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Abstract

We present a simple, rule-based method for
extracting entity networks from the abstracts
of scientific literature. By taking advantage
of selected syntactic features of constituent
parsing trees, our method automatically ex-
tracts and constructs graphs in which nodes
represent text-based entities (in this case, noun
phrases) and their relationships (in this case,
verb phrases or preposition phrases). We use
two benchmark datasets for evaluation and
compare with previously presented results for
these data . Our evaluation results show that
the proposed method leads to accuracy rates
that are comparable to or exceed the results
achieved with state-of-the-art, learning-based
methods in several cases.

1 Introduction

As a public and formal record of original contribu-
tions to knowledge, scientific literature is a critical
resource that promotes the progress of science and
technology in society. To help researchers to com-
prehend the large and growing amount of scien-
tific literature, automated methods can be used to
extract and organize information from corpora of
publications, e.g., in terms of scientific key con-
cepts and their relationships. Leveraging prior
work that has achieved high accuracy for entity
recognition (Lample et al., 2016; Habibi et al.,
2017), in this paper, we focus on identifying ex-
tracting relationships between entities.

Overall, prior studies consider the task of rela-
tion extraction from two perspectives: 1) identi-
fying if a relationship exists between a given pair
of identified entities (Gábor et al., 2018), which
is also the goal with this paper, and 2) further la-
beling or classifying the identified relationships
(Luan et al., 2018a; Mintz et al., 2009).

Prior work has used different methods for re-
lation extraction. Rule-based algorithms primar-
ily rely on lexical patterns, such as word co-
occurrences (Jenssen et al., 2001) and depen-
dency templates (Fundel et al., 2006; Kilicoglu
and Bergler, 2009; Romano et al., 2006). Su-
pervised learning-based methods mainly use ei-
ther feature engineering (Kambhatla, 2004; Chan
and Roth, 2011) or kernel functions (Culotta and
Sorensen, 2004; Zelenko et al., 2003; Bunescu
and Mooney, 2005). Using supervised learning
to detect the existence (and type) of relationships
between concepts in scholarly publications may
further require domain expertise for annotation.
Accounting for the fact that humans tend to use
their background knowledge to identify relations,
Chan and Roth (2010) showed that using external
knowledge, such as Wikipedia, improves the accu-
racy of relation extraction. Recently, deep learn-
ing models have also been used for supervised
learning (Luan et al., 2018a, 2019). For example,
Luan et al. (2019) developed a dynamic span graph
framework based on sentence-level BiLSTM for
multi-task information extraction. Since data an-
notation by humans is expensive, semi-supervised
learning methods, such as the snowball system
(Agichtein and Gravano, 2000), as well as un-
supervised learning, such as clustering methods
(Daelemans and Van den Bosch, 2005; Davidov
and Rappoport, 2008), have also been explored in
prior studies. Though remarkable contributions
have been made, one remaining limitation with
prior machine-learning based work is that these
approaches may involve time and related costs for
parameter optimization and labeling. Moreover,
data-driven training methods may be limited by
the domain specificity of learned models. Finally,
algorithms trained on deep learning models lack
interpretability.

To address the above-mentioned limitations, we
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Figure 1: An illustrative example of building a constituency-based concept network (CTN) for a sentence.

propose a rule-based concept network construc-
tion method. In the resulting networks, nodes
represent annotated entities per document, and
edges are constructed based on constituency pars-
ing. Our approach is motivated by the observation
that scientific literature typically use formal lan-
guage with clear syntactic structure and compar-
atively fixed word order (e.g., term phrases). In-
spired by prior work that defines a relationship as
either an interaction or an association between two
entities (Jurafsky, 2000), we take advantage of the
structured information provided by constituency
parse trees built for each sentence. More specif-
ically, We capture two types of tuples: 1) (noun
phrase, verb-based connection, noun phrase), and
2) (noun phrase, preposition-based connection,
noun phrase). To avoid over-fitting on the given
domain, our rules are generated on the basis of a
context-free grammar.

We evaluate our method against two benchmark
datasets that have been previously labeled for en-
tities and relations. Our experimental results show
that the proposed constituency-based concept net-
works achieve comparable accuracy to or can even
outperform state-of-the-art, learning-based meth-
ods for identifying entity networks. We find that
relationships of the type used-for and part-of are
better captured by our approach than other types
of relationships. Finally, we describe differences
between domain-level concept networks.

2 Method

The construction of constituency-based concept
network (CTN) has three stages: 1) data pre-
prossessing, 2) the identification of nodes (we
used entities given in annotated data), and of edges
based on a constituency parsing tree, and 3) map-

ping entities from the constituency parsing tree to
labeled entities. Figure 1 provides an illustrative
example of the process of building a CTN for a
sentence.

Data Pre-processing In this stage, we focus on
two aspects. First, we segment each document
into a set of sentences that are the input to con-
stituency parsing. Since scientific texts may have
some long sentences with complex sentence struc-
tures, we further segment sentences by using regu-
lar expressions. Second, we identify the annotated
entities per sentence by extracting the labeled en-
tity id and corresponding entity phrase, as well as
the entities’ index in the sentence.

Node and Edge Identification To generate a
parsing tree for each sentence, we use the Al-
lenNLP constituency parsing (Joshi et al., 2018)
As shown in Figure 1, we extract noun phrases
at the lowest layer (i.e., children are noun-based
end-nodes) as candidates of CTN nodes. We made
this decision to capture unique and specific (to the
sub-field of science) noun phrases from scientific
literature. For linking nodes, we capture keywords
that occur between two adjacent node candidates
in the parse tree. According to the parse tree struc-
ture, these keywords usually occur in two types
of positions: 1) the sibling of a CTN node candi-
date, and 2) the uncle or the ancestor’s sibling of a
potential CTN node. Based on node candidates
and connecting keywords, we generate an edge
if two node candidates are linked by a connect-
ing keyword. One specific issue in this process is
the of-phrase: according to our empirical observa-
tion, we believe that of-phrases (e.g., “computa-
tional model of discourse”) often represent a sin-
gle concept. Based on this assumption, we merge
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SCIERC SemEval18

#entities 8089 7482
#relations 4716 1595
#relations/doc 9.4 3.2
cross-sentence relations yes no

Table 1: Data statistics.

edge candidates connected by the keyword “of” as
a single CTN node, and remove the original edges.

Entity Mapping We remove nodes that had
been identified by the constituency parsing tree
process described above, but are not labeled as en-
tities in the ground truth data. As shown in Fig-
ure 1, the final output of CTN is a set of nodes
with ids, and edges.

3 Experiments

3.1 Experimental Setup
Data We perform experiments on two publicly
available datasets where humans annotated scien-
tific entities and relations from abstracts of scien-
tific publication. Table 1 provides a brief sum-
mary of both datasets. SemEval18 Dataset has
500 abstracts prepared by Gábor et al. (2018) for
the shared task 7 (subtask 2) of SemEval 2018. All
abstracts in this dataset are from published papers
in the field of computational linguistics. The an-
notated relations are divided into six types of se-
mantic relationships between scientific concepts.
The SCIERC Dataset was provided by Luan et al.
(2018a). This dataset has 500 scientific abstracts
from 12 AI conference/workshop proceedings that
cover five research areas: 1) artificial intelligence
(AI), 2) natural language processing (NLP), 3)
speech, 4) machine learning (ML), and 5) com-
puter vision (CV).

Baselines For the SemEval data, we compared
the results from our network construction method
(CTN) with the official baseline, which was gen-
erated by using a memory-based k-nearest neigh-
bor (k-nn) search (Gábor et al., 2018). The top
three reported submissions in the SemEval leader-
board were: UWNLP (Luan et al., 2018b), ETH-
DS3Labl (Rotsztejn et al., 2018), and SIRIUS-
LTG-UiO (Nooralahzadeh et al., 2018). For
SCIERC, we compared our method with two state-
of-the-art (SOTA) systems: SciIE (Luan et al.,
2018a) and DyGIE (Luan et al., 2019). The origi-
nal outputs from SciIE and DyGIE also identified

Dev Test

P R F1 P R F1

SciIE 62.0 47.7 53.9 66.4 46.7 54.9
DyGIE 55.0 48.6 51.6 63.3 52.2 57.2

CTN (ours) 73.4 47.3 57.5 75.4 46.5 57.5

Table 2: Comparison with previous methods for rela-
tion extraction on SCIERC dataset.

and categorized the type and direction of relations,
and the boundary of entities. Since we do not iden-
tify these elements, we also do not consider them
for comparison.

3.2 Results
Extraction Performance Table 2 and Table 3
compare our concept network CTN with baselines
for SCIERC and SemEval18, respectively. Com-
pared to SOTA on SCIERC, our approach outper-
formed the best previously reported results on both
the development and testing data. Specifically,
CTN achieved a noticeable improvement in preci-
sion (we achieved∼74%) compared to prior meth-
ods, which benefits our F1 value. Further com-
paring each method’s performance on the devel-
opment data versus testing data, we observe that
our rule-based CTN produces more stable or con-
sistent results than the considered, prior, learning-
based methods.

For SemEval18, we find that CTN outper-
formed the baseline by ∼15% (our F1 score was
41.6%), and the third best reported prior result, but
could not come close to the top two prior results.
From the presented results, we conclude that our
rule-based concept network approach can serve as
a strong baseline method for identifying related
entity pairs in scientific texts.

Ablation Study In order to explore the isolated
contribution of each rule considered for adding
edges in the CTN, we conduct an ablation analysis

P R F1

UWNLP - - 50.0
ETH-DS3Lab - - 48.8
SIRIUS-LTG-UiO - - 37.4
SemEval Baseline - - 26.8

CTN (ours) 33.6 54.8 41.6

Table 3: Comparison with previous methods for rela-
tion extraction on SemEval18 dataset.



189

Dev Test

P R F1 P R F1

CTN (ours) 73.4 47.3 57.5 75.4 46.5 57.5

− long sentence segmentation 73.4 47.3 57.5 75.4 46.5 57.5
− of-phrase (merge+remove) 75.1 44.4 55.8 76.0 43.8 55.6
− of-phrase (merge) 74.6 40.7 52.6 76.6 41.3 53.6
− entity id positioning 64.0 31.2 42.0 72.9 32.6 45.1
− all above 64.1 29.0 39.9 73.1 31.0 43.5

Table 4: Ablation study of isolated contribution of each
rule.

SCIERC SemEval18

TP% Total TP% Total

USED-FOR 57.22% 533 PART WHOLE 69.51% 82
PART-OF 50.79% 63 USAGE 59.77% 174
FEATURE-OF 49.15% 59 RESULT 50.00% 16
EVALUATE-FOR 43.96% 91 COMPARE 36.83% 19
HYPONYM-OF 40.30% 67 MODEL-FEATURE 34.25% 73
COMPARE 36.84% 38 TOPIC 0.00% 3
CONJUNCTION 4.88% 123 - - -

Table 5: Accuracy (TP = true positives) per relationship
type on testing data.

by removing each rule from the network construc-
tion process and measuring the overlap between
predicted connections and the ground truth. Ta-
ble 4 shows the results. We observe that the rule
for mapping entity ids for a potentially connected
entity pair has the highest isolated impact. By fur-
ther looking into the ground truth data, we find that
an entity phrase can be labeled by multiple differ-
ent ids, e.g., when the related phrase repeatedly
appears in a document. Therefore, without a map-
ping step, CTN would be prone to considering and
linking such entities as different nodes. Coming
back to of-phrases, we find that not considering
edges between the preposition “of” (i.e., (node 1,
“of”, node 2)) leads to a decrease in recall, which
further indicates our initial recommendation that

of phrases should be merged to represent a single
(scientific) concept.

Relation Type Sensitivity Table 5 shows the
ability of CTN to identify each type of relation-
ship that is labeled in the ground truth data. CTN
does not actually predict relationship type, we
only retroactively compute the accuracy rate per
link type. We observe that usage (used-for) and
part whole (part-of) are identified with the highest
accuracy. Note that these two categories are also
the most frequently occurring ones in the ground
truth data. On the other hand, we find that rela-
tionship type of conjunction and topic association
result in the lowest accuracy. This might be be-
cause we do not consider conjunction words as
keywords that indicate relationships. To under-
stand the comparatively low performance for topic
relationships, we further looked into the context of
the actual entity pairs. Doing so, we found that all
three instance of this link type were expressed by
an of-phrase, where we consider the whole phrase
as a single concept. For example, in the expression
“qualitative analysis of results”, the entity “quali-
tative analysis” is annotated with a topic relation-
ship with the entity “results”.

Network Analysis To understand the character-
istics of the network data that were constructed
with the proposed method in more depth, we fur-
ther built a corpus-level CTN for all texts per do-
main in the SCIERC testing data. Figure 3 shows
two illustrative examples of the networks for the
CV and ML domain, respectively. The node
name represents the extracted entity phrases, node
size represents the weighted degree centrality, and
node colors denote membership in components.

Figure 2: CTN of abstracts from the CV domain. Figure 3: CTN of abstracts from the ML domain.
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We find that the most central (in terms of degree)
nodes from the CV corpus mainly represent gen-
eral scientific concepts, such as “method”, “algo-
rithm” and “approach”, while in the ML corpus,
key nodes represent domain-specific terms such as
“robust PCA” and “side information”. Compara-
tively, the size of the CTN from the CV domain is
larger than that from the ML domain, which might
be due to different numbers of abstracts in each
domain.

4 Conclusions

In this paper, we have proposed and evaluated
a rule-based network construction method that
leverages constituency parsing to extract rela-
tions between entities in scientific texts. Our
method does not require machine learning or do-
main knowledge. Experiments on two bench-
mark datasets show that the proposed CTN
achieve comparable performance with state-of-
the-art learning-based methods in multiple cases.
Even though our method could not outperform
the two best performing systems built for one of
the considered datasets, our results suggest that
the demonstrated approach can work as a base-
line method for relation extraction. In addition,
we find that entities with a relationship of used-
for and part-of are more likely to be connected
in our network. Based on the corpus-level CTN,
we further saw that key nodes in the networks
based on the CV corpus are mainly general scien-
tific terms, while for the abstracts from the ML do-
main, key nodes represent domain-specific terms.
To improve the construction of CTN in the future,
we plan to consider cross-sentence link formation
and link label detection. Finally, the rules used to
build CTN can further support the development of
learning-based algorithms for relation extraction.
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