution category; blue classes belong to the problem category.

Dataset | Size | Vocab | N classes | Avg. len | Label card | Label den | Label subsets
CFMLI10 | 3737 | 28178 | 10 494 1.69 0.169 231
CFML20 | 3960 | 29433 | 20 495 2.1 0.105 808

Table 2: Dataset statistics for multilabel datasets. The problems of the CFML10 dataset are a subset of those in the

CFML20 dataset.

function, f{ : & — T, which maps a PWP string,
s € S,toatag,t € T. We approximate f* and f;
by training models on data.

3 Dataset

3.1 Data Collection

We collected the data from a popular sport pro-
gramming platform called Codeforces. Code-
forces was founded in 2010, and now has over
43000 active registered participants®. We first col-
lected a total of 4300 problems from this platform.
Each problem has associated tags, with most of
the problems having more than one tag. These
tags correspond to the algorithm or class of al-
gorithms that can be used to solve that particular
problem. The tags for a problem are given by the
problem writer and they can only be edited only by
high-rated (expert) contestants who have solved
the problem. Next, we performed basic filtering
on the data — removing the problems which had
non-algorithmic tags, problems with no tags as-
signed to them, and also the problems wherein the
problem statement was not extracted completely.
After this filtering, we got 4019 problems with 35
different tags. This forms the Codeforces dataset.
The label (tag) cardinality (average number of la-
bels/tags per problem) was 2.24. Since the Code-
forces dataset is the first dataset generated for a
new problem, we select different subsets of this

>http://codeforces.com/ratings/page/219
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dataset with differing properties. This is to check
if classification models are robust to different vari-
ations of the problem.

3.2 Multilabel Datasets

We found that a large number of tags had a very
low frequency. Hence, we removed those prob-
lems and tags from the Codeforces dataset as fol-
lows. First, we got the list of 20 most frequently
occurring tags, ordered by decreasing frequency.
We observed that the 20" tag in this list had a fre-
quency of 98, in other words, 98 problems had this
tag. Next, for each problem, we removed the tags
that are not in this list. After that, all problems that
did not have any tags left were removed.

This led to the formation of the Codeforces
Multilabel-20 (CFML20) dataset, which has 20
tags. We used the same procedure for the 10 most
frequently occurring tags to get the Codeforces
Multilabel-10 (CFML10) dataset. The CFML20
has 98.53 (3960 problems) percent of the prob-
lems of the original dataset and the label (tag) car-
dinality only reduces from 2.24 to 2.21. CFML10
on the other hand has 92.9 percent of the problems
with label (tag) cardinality 1.69. Statistics about
both these multilabel datasets are given in Table 2.

3.3 Multiclass Datasets

To generate the multiclass datasets, first, we ex-
tracted the problems from the CFML20 dataset
that only had one tag. There were about 1300



such problems. From those, we selected the prob-
lems whose tags occur in the list of 10 most com-
mon tags. These problems formed the Codeforces
Multiclass-10 (CFMC10) dataset which contains
1159 examples. We found that the CFMCI10
dataset has a class (tag) imbalance. We also
make a balanced dataset, Codeforces Multiclass-5
(CFMCS), in which the prior class (tag) distribu-
tion is uniform. The CFMCS5 dataset has five tags,
each having 110 problems. To make CFMCS5, first
we extracted the problems whose tags are among
the five most common tags. The fifth most com-
mon tag occurs 110 times. We sampled 110 ran-
dom problems corresponding to the other four tags
to give a total of 550 problems. Statistics about
both the multiclass datasets are given in Table 1.

3.4 Dataset Format

Each problem in the datasets follows the same for-
mat (refer to Figure 1 for an example problem).
The header contains the problem title, and the time
and memory constraints for a program running on
the problem testcases. The problem statement is
the natural language description of the problem
framed as a real world scenario. The input and
output format describe the input to, and the out-
put from a valid solution program. It also contains
constraints that will be put on the size of inputs
(for example, max size of input array, max size of
2 input values). The tags associated with the prob-
lem are the algorithm classes that we are trying to
predict using the above information.

3.5 Class Categories in the Dataset

The classes for PWPs can be divided into two cat-
egories: Problem category classes tell us what
kind of broad class of problem the PWP belongs
to. For instance, math, and string are two such
classes. Solution category classes tell us what
kind of algorithm can solve a particular PWP. For
example, a PWP of class dp or binary search
would need a dynamic programming or binary
search based algorithm to solve it.

Problem category PWPs are easier to classify
because, in some cases, simple keyword mapping
may lead to the classification (an equation in the
problem is a strong indicator that a problem is of
math type). Whereas, for solution category PWPs,
a deeper understanding of the problem is required.

The classes belong to problem and solution cat-
egories for CFML20 are mentioned in the supple-
mentary material.
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3.6 Human Evaluation

In this section, we evaluate and analyze the per-
formance of an average competitor on the task of
predicting an algorithm for a PWP. The tags for
a given PWP are added by its problem setter or
other high-rated contestants who have solved it.
Our test participants were recent computer science
graduates with some experience in algorithms and
competitive programming. We gave 5 participants
the problem text along with all the constraints, and
the input and output format. We also provided
them with a list of all the tags and a few exam-
ple problems for each tag. We randomly sample
120 problems from the CFML20 dataset and split
them into two parts — containing 20 and 100 prob-
lems respectively. The 20 problems were given
along with their tags to familiarize the participants
with the task. For the remaining 100 problem:s,
the participants were asked to predict the tags (one
or more) for each problem. We chose to sample
the problems from the CFML20 dataset as it is the
closest to a real-world scenario of predicting algo-
rithms for solving problems. We find that there is
some variation in the accuracy reported by differ-
ent humans with the highest F1 micro score being
11 percent greater than that of the the lowest. (see
supplementary material for more details). The F1
micro score averaged over all 5 participants was
51.8 while the averaged F1 Macro was 42.7. The
results are not surprising since this task is like any
other problem solving task, and people based on
their proficiency would get different results. This
shows us that the problem is hard even for humans
with a computer science education.

4 Classification Models

To test the compatibility of our problem with text
classification paradigm, we apply to it some stan-
dard text classification models from recent litera-
ture.

4.1 Multiclass Classification

To approximate the optimal tagging function f;
(see section 2) we use the following models.
Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SYM) Wang and Man-
ning (2012) proposed several simple and effec-
tive baselines for text classification. An MNB is a
naive Bayes classifier for multinomial models. An
SVM is a discriminative hyperplane-based classi-
fier (Hearst et al., 1998). These baselines use uni-



grams and bigrams as features. We also try apply-
ing TF-IDF to these features.

Multi-layer Perceptron (MLP) An MLP is a
class of artificial neural network that uses back-
propagation for training in a supervised setting
(Rumelhart et al., 1986). MLP-based models are
standard for text classification baselines (Glorot
etal., 2011).

Convolutional Neural Network (CNN) We
also train a Convolutional Neural Network (CNN)
based model, similar to the one used by Kim
(2014) in their paper, to classify the prob-
lems. We use the model both with and without
pre-trained GloVe word-embeddings (Pennington
etal., 2014).

CNN ensemble Hansen and Salamon (1990)
introduce neural network ensemble learning, in
which many neural networks are trained and their
predictions combined. These neural network sys-
tems show greater generalization ability and pre-
dictive power. We train five CNN networks and
combine their predictions using the majority vot-
ing system.

4.2 Multilabel Classifiers

To approximate, f* (see section 2), we apply the
following augmentations to the models described
above.

Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SVM) For applying these
models to the multilabel case, we use the one-vs-
rest (or, one-vs-all) strategy. This strategy involves
training a single classifier for each class, with the
samples of that class as positive samples and all
other samples as negatives (Bishop, 2006).

Multi-layer Perceptron (MLP) Nam et al.
(2014) use MLP-based models for multilabel text
classification. We use similar models, but use the
MSE loss instead of the cross-entropy loss.

Convolutional Neural Network (CNN) For
multilabel classification we use a CNN based fea-
ture extractor similar to the one used in (Kim,
2014). The output is passed through a sigmoid
activation function, o(z) = H% The labels
which have a corresponding activation greater than
0.5 are considered (Liu et al., 2017). Similar to
the multiclass case, we train the model both with
and without pre-trained GloVe (Pennington et al.,
2014) word-embeddings.

CNN ensemble We train five CNNs and add
their output linear activation values. We pass this
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sum through a sigmoid function and consider the
labels (tags) with activation greater than 0.5.

S Experiment setup

All hyperparameter tuning experiments were per-
formed with 10-fold cross validation. For the non-
neural network-based methods, we first vector-
ize each problem using a bag-of-words vectorizer,
scikit-learn’s (Pedregosa et al., 2011) CountVec-
torizer. We also experiment with TF-IDF features
for each problem. In the multiclass case, we use
the LIBSVM (chung Chang and Lin, 2001) im-
plementation of the SVM classifier and we grid
search over different kernels. However, the LIB-
SVM implementation is not compatible with the
one-vs-rest strategy (complexity O(n) where n is
the number of classes), but only the one-vs-one
(complexity O(n?)). This becomes prohibitively
slow and thus, we use the LIBLINEAR (Fan et al.,
2008) implementation for the multilabel case. For
hyperparameter tuning, we applied a grid search
over the parameters of the vectorizers, classifiers,
and other components. The exact parameters
tuned can be seen in our code repository. For the
neural network-based methods, we tokenize each
problem using the spaCy tokenizer (Honnibal and
Montani, 2017). We only use words appearing 2
or more times in building the vocabulary and re-
place the words that appear fewer times with a spe-
cial UNK token. Our CNN network architecture is
similar to that used by Kim (2014). The batch size
used is 32. We apply 512 one-dimensional con-
volution filters of size 3, 4, and 5 on each prob-
lem. The rectifier, R(z) max(z,0), is used
as the activation function. We concatenate these
filters, apply a global max-pooling followed by a
fully-connected layer with output size equal to the
number of classes. We use the PyTorch frame-
work (Paszke et al., 2017) to build this model.
For the word embedding we use two approaches
- a vanilla PyTorch trainable embedding layer and
a 300-dimensional GloVe embedding (Pennington
et al., 2014). The networks were initialized us-
ing the Xavier method (Glorot and Bengio, 2010)
at the beginning of each fold. We use the Adam
optimization algorithm (Kingma and Ba, 2014) as
we observe that it converges faster than vanilla
stochastic gradient descent.



Classifier CFMC5 CFMC10
Acc | FIW | Acc | FIW
CNN Random | 25.0 | 22.1 352 1192
MNB 47.6 | 47.5 | 439 | 374
SVM BoW 49.3 | 49.1 | 479 | 432
SVM TFIDF 478 | 47.6 | 457 | 41.2
MLP 478 | 47.6 | 493 | 46.2
CNN 61.7 | 613 | 54.7 | 51.3
CNN Ensemble | 62.7 | 62.2 | 53.5 | 50.5
CNN GloVe 622 | 613 | 545|514

Table 3: Classification Accuracy for single label classi-
fication. Note that all results were obtained on 10-fold
cross validation. CNN Random refers to a CNN trained
on a random labelling of the dataset. F1 W stands for
weighted macro F1-score.

6 Results

6.1 Multiclass Results

We see that the classification accuracy of the
best performing classifier, CNN ensemble, for the
CFMCS5 dataset is 62.7 %. The highest accu-
racy for the CFMC10 dataset was achieved by the
CNN classifer which does not use any pretrained
embeddings. For all the multiclass classification
results refer to table 3. We observe that CNN-
based classifiers perform better than other classi-
fiers — MLP, MNB, and SVM for both CFMC5
and CFMCI10 datasets. Since these are the first
learning results on the task of algorithm prediction
for PWPs, we train a CNN classifier on a random
labelling of the dataset. The results are given in
the row called CNN random. To obtain this ran-
dom labelling we shuffle the current mapping from
problem to tag randomly. This ensures that the
class distribution of the datasets remain the same.
We see that all the classifiers significantly outper-
form the performance on the random dataset. We
also observe that the classification accuracy is not
the same for every class. We get the highest ac-
curacy (see Fig. 2) for the class, data structures,
at 90%, while, the lowest accuracy is for the class,
greedy, at 40%. These results are on the CFMC5
dataset.

6.2 Multilabel Results

We see that CNN-based classifiers give the best re-
sults for the CFML10 and CFML20 datasets. The
best F1 micro and macro scores for the CFML10
dataset were 45.32, 38.9 respectively. These were
obtained by the CNN Ensemble model. For com-
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plete results see table 4. The best performing
model on the CFML20 dataset was also the CNN
ensemble. As we did in the multiclass case, we
train a CNN model on the randomly shuffled la-
belling for both CFML10, CFML20 datasets. We
find that all the classifers significantly outperform
the model trained on a shuffled labelling. The
human-level F1 micro and macro scores on a sub-
set of the CFML20 dataset were 51.2 and 40.5. In
comparison, our best performing classifier on the
CMFL20 dataset, CNN Ensemble, got F1 macro
and micro scores of 42.75, 37.29 respectively. We
see that the performance of our best classifiers trail
average human performance by about 8.45% and
3.21% on F1 micro and F1 macro scores respec-
tively.

7 Analysis

7.1 Experiments with various subsets of the
problem

As described in section 1, a PWP consists of three
components — the problem statement, input and
output format, and time and memory constraints.
We seek to answer the following questions. Does
one component contribute to the accuracy more
than any other? Does the contribution of different
components vary over the problem class? We per-
formed some experiments to address these ques-
tions. We split the problem into two parts — 1)
the problem statement, and 2) the input and out-
put format, and time and memory constraints. We
train an SVM, and a CNN on these two compo-
nents independently.

Multiclass PWP component analysis We find
classifier accuracies on the CFMCS5 dataset. We
choose the CFMCS5 dataset out of the two multi-
class datasets because it has a balanced class dis-
tribution. We find that the classifiers perform quite
well on only the input and output format, and time
and memory constraints — the best classifier get-
ting an accuracy of 56.4 percent (only 5.3 percent
lower than the accuracy of CNN with the whole
problem). Classification using only the problem
statement gives worse results than using the for-
mat and constraints, with a classification accuracy
of 45.2 percent for the best classifier CNN (16.5
percent lower than the accuracy of a CNN trained
on the whole problem). Complete results are given
in table 5. We also see that the performance across
different classes varies when trained on different
inputs. We find that the class dp performs better



Classifier CFML10 CFML20
hamming loss | F1 micro | F1 macro | hamming loss | F1 micro | F1 macro

CNN Random TWE | 0.2158 15.98 9.39 0.1207 12.07 4.02
MNB BoW 0.1706 30.57 25.73 0.1067 29.67 23.41
SVM BoW 0.1713 36.08 31.09 0.1056 34.93 30.70
SVM BoW + TF-IDF | 0.1723 38.20 33.68 0.1059 38.55 34.70
MLP BoW 0.1879 39.13 34.92 0.1167 38.12 31.37
CNN TWE 0.1671 39.20 32.59 0.1023 38.44 30.38
CNN Ensemble TWE | 0.1703 45.32 38.93 0.1093 42.75 37.29
CNN GloVe 0.1676 39.22 33.77 0.1052 37.56 30.29
Human - - - - 51.8 42.7

Table 4: Classification Accuracy for multi-label classification. TWE stands for trainable word embeddings ini-
tialized with a normal distribution. Note that all results were obtained on 10-fold cross validation. CNN Random
refers to a CNN trained on a random labelling of the dataset.

when trained on the problem statement, whereas
the other classes perform much better on the for-
mat and constraints. For each class except greedy,
we see an additive trend — the accuracy is im-
proved by combining both these features. Refer
to figure 2 for more details.

Multilabel partial problem results We also
tabulate the classifier accuracies on the CFML20
dataset by training it only on the format and con-
straints, and the problem statement. Even here,
we observe similar trends as the multiclass par-
tial problem experiments. We find that classifiers
are more accurate when trained only on the format
and constraints than only on the problem state-
ment. Again, the accuracy is improved by combin-
ing both these features. Refer to table 5 for more
details.

7.2 Problem category and Solution category
results

We find that correctly classifying PWPs of the so-
lution category is harder than correctly classify-
ing PWPs of the problem category (table 5). For
instance, take a look at the row corresponding to
CFMCS5 dataset and all prob” feature. The ac-
curacy for solution category is 54.24% as com-
pared to 71.36% for the problem category. This
trend is followed for both CFMC5 and CFML20
datasets and also when using different features of
the PWPs. In spite of the difficulty, the classifi-
cation scores for the solution category are signifi-
cantly better than random.

8 Related Work

Our work is related to three major topics of re-
search, math word problem solving, text document
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classification and program synthesis.

Math word problem solving In the recent
years, many models have been built to solve dif-
ferent kinds of math word problems. Some mod-
els solve only arithmetic problems (Hosseini et al.,
2014), while others solve algebra word prob-
lems (Kushman et al., 2014). There are some
recent solvers which solve a wide range pre-
university level math word problems (Matsuzaki
et al., 2017), (Hopkins et al., 2017). Wang et al.
(2017), and Mehta et al. (2017) have built deep
neural network based solvers for math word prob-
lems. Program synthesis Work related to the
task of converting natural language description
to code comes under the research areas of pro-
gram synthesis and natural language understand-
ing. This work is still in its nascent stage. Zhong
et al. (2017) worked on generating SQL queries
automatically from natural language descriptions.
Lin et al. (2017) worked on automatically gener-
ating bash commands from natural language de-
scriptions. lyer et al. (2016) worked on summa-
rizing source code. Sudha et al. (2017) use a
CNN based model to classify the algorithm used
in a programming problem using the C++ code.
Our model tries to accomplish this task by using
the natural language problem description. Gul-
wani et al. (2017) is a comprehensive treatise on
program synthesis. Document classification The
problem of classifying a programming word prob-
lem in natural language is similar to the task of
document classification. The state-of-the-art ap-
proach currently for single label classification is to
use a hierarchical attention network based model
(Yang et al., 2016). This model is improved by us-
ing transfer learning (Howard and Ruder, 2018).




. Soln. category Prob. category all
Dataset | Features Classifier N [ FiMa | FIMi | FIMa | FIMi | FI Ma
CFMCS | only statement | cnn 42.73 46.14 51.32 64.35 46.13 45.20
CFMC5 | only i/o cnn 44.24 51.73 74.73 81.31 56.42 55.41
CFMCS5 | all prob cnn 54.24 59.91 71.36 78.32 61.71 61.32
CFML20 | only statement | cnn 30.83 17.32 38.64 41.82 33.59 28.34
CFML20 | only i/o cnn 34.63 19.59 44.49 44.34 38.44 30.38
CFML20 | all prob cnn 34.39 19.23 45.36 44.02 39.20 32.59

Table 5: Performance on different categories of PWPs for different parts of the PWPs. The rows with “only
statement” features use only the problem description part of the PWP, the rows with “only i/0” use only the I/O and
constraint information, and “all prob” use the entire PWP. The results under the ”Soln category”, "Prob category”
columns are for the problems which have the label under problem, solution category respectively. ”All” is for the
entire dataset. So, for example, the F1 Micro score using only I/O and constraint for solution category problems of
CFML20 is 34.63. Note that for CFMCS5, F1 Mi (F1 Micro) is the same as accuracy, and F1 Ma (F1 Macro) score

is a weighted Macro F1-score.
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Figure 2: Confusion matrices for different parts of the problem on CFMCS5. Whole problem text (left), only format
and constraints information (center), and only problem statement (right). Perfomance on the whole problem is the
highest, followed by only format and constraints information. Performance across different classes (except greedy)
is additive, which shows that features extracted from both the parts are of importance

Other approaches include a Recurrent Convolu-  tively. Our classifiers are falling short only by
tional Neural Network based approach (Lai et al.,  about 9 percent of the human score. We also
2015) or the fasttext model (Joulin et al., 2016)  did some experiments which show that increasing
which uses bag-of-words features and a hierarchi-  the size of the train dataset improves the accuracy
cal softmax. Nam et al. (2014) use a feed-forward  (see supplementary material). These problems are
neural network with binary cross entropy per la-  much harder than high school math word problems
bel to perform multilabel document classification.  as they require a good knowledge of various com-
Kurata et al. (2016) leverage label co-occurrence  puter science algorithms and an ability to reduce a
to improve multilabel classification. Liu et al.  problem to these known algorithms. Even our hu-
(2017) use a CNN based architecture to perform  man analysis shows that trained computer science

extreme multilabel classification. graduates only get an F1 of 51.8. Based on these
results, we see that algorithm class prediction is

9 (Conclusion compatible with and can be solved using text clas-
sification.

We introduced a new problem of predicting the al-

gorithm classes for programming word problems.
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ticlass (CFMCS5 and CFMC10), having five and 10 Christopher M. Bishop. 2006. Pattern Recognition and

classes respectively, and two multilabel (CFML10 Machine Learning (Information Science and Statis-
and CFML20), having 10 and 20 classes respec- tics). Springer-Verlag, Berlin, Heidelberg.

91



Chih chung Chang and Chih-Jen Lin. 2001. Libsvm: a
library for support vector machines.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871-1874.

Michal Forisek. 2010. The difficulty of program-
ming contests increases. In International Confer-
ence on Informatics in Secondary Schools-Evolution
and Perspectives, pages 72—85. Springer.

Thomas Gertin. 2012. Maximizing the cost of short-
est paths between facilities through optimal product
category locations. Ph.D. thesis.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS10). Society for Artificial Intelligence and
Statistics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML-11), pages 513-520.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh,
et al. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1—
119.

L. K. Hansen and P. Salamon. 1990. Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993—-1001.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18-28.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin,
Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi.
2017. Beyond sentential semantic parsing: Tack-
ling the math sat with a cascade of tree transducers.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
795-804.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 523-533.

92

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 328-339.

Srinivasan lyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 2073-2083.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 521-526.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 271-281.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267—
2273.

Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin
Vu, Luke Zettlemoyer, and Michael D Ernst. 2017.
Program synthesis from natural language using re-
current neural networks. University of Washington
Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and
Yiming Yang. 2017. Deep learning for extreme
multi-label text classification. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 115-124. ACM.

Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hi-
rokazu Anai, and Noriko H Arai. 2017. Semantic
parsing of pre-university math problems. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 2131-2141.



Gayle Laakmann McDowell. 2016. Cracking the Cod-
ing Interview: 189 Programming Questions and So-
lutions. CareerCup, LLC.

Purvanshi Mehta, Pruthwik Mishra, Vinayak Athavale,
Manish Shrivastava, and Dipti Sharma. 2017. Deep
neural network based system for solving arithmetic
word problems. Proceedings of the IJCNLP 2017,
System Demonstrations, pages 65-68.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencia, Iryna
Gurevych, and Johannes Fiirnkranz. 2014. Large-
scale multi-label text classificationrevisiting neural
networks. In Joint european conference on machine
learning and knowledge discovery in databases,
pages 437-452. Springer.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825-2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning internal representations
by error propagation. In David E. Rumelhart and
James L. Mcclelland, editors, Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, pages 318-362.
MIT Press, Cambridge, MA.

Sudha, A Arun Kumar, M Muthu Nagappan, and
R Suresh. 2017. Classification and recommendation
of competitive programming problems using cnn. In
International Conference on Intelligent Information
Technologies, pages 262-272. Springer.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL 12,
pages 90-94, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845—
854.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.

93

In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017.  Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.



