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Abstract

Extractive summarization selects and concate-
nates the most essential text spans in a docu-
ment. Most, if not all, neural approaches use
sentences as the elementary unit to select con-
tent for summarization. However, semantic
segments containing supplementary informa-
tion or descriptive details are often nonessen-
tial in the generated summaries. In this work,
we propose to exploit discourse-level segmen-
tation as a finer-grained means to more pre-
cisely pinpoint the core content in a document.
We investigate how the sub-sentential segmen-
tation improves extractive summarization per-
formance when content selection is modeled
through two basic neural network architec-
tures and a deep bi-directional transformer.
Experiment results on the CNN/Daily Mail
dataset show that discourse-level segmenta-
tion is effective in both cases. In particular,
we achieve state-of-the-art performance when
discourse-level segmentation is combined with
our adapted contextual representation model.

1 Introduction

Document summarization is a core task in natu-
ral language processing, targeting to automatically
generate a shorter version of one or multiple docu-
ments while retaining the most important informa-
tion. As a straightforward and effective method,
extractive summarization creates a summary by
selecting and subsequently concatenating the most
salient semantic units in a document; much effort
has been devoted to this area. While traditional
approaches rely heavily on human-engineered fea-
tures, which is time-consuming and difficult to
expand to massive data, neural networks can be
trained in an end-to-end manner with fewer lin-
guistic annotation, achieving favorable improve-
ments on large-scale benchmarks (Hermann et al.,
2015; Cheng and Lapata, 2016; Zhou et al., 2018).

However, the selected content in current neu-
ral approaches is often not succinct enough. As

Figure 1: An example of news summarization. Colored
spans are salient segments selected to form a summary,
and their corresponding sentences are underlined.

shown in Figure 1, human editors tend to fur-
ther distill the selected sentences by removing
nonessential phrases or clauses to compose more
concise summaries. While the extracted sentences
often contain the main points of the document,
such sentences are usually embellished with more
clauses or segments of background knowledge to
give the readers more context, descriptive details
to paint a more colorful picture, supplementary in-
formation to make the content more comprehen-
sive, or subtle nuances to give a more polished
touch. Therefore, sentence-level extraction might
dilute the density of the key information in the
summary.

To tackle this problem, we postulate that con-
tent selection can benefit from finer-grained text
segmentation. Inspired by the rhetorical structure
theory (RST) (Mann and Thompson, 1988), we
propose to split documents to sub-sentential seg-
ments following its discourse structure, as RST
provides a coherent and well-organized represen-
tation of documents and suggests discourse-level
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segmentation can help model semantic informa-
tion with more refined granularity. This can help
us more precisely pinpoint the key information
when we subsequently use neural models to se-
lect content for summarization. We empirically
compare two different selector architectures: a
multi-layer recurrent neural network (RNN) and
a Transformer network, as they each have their
own model assumptions and knowledge represen-
tations (Liu et al., 2019), and we further fine-
tune a contextualized language model based on the
deep bi-directional Transformer. Our experiments
on the CNN/Daily Mail dataset demonstrate that
discourse-level segmentation is effective, achiev-
ing state-of-the-art performance when combined
with an adapted large-scale pre-trained model of
contextualized language representation.

2 In Relation to Other Work

Content selection plays a key role for both ex-
tractive and abstractive paradigms of text summa-
rization (Nallapati et al., 2017; Zhou et al., 2018;
Gehrmann et al., 2018; Hsu et al., 2018). While
traditional approaches utilize human-engineered
linguistic features (Jones, 2007; Shen et al., 2007),
neural network approaches learn the features in a
data-driven manner, with components such as se-
mantic vector representation of words (Pennington
et al., 2014), contextual representation with vari-
ous neural structures (Schuster and Paliwal, 1997;
Kalchbrenner et al., 2014), attention mechanism
and hierarchical document modeling (Cheng and
Lapata, 2016). Despite the achievement of so-
phisticated neural extractive models (Kedzie et al.,
2018), sentences are the default elementary se-
mantic unit, potentially leading to low density of
key information in the summary. Thus, we target
to introduce a finer-grained segmentation scheme.

Discourse structure has proved effective for an-
alyzing and extracting important spans in a docu-
ment (Louis et al., 2010; Hirao et al., 2015). Uti-
lizing the elementary unit segmentation for extrac-
tive summarization has been studied via traditional
feature-based approaches (Li et al., 2016). How-
ever, to the best of our knowledge, it has not been
adopted in the recent neural approaches for sum-
marization. While discourse analysis contains unit
segmentation, nucleus-satellite recognition and re-
lation classification (Carlson et al., 2001), segmen-
tation has the highest accuracy (Joty et al., 2013;
Heilman and Sagae, 2015), thus making it a more

Figure 2: Examples of discourse-level segmentation.
a) spans in blue and yellow are the EDUs with seman-
tically fragmented information and spans in red are the
inaccurate EDU splits; b) the sub-sentential segments
after merging.

mature pre-processing task to be integrated with
downstream tasks such as summarization.

3 Discourse-Level Segmentation

For discourse-level segmentation for content se-
lection, our target is to split a document into sub-
sentential segments that preserve congruently se-
mantic information.

In the RST discourse framework, a document is
split into elementary discourse units (EDUs) that
are contiguous token spans similar to independent
clauses, and re-organized in a binary tree struc-
ture. EDU pairs are assigned to specific discourse
relations like elaboration, condition, and contrast,
ensuring the semantic coherence and integrity of
the entire structure. Therefore, we followed the
conventions annotated in the RST Discourse Tree-
bank1 (Carlson et al., 2001), which contains dis-
course tree annotations for 385 WSJ articles from
the Penn Treebank corpus (Marcus et al., 1993).
We trained a fast and robust model2 (Heilman and
Sagae, 2015) on the treebank, obtaining over 0.84
accuracy on its validation set. Next, we applied
the model to segment the documents, and here
we firstly conducted sentence splitting as it im-
proved the accuracy of subsequent EDU segmen-
tation. Then, we specified [edu seg] tags between
two EDUs and [sen seg] tags between two sen-
tences.

1https://catalog.ldc.upenn.edu/LDC2002T07
2https://github.com/EducationalTestingService/discourse-

parsing
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Figure 3: Content selector designs: a) RNN architecture; b) BERT architecture.

As shown in Figure 2a, some EDUs are too se-
mantically fragmented to form an informative seg-
ment. In addition, there are inevitable errors in
the segmentations, which is not unexpected due to
the limited size of the training corpus. In order to
balance the segment length and informativeness in
addition to mitigating the side-effects from inac-
curate EDU segmentation, we therefore defined a
set of criteria such as word length, the existence
of verbs, and symmetry of quotation marks, to
merge short EDUs into longer sub-sentential seg-
ments, which are typically at the clause-level. A
discourse segment is on average 14 tokens after
merging compared to average 7.5 tokens before
merging (see Figure 2b).

4 Neural Content Selection

Given a document d containing a number of text
spans [span1, span2, ..., spann], the content se-
lector assigns a score yi ∈ [0, 1] to each span i,
indicating its probability of being included in the
summary. We implemented and compared three
neural architectures, which we elaborate below.

4.1 RNN Selector

Recurrent neural network, with its capability of se-
quential information modeling, is widely applied
in extractive summarization.

Here we introduce a multi-layer RNN architec-
ture as the selector, which is simple but competi-
tive as in (Kedzie et al., 2018). As shown in Fig-
ure 3a, the input is a sequence of discourse-level
segment embeddings, which is calculated by aver-
aging word embeddings. The sentence boundary
tags [sen seg] are converted to a randomly ini-
tialized embedding vector. In the modeling layer,
a multi-layer Bi-directional LSTM (Schuster and
Paliwal, 1997) is used, in which the forward and
backward hidden states are concatenated. Then
the hidden representation is fed to a linear layer

with a sigmoid function, to predict the probability
of extracting each segment.

In our setting, word embeddings were initial-
ized with pre-trained 300-dimension GloVe (Pen-
nington et al., 2014) and fixed during training. Vo-
cabulary size was set to 200k. Out-of-vocabulary
words were mapped to a zero embedding. For the
modeling layer, it was empirically shown that a
two-layer Bi-LSTM worked best. Adam optimizer
with 3e−4 learning rate was used (Kingma and
Ba, 2015). Drop-out with rate = 0.2 was applied
in the modeling and classification layers (Srivas-
tava et al., 2014).

4.2 Transformer Selector
The Transformer (Vaswani et al., 2017) is another
effective and efficient neural architecture for lan-
guage modeling. To compare it with the recurrent
encoding scheme, we changed the modeling layer
of the design in Section 4.1, by replacing the Bi-
directional LSTM with a multi-head attention en-
coding component. In our setting, we empirically
set the layer number of Transformer encoder to 3,
and the self-attention head number to 5. The hid-
den and feed-forward dimension size were set to
400 and 1024 respectively. To better utilize the se-
quential information, we pre-calculated the posi-
tion embedding with 100 dimension size and con-
catenated it with the segment embedding as input.
The other hyperparameters of training were set as
the same as the RNN selector.

4.3 BERT Selector
Deep contextual representation models with the
sophisticated architecture for capturing complex
features and unsupervised pre-training on large-
scale corpora (e.g. ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2018)), have boosted the per-
formance of various NLP tasks. It has been shown
that the pre-trained models have implicitly learned
linguistic properties such as syntax (Hewitt and
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Model ROUGE-1 F1 ROUGE-2 F1
Lead-3 40.43 17.64
SummaRuNNer* 39.60 16.20
NeuSUM* 41.59 19.01
S-Level Oracle 53.29 32.14
S-Level Bi-LSTM 38.86 17.31
S-Level Transformer 38.57 17.26
S-Level BERT 41.02 19.39
D-Level Oracle 57.74 35.16
D-Level Bi-LSTM 40.36 18.42
D-Level Transformer 40.03 17.83
D-Level BERT 42.78 20.23

Table 1: Experimental results of baselines, oracles and
models on Sentence-Level (S-Level) and Discourse-
Level (D-Level) segmentation. * denotes results from
the papers.

Manning, 2019) and semantic dependency (Con-
neau et al., 2018).

Since BERT is originally trained as a contextu-
alized language representation model, we adapted
and fine-tuned it for discourse-level content se-
lection, as illustrated in Figure 3b. While BERT
can be applied to encode sequences separately or
jointly, the latter works better for document tasks
(Qiao et al., 2019). Therefore, we decided to take
the adapted embedding list as our document in-
put. For each segment, we inserted a [CLS] token
before and a [SEP] token after it, then converted
it to token embeddings with word-piece tokeniza-
tion (Wu et al., 2016). To distinguish multiple seg-
ments, we assigned 0/1 to adjacent segment pairs
respectively as interval label. Combined with po-
sition embedding, the document input was fed to
BERT for contextualized encoding. After that, we
collected all the hidden states of [CLS] tokens in
the last layer of BERT, which captured the contex-
tual information of segments, then fed them to a
linear layer with sigmoid function to get the pre-
dicted salient scores.

In our setting, we used the PyTorch version of
‘bert-base-uncased’ BERT3, and fine-tuned all the
layers during training. We truncated the lengthy
documents to the size of 512 due to the limita-
tion of position index and the significant increase
of computational cost by the sliding-window strat-
egy. Adam algorithm (Kingma and Ba, 2015)
with warm-up learning was used for optimization.
Drop-out rate was set to 0.2 was applied after the
modeling layer (Srivastava et al., 2014).

For all models, we obtained the normalized pre-
dicted score yi of each segment i. The loss is cal-
culated as the binary cross entropy of yi against

3https://github.com/huggingface/pytorch-transformers

Figure 4: Examples of generated summaries. Colored
spans contain key information from the gold reference.

ground-truth ŷi. Each epoch constitutes a full pass
through the data with shuffling. During training,
the best models were selected with early stopping
strategy on the validation set.

5 Experiment & Results

Experiments were conducted on the CNN/Daily
Mail dataset (Hermann et al., 2015). We applied
discourse-level segmentation in Section 3 on the
training, validation, and test set. Since there is no
oracle extractive summary set for generating gold
labels ŷi , we constructed them with a greedy algo-
rithm similar to (Kedzie et al., 2018), and obtained
the discourse-level oracle summaries by concate-
nating segments with gold label indices.

Having gotten the prediction outputs, we se-
lected 4 discourse-level segments with the highest
scores for each document sample, and then eval-
uated the candidates against reference summaries
with the F1 scores of ROUGE-1 and ROUGE-2
(Lin, 2004). We compared our method with sev-
eral strong extractive baselines: SummaRuNNer
(Nallapati et al., 2017), NeuSUM (Zhou et al.,
2018), and Lead-3, a simple but competitive base-
line, which takes the first 3 sentences of the doc-
ument as a summary. Moreover, as control, we
split documents into sentences, built a sentence-
level oracle set, and trained the selector models in
which the most 3 salient sentences were selected.

Results are listed in Table 1, all models with
discourse-level segmentation outperform those
with sentence-level segmentation, demonstrating
the effectiveness of our finer-grained means. Even
the vanilla multi-layer Bi-LSTM is competitive
when compared to the previous state-of-the-art
models, and it slightly outperformed the Trans-
former architecture. Moreover, the fine-tuned
BERT model achieves further improvement, sug-
gesting its contextual modeling which is implicitly
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conducted at the sentence-level can be transferred
to sub-sentential levels. Additionally, we ob-
served that merging initial EDUs in Section 3 sig-
nificantly contributed to obtaining better perfor-
mance, suggesting that preserving semantic con-
gruence is crucial in sub-sentential segmentation.

An example from our results demonstrates that
discourse-level extractive summarization retains
most of the key information in the reference, and
it is more concise than the sentence-level counter-
part (see Figure 4). It is able to trim the trivial de-
tails that are nonessential to the core meaning of
the source text, achieving 19% decrease of the av-
erage word length when compared to the sentence-
level baseline (from 71 tokens to 57 tokens).

6 Conclusion

In this paper, we proposed using sub-sentential
segmentation for single-document extractive sum-
marization. We exploited a discourse-level seg-
mentation scheme and verified its effectiveness
by obtaining improvements over sentence-level
schemes. We adapted and fine-tuned a deep con-
textual model for our task and achieved state-of-
the-art performance. Incorporating discourse tree
structures implicitly or explicitly in the neural net-
work approaches for summarization is an area of
interest for future work.
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