
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 177–185
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

177

DBee: A Database for Creating and Managing Knowledge Graphs and
Embeddings

Viktor Schlegel, André Freitas
Department of Computer Science

University of Manchester
{viktor.schlegel,andre.freitas}@manchester.ac.uk

Abstract

This paper describes DBee, a database to
support the construction of data-intensive AI
applications. DBee provides a unique data
model which operates jointly over large-scale
knowledge graphs (KGs) and embedding vec-
tor spaces (VSs). This model supports queries
which exploit the semantic properties of both
types of representations (KGs and VSs). Addi-
tionally, DBee aims to facilitate the construc-
tion of KGs and VSs, by providing a library of
generators, which can be used to create, inte-
grate and transform data into KGs and VSs.

1 Introduction

Many AI tasks can be summarised into the cy-
cle of collecting data, overlaying a representation
(schema) on the top of the data and performing
learning and inference algorithms, which will even-
tually produce new data or extend the representa-
tion. While in many cases learning and inference
are put at the centre of the stage, managing the data
and the supporting representations are fundamental
parts of the design and delivery of an AI system.

Currently, the prevalence of workflow architec-
tures for many types of AI systems reflects the
emphasis on learning and inference, where data
management becomes a secondary concern. How-
ever, complex AI tasks such as Question Answer-
ing (QA) (Kumar et al., 2016), Text Entailment
(Hashimoto et al., 2016) or Natural Language Infer-
ence are either directly dependent on or can benefit
from the construction of supporting Knowledge
Bases.

Recently, latent and explicit semantic represen-
tations are emerging as fundamental elements for
supporting those tasks, due to their dependency
on commonsense and domain specific knowledge.
Moreover, the recent rise of successful approaches
operating at the neuro-symbolic representation
level (Parisotto et al., 2016; Liang et al., 2016),
demands for a closer dialogue between explicit and

latent models. Word embeddings (Mikolov et al.,
2013) and Knowledge Graphs (lexico-semantic
graphs) (Bollacker et al., 2008) are becoming the
de-facto representation models within different AI
tasks. Moreover, they have complementary proper-
ties, where word embeddings provide more coarse-
grained semantics which are complemented by the
fine-grained semantics of KGs being commonly
used in coordination (Silva et al., 2018; Xie et al.,
2017).

This paper describes DBee, a database for cre-
ating, querying and consuming embeddings and
knowledge graphs. DBee aims to be a database
designed for satisfying recurring demands from AI
applications. DBee provides a seamless layer to
jointly query knowledge graphs and embeddings,
simultaneously exploiting the semantic properties
of both resources, taking into account performance
and scalability aspects. At the centre of the pro-
posed database is the goal of bridging the gap be-
tween data, representation, learning and inference
algorithms, where classifiers and extractors directly
interface with the schema. By design, DBee pro-
vides a declarative layer for data and representation
management in AI systems. Finally, DBee also sup-
ports the combination of different models and rep-
resentations (cross-model and cross-representation
queries) and their customisation.

In the following sections of the paper we mo-
tivate our approach with an initial scenario, dis-
cuss background and and related work, describe
the proposed framework, present the implemented
system by instantiating it for archetypal use cases
and conclude with a discussion outlining the ex-
pected performance, hardware requirements and
current limitations of the system.

2 Motivational Scenario

An AI application engineer wants to build a QA sys-
tem to support investors in NASDAQ companies.
Most of the data relevant for this task such as finan-

178

Figure 1: Architecture and Workflow overview: the overall architecture (blue) supports the implementation of the
motivational scenario (green).

cial reports, blog articles and recent news only exist
in the form of unstructured text. The engineer also
anticipates the benefits of integrating structured
Knowledge Graphs such as DBpedia (Auer et al.,
2007), integrating KGs to the textual data sources.
Realizing the importance of his application to be
able to generate traceable and explainable answers,
he decides to use an explicit internal representa-
tion, such as the graph-based RDF-NL (Cetto et al.,
2018). With the associated chain of classifiers and
extractors available at DBee, he performs open-
information extraction (OIE), Coreference Reso-
lution (CR), Entity Linking (EL) and Rhetorical
Structure Classification (RSC) to obtain the graph
from a chosen set of documents. After the extrac-
tion, the graph is indexed to ensure efficiency for
different types of queries over the graph represen-
tation. In order to support semantic approximation
during the queries, he associates two pre-trained
word embedding models to the KG using the DBee
API and uses the provided set of query primitives to
query the knowledge graph. Deciding to use triples
from the KG as features for a neural stock predictor
model, he uses the DBee API to create input and
answer sets (for a set of pre-defined queries) ready
to be consumed by the automatic differentiation
framework of his choice.

3 Background & Related Work

Current machine learning systems such as Keras
(Chollet et al., 2015), and PyTorch (Paszke et al.,
2017) focus mostly on exposing their user to the
definition of neural architectures, abstracting away
the computation details of automatic differentia-
tion - or trying to learn even those (Jin et al., 2018)
- with TensorFlow (Abadi et al., 2016) being the
most complete suite providing assistance from data
streaming, over training to model serving. Our
approach can be seen as complementary to these
efforts since we aim to provide the infrastructure to
extract, represent and query structured and unstruc-
tured data (with an emphasis on KGs from text and
associated embeddings).

Early efforts in a similar direction include (Sales
et al., 2018), that present a uniform service-based
API for storing, querying and comparing word em-
beddings, pre-computed with varying models and
on different datasets. Another information manage-
ment tool for unstructured data is Apache UIMA
1.

Contemporary machine comprehension systems
based on neural architectures have targeted evalu-
ation settings which have limited document scale
(e.g. SQUAD (Rajpurkar et al., 2016)).

Different works explored the connection be-

1http://uima.apache.org

http://uima.apache.org

179

tween distributional semantics and structured
Knowledge Graph representations in the context
of semantic parsing over large-scale RDF graphs
(Freitas and Curry, 2014; Freitas, 2015; Sales et al.,
2016) and approximative abductive reasoning over
commonsense KBs (Freitas et al., 2014, 2013).
Comparatively, DBee focuses on explicit seman-
tic representation models (Knowledge Graphs) ex-
tracted from text.

4 Proposed Framework

To satisfy the emerging need to work with unstruc-
tured text representations, as depicted in the intro-
ductory part of this work, we propose a framework
that supports the extraction and management of
both explicit and latent text representation models
and facilitates the integration with downstream ma-
chine learning based models. DBee was designed
to deliver the following features:

1. Bridging the gap between unstructured
data and semantic representations: Con-
forming data into latent and explicit text repre-
sentations is a primary requirement for many
AI applications. DBee allows users to cre-
ate, reuse and compose a library of text ex-
tractors and classifiers which will be used to
structure and integrate existing unstructured
data. The library includes standard represen-
tation generators such as syntactic and lexical
parsers, open information extractors, named
entity recognisers and linkers and discourse-
level extractors.

2. Multi-representation model: DBee sup-
ports users in experimenting with different
types of explicit and latent semantic represen-
tations and models. Different tasks will re-
quire different types of representation. Users
should be able to query across multiple repre-
sentations.

3. Expressive structured queries and ML in-
tegration: To give its users fine-grained con-
trol over the data and to overlay their own
machine learning algorithms, DBee features
an intuitive query language and seamless inte-
gration with existing machine learning algo-
rithms.

4. Extensibility: Representation schemas and
their supporting generators are extensible and
customisable.

5. Scalability: Operating over large-scale data
sources, large knowledge graphs and em-
beddings require principled query processing
strategies. DBee inherits indexing strategies
from databases and kNN embedding queries
in order to support scaling to large datasets,
memory footprints and storage space require-
ments.

Figure 2: Initial data model

5 The DBee Model

5.1 Data Model

DBee operates over two types of representation:
knowledge graphs and word embeddings.

The underlying knowledge graph data model
uses RDF-NL, an extension of the RDF (Lassila
and Swick, 1999) data model suitable to represent
text as a lexico-semantic Knowledge Graph. RDF-
NL is built upon a sentence representation model
proposed by (Niklaus et al., 2017, 2019, 2018)
which splits complex sentences into simpler linked
clausal and phrasal elements, later splitting these
elements into predicate-argument structures.

The graph data model (Figure 2 (a)) is defined by
a subject-predicate-object (SPO) triple which can
have contextual relations (C) as reifications or can
be linked to other SPO triples. Contextual links can
be named. This data model supports the creation
of versatile sparse graph representations. For ex-
ample, the data model smoothly captures linguistic
predicate-argument structures and phrasal (e.g. ap-
positive), clausal (coordination and subordination),
rhetorical and argumentation relations. Figure 3
shows an example of a concrete knowledge graph
extracted from a sentence.

All SPO nodes are defined by their lexical real-
isation (typically a text chunk) and can be linked
to a canonical identifier in the entity component
of the data model (Figure 2 (b)), which allows an

180

Figure 3: Example generator chain output of the sentence “Asian stocks fell anew and the yen rose to session
highs in the afternoon as worries about North Korea simmered, after a senior Pyongyang official said the U.S. is
becoming ”more vicious and more aggressive” under President Donald Trump .”

entity-centric data integration, such as it is per-
formed by co-reference resolution, entity linking
or word-vector clustering.

The data model is materialised into different
types of supporting indexes in order to enable ef-
ficient and scalable query processing. There are
two main types of indexes associated with the data
model:

• Embedding Indexing (EI): Supports
the efficient querying of embedding spaces (k-
NN similarity queries). By default it uses the
random projections of the locality-sensitive
hashing method proposed by (Charikar,
2002).

• Knowledge Graph Lexical
Indexing (T I): Supports information-
retrieval style keyword search queries over
the KG structure using inverted indexes and
associated weighting schemes (by default,
TF-IDF is used).

5.2 Operations

At the centre of the DBee data model is the ability
to build, transform and combine KGs and Vector
Spaces/Embeddings (VSs).

Different KGs and VSs can be combined us-
ing a view allowing support of querying specific
compositions. Projections (~π) are operators which
build VSs (embeddings) from KGs and unstruc-
tured datasets.

On the top of the views, query operators are de-
fined. View, projections and queries can be chained
together. If called in the middle of a function chain,

these functions serve the purpose of a join in a
sense similar to relational databases. This means
views and projections later in the operation chain
will only operate on the subset of results satisfying
the query defined in the chain so far. This behaviour
is visualized in Figure 5.

The domain-specific query language (DSL) asso-
ciated with DBee includes the following functions:

• query(term, n): This operation re-
trieves up to n best matching candidates from
the view/projection it is being executed upon
with respect to its type. For a projection, for
example, it retrieves n nearest neighbours re-
garding their embeddings, after embedding
the query term using the projection space’s
corresponding embedding function.

• filter(attribute=value | bgp
| conditional statement): This
operation filters are selection operators
(σ) for predicates defined as the function’s
parameters. They can be defined as an
attribute=value form or with the help of basic
graph patterns).

• rank(wrt): This function can be used to
rank a set of results with respect to a given
term by their distance to it in the correspond-
ing vector space.

• top(n), count(): Aggregation operators
will retrieve the top results in up to a given
limit or count them up, respectively. Provided
a name, the result set will consist of attributes
of this name.

181

• create view(name): Creates a new view
with a given name from the current result set.

• create projection(name, using,
features): Similarly, creates a new
projection using a given embedding function
by extracting the features from every result
in the set. Features might be defined simply
by providing a list of attribute names to use
or any callable operation to extract custom
features.

5.3 Representation Generators (g) & Chains
(c)

Representation elements have associated genera-
tors g, which are classifiers, extractors and linkers
which operate over Data, KGs or VSs.

The generators are stored into libraries, typed ac-
cording to their representation function and tagged
with the model metadata (such as training corpus
and evaluation score, architecture and hyperparam-
eter configuration). Generators can be composed
using generator chains. For example, generating
a KG from textual data would typically employ
the chain: gCR ◦ gEL ◦ gOIERDF−NL. As with the
generators, chains can be named and persisted into
libraries.

Generators can also be associated with vector
representations, e.g. gV SW2V . The set of pre-defined
generators currently present at DBee are described
in Table 1.

Figure 1 summarises the main primitives of the
system depicting a schematic high-level compo-
nents diagram of DBee.

Concretely, we propose a pipeline with the fol-
lowing steps: First, using contextualised open in-
formation extraction (Cetto et al., 2018), structured
information is extracted from the unstructured text,
in the form of a set of inter-linked subject-predicate-
object triples, thus yielding a graph. With coref-
erence resolution, the graph is further enriched se-
mantically, linking nodes that refer to the same

Table 1: Library of pre-defined Generators

Symbol Description
gCR Coreference Resolution generator
gELX Entity Linker to the resource X

gNER Named Entity Recognizer
gOIE Open Information Extractor
gπ provider of an embedding function

pi

entity in the text. In a final entity linking step,
recognised entities are connected to existing re-
sources, contextualising them further regarding ex-
isting background knowledge.

The extracted knowledge graph is then serialised
and indexed, while still retaining its logical graph
representation. In particular, we use full-text search
capable databases and nearest neighbour indices
to enable querying and approximation of stored
data using string-based as well as embedding-based
methods.

The API layer features a chainable IDSL to allow
intuitive interaction with the data. Concretely it
is designed to support expressive recurring query
patterns while reducing impedance mismatch.

6 Usage

6.1 Implementation

DBee was conceptualised and implemented as an
extensible Python library. We use the HOCON2

format to enable for easy generator chain defini-
tion and persistence. We provide a pre-defined
chain featuring the contextualised open informa-
tion extraction tool Graphene (Cetto et al., 2018),
the Stanford CoreNLP coreference resolution sys-
tem (Manning et al., 2014) and the entity linker
Spotlight (Mendes et al., 2011) that links recog-
nised entities to DBpedia resources. Furthermore,
we use ElasticSearch3 as the full-text search engine
and Annoy4 to index the embeddings for the kNN
queries.

Note, that following the design goals of exten-
sibility and scalability, the software is not con-
strained to use those specific tools. Even the choice
of generators and storage types is not fixed, as it re-
quires low effort to add a new generator or storage
type, such as a relational database to perform joins
more efficiently, for instance.

6.2 DBee in Code

Listed below are example instantiations illustrat-
ing the usage of the framework exercised on four
exemplar use cases.

6.2.1 Extraction
Code 1 shows the boilerplate code required to in-
stantiate DBee. From a list of Wikipedia article
titles one can query the Wikipedia API and apply

2https://github.com/chimpler/pyhocon
3https://www.elastic.co
4https://github.com/spotify/annoy

https://github.com/chimpler/pyhocon
https://www.elastic.co
https://github.com/spotify/annoy

182

Figure 4: Example output of a DBee fact query.

TFin KGFinRDF−NL(1)

(2) (2)

(3)

(4)
library

V SGN
w2v

library

V SWSJ
ELMo

TGN TWSJ

πRDF -NL→w2v πRDF -NL→ELMo πRDF -NL→tf -idf

V SFin
w2v V SFin

ELMo

DF⊂Fin
R EI

Fin
ELMo EI

Fin
w2v TI

Fin
tf -idf

qdistsim qapprox qFTS

./ qσ

cRDF -NL = gCR ◦ gEL ◦ gOIE

πELMo→R

Figure 5: Conceptual overview of the code snippets. From unstructured text, using a chain of generators (1) a
knowledge graph is extracted and stored (2) in different indices, which are later queried jointly by the correspond-
ing query types they offer (3) or used to create a data set (4) to train a neural network.

the selected generator chain. The snippet further

main = DBee()
docs = main.get_pipeline("extended").
assemble().
load("wikipedia-nasdaq-100.txt")

{
'()': semantic.OIEGenerator
coref_provider: {
class: graphene.FromRESTProvider
server_address = localhost

}
}

Code Snippet 1: Extraction Example

highlights the definition of a generator as one step
of the chain, using HOCON syntax, with semantics
similar python’s logging module configuration.

6.2.2 Index Creation
From the KG extracted in the previous step, the
storage indices can be populated. The DSL-
level user does not necessarily need to know

kb('nasdaq-100').
using(docs.get_iterator('fact')).
create_view('fact')

kb('nasdaq-100').
view('spo').
create_projection('po',
pi=IndraEmbedder,
features=['predicate', 'object'])

Code Snippet 2: Example of data Storage

the actual name of the data view (’fact’ in
this case) but can obtain it by querying the
class of the corresponding generator type (i.e.
OIEGenerator.provides). Similarly, addi-
tional indices can be constructed and stored from
the representation generated by an already defined
chain or indices - as shown in the example, by util-
ising one of the pre-trained embedding generators
provided by DBee.

183

6.2.3 Querying
Code 3 shows the query equivalent to the natural
language query Which companies have offices in
China?. The query describes the process of filter-
ing the list of initial entities to retain only those of
the type ”company”, switch the data view to facts
(performing a join implicitly), further filtering out
facts, and finally projecting the remaining entities
into the previously created vector space and rank-
ing them by distance to the computed projection
of a given term. An implicit join back to the tex-
tual view is made to retrieve the subjects of the
re-ordered remaining facts.

kb('nasdaq-100')
view('entity').
filter(type='dbo:Company').
view('fact').
filter(label=Spatial, context='China').
view('spo').projection('po').
rank(wrt="have offices").
get('subject')

Code Snippet 3: DSL Querying example

Note that the query uses already
resolved filter predicates for brevity,
one could likewise use the operation
view(’types’).query(’companies’)
to query for the concrete type URI using the
expression obtained from the text - given the view
was constructed beforehand.

6.2.4 ML Integration

kb('nasdaq-100')
view('fact').
as_classification_dataset(
features=bow(["spo", "context.spo"])
labels=onehot("context.label")

)

Code Snippet 4: Dataset Creation Example

Finally, the example in Code 4 shows the cre-
ation of a toy dataset for link type prediction be-
tween two interlinked facts. The user-defined de-
fined bow and onehot functions serve as feature
extractors.

7 Discussion

7.1 Analysis of TFin

While this is not meant to be a thorough empirical
analysis, the following section gives insights into

100 101 102 103 104 105 106
20

25

210

215

220

225

of facts

In
de

x
si

ze
(k

b)

Annoy
Elastic

Figure 6: Index sizes for Annoy and ElasticSearch in-
dices for varying number of facts

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

of facts

In
de

xi
ng

tim
e

(s
)

Annoy
Elastic

Figure 7: Indexing times for Annoy and ElasticSearch
indices

the performance of the system regarding time and
space requirements.

All of the following measurements were carried
out on a notebook featuring an SSD, a dual-core
i5-6200U CPU performing at 2.3GHz and 16 GB
of RAM.

We provide the vector space indexing times and
sizes for a varying number of indexed vectors,
averaged over ten runs. In particular, we index
10n, n ∈ 0..6 embedding vectors using our vec-
tor space storage implementation based on Annoy.
The dimension of the embeddings is 300. For full-

184

text search indices, we performed the same proce-
dure. We populated ElasticSearch indices with
10n, n ∈ 0..6 facts, denormalised according to
the data model, using a single local node. Fig-
ures 6 and 7 shows the result, revealing that index-
ing times and index sizes scale linearly with the
size of the dataset. Axes within the plots are at
logarithmic scale.

The creation of a small dataset from 100
Wikipedia articles yielded 2292 recognised entities,
22633 distinct subject-predicate-object structures
and 39456 contextual links. The total required
storage space was 8.159 MB for the denormalised
textual data stored in ElasticSearch and 148.37 MB
for the stored 300 dimensional word2vec em-
beddings. Running all steps in sequence - from
obtaining the documents up to storing them in co-
responding indices - took approximately 3.5 hours.

It is worth noting that the open information step
takes up most of the processing time. However,
since by design the extraction process does not
require to explore any dependencies between dif-
ferent documents, a speedup factor of up to n can
be assumed for n parallel instantiations of the ex-
traction pipeline.

7.2 Current Limitations & Future Work
In its current version, the software does not support
data insertion or updates due to an implementation
detail of choosing the annoy implementation for
nearest neighbour approximation, in favour of its
speed. There are, however, recent approaches for
nearest neighbour estimation that support dynamic
index updates (Li and Malik, 2017).

Furthermore, the current approach requires dif-
ferent tools to store different data representation
types such as views and projections. One future
direction is to investigate how to build low-level
vector space index support into existing DBMS.

Finally, a rigorous analysis regarding scalabil-
ity, complexity, performance and usability will be
carried out in the future.

7.3 Conclusion
In this paper, we formalised an approach to create
and manage knowledge graphs and embeddings
and to query them jointly and introduced DBee, a
system implementing this approach. We hope to
provide the community with a tool that facilitates
the management, storage and querying of latent
and explicit text representation facilitating its inte-
gration to downstreal ML/AI applications.

Acknowledgements

The authors would like to express their gratitude
towards members of the AI Systems lab at the Uni-
versity of Manchester for many fruitful discussions.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: a system for large-scale ma-
chine learning.. In OSDI, Vol. 16. 265–283.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web. Springer, 722–735.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data. AcM, 1247–1250.

Matthias Cetto, Christina Niklaus, André Freitas,
and Siegfried Handschuh. 2018. Graphene:
Semantically-Linked Propositions in Open Informa-
tion Extraction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics.
Association for Computational Linguistics, 2300–
2311.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory
of computing. ACM, 380–388.

François Chollet et al. 2015. Keras. (2015).

André Freitas. 2015. Schema-agnositc queries over
large-schema databases: a distributional semantics
approach. Ph.D. Dissertation. Digital Enterprise Re-
search Institute (DERI), National University of Ire-
land, Galway.

André Freitas and Edward Curry. 2014. Natural
language queries over heterogeneous linked data
graphs: a distributional-compositional semantics ap-
proach. In 19th International Conference on Intelli-
gent User Interfaces, IUI 2014, Haifa, Israel, Febru-
ary 24-27, 2014. 279–288.

André Freitas, João Carlos Pereira da Silva, Edward
Curry, and Paul Buitelaar. 2014. A Distributional Se-
mantics Approach for Selective Reasoning on Com-
monsense Graph Knowledge Bases. In Natural Lan-
guage Processing and Information Systems - 19th
International Conference on Applications of Natu-
ral Language to Information Systems, NLDB 2014,
Montpellier, France, June 18-20, 2014. Proceedings.
21–32.

185

Andre Freitas, Joao C. P. da Silva, Sean ORiain, and
Edward Curry. 2013. Distributional Relational Net-
works. In AAAI 2013 Fall Symposium on Semantics
for Big Data.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple NLP
tasks. arXiv preprint arXiv:1611.01587 (2016).

Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Effi-
cient Neural Architecture Search with Network Mor-
phism. arXiv preprint arXiv:1806.10282 (2018).

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural
language processing. In International Conference on
Machine Learning. 1378–1387.

Ora Lassila and Ralph R Swick. 1999. Resource de-
scription framework (RDF) model and syntax speci-
fication. (1999).

Ke Li and Jitendra Malik. 2017. Fast k-nearest neigh-
bour search via prioritized dci. arXiv preprint
arXiv:1703.00440 (2017).

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2016. Neural symbolic machines:
Learning semantic parsers on freebase with weak su-
pervision. arXiv preprint arXiv:1611.00020 (2016).

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations. 55–60.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. DBpedia spotlight: shedding
light on the web of documents. In Proceedings of the
7th international conference on semantic systems.
ACM, 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in neural information processing
systems. 3111–3119.

Christina Niklaus, Bernhard Bermeitinger, Siegfried
Handschuh, and Andr Freitas. 2017. A Sentence
Simplification System for Improving Relation Ex-
traction. (2017). arXiv:cs.CL/1703.09013

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2018. A Survey on Open
Information Extraction. In Proceedings of the 27th
International Conference on Computational Lin-
guistics. Association for Computational Linguistics,
Santa Fe, New Mexico, USA, 3866–3878.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2019. Transforming Complex
Sentences into a Semantic Hierarchy. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Com-
putational Linguistics, Florence, Italy, 3415–3427.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2016. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855 (2016).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
(2017).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

Juliano Efson Sales, Andre Freitas, Brian Davis, and
Siegfried Handschuh. 2016. A Compositional-
Distributional Semantic Model for Searching Com-
plex Entity Categories. In Proceedings of the Fifth
Joint Conference on Lexical and Computational Se-
mantics. Association for Computational Linguistics,
Berlin, Germany, 199–208.

Juliano Efson Sales, Leonardo Souza, Siamak Barze-
gar, Brian Davis, André Freitas, and Siegfried
Handschuh. 2018. Indra: A Word Embedding
and Semantic Relatedness Server. In Proceedings
of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018). Eu-
ropean Language Resources Association (ELRA),
Miyazaki, Japan.

Vivian Dos Santos Silva, Siegfried Handschuh, and
André Freitas. 2018. Recognizing and Justifying
Text Entailment Through Distributional Navigation
on Definition Graphs.. In AAAI.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. arXiv preprint
arXiv:1704.05908 (2017).

