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Abstract

The TextGraphs-13 Shared Task on Explana-
tion Regeneration (Jansen and Ustalov, 2019)
asked participants to develop methods to re-
construct gold explanations for elementary sci-
ence questions. Red Dragon AI’s entries used
the language of the questions and explanation
text directly, rather than a constructing a sep-
arate graph-like representation. Our leader-
board submission placed us 3rd in the compe-
tition, but we present here three methods of in-
creasing sophistication, each of which scored
successively higher on the test set after the
competition close.

1 Introduction

The Explanation Regeneration shared task asked
participants to develop methods to reconstruct
gold explanations for elementary science ques-
tions (Clark et al., 2018), using a new corpus
of gold explanations (Jansen et al., 2018) that
provides supervision and instrumentation for this
multi-hop inference task.

Each explanation is represented as an “explana-
tion graph”, a set of atomic facts (between 1 and
16 per explanation, drawn from a knowledge base
of 5,000 facts) that, together, form a detailed ex-
planation for the reasoning required to answer and
explain the resoning behind a question.

Linking these facts to achieve strong perfor-
mance at rebuilding the gold explanation graphs
requires methods to perform multi-hop inference -
which has been shown to be far harder than infer-
ence of smaller numbers of hops (Jansen, 2018),
particularly for the case here, where there is con-
siderable uncertainty (at a lexical level) of how
individual explanations logically link somewhat
‘fuzzy’ graph nodes.

Data Python Scala Python Leaderboard
split Baseline Baseline Baseline1e9 Submission

Train 0.0810 0.2214 0.4216

Dev 0.0544 0.2890 0.2140 0.4358

Test 0.4017

Table 1: Base MAP scoring - where the Python
Baseline1e9 is the same as the original Python Baseline,
but with the evaluate.py code updated to assume
missing explanations have rank of 109

1.1 Dataset Review

The WorldTree corpus (Jansen et al., 2018) is a
new dataset is a comprehensive collection of ele-
mentary science exam questions and explanations.
Each explanation sentence is a fact that is related
to science or common sense, and is represented
in a structured table that can be converted to free-
text. For each question, the gold explanations have
lexical overlap (i.e. having common words), and
are denoted as having a specific explanation role
such as CENTRAL (core concepts); GROUNDING
(linking core facts to the question); and LEXICAL
GLUE (linking facts which may not have lexical
overlap).

1.2 Problem Review

As described in the introduction, the general task
being posed is one of multi-hop inference, where
a number of ‘atomic fact’ sentences must be com-
bined to form a coherent chain of reasoning to
solve the elementary science problem being posed.

These explanatory facts must be retrieved from
a semi-structured knowledge base - in which the
surface form of the explanation is represented as a
series of terms gathered by their functional role in
the explanation.

For instance, for the explanation “Grass snakes
live in grass” is encoded as “[Grass snakes] [live
in] [grass]”, and this explanation is found in a
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PROTO-HABITATS table. However, in the same
table there are also more elaborate explanations,
for example : “Mice live in in holes in the ground
in fields / in forests.” is expressed as : “[mice]
[live in] [in holes in the ground] [in fields OR in
forests]”. And more logically complex : “Most
predators live in/near the same environment as
their prey.” being expressed as : “[most] [preda-
tors] [live in OR live near] [the same environment
as their prey]”.

So, whereas the simpler explanations fit in the
usual Knowledge-Base triples paradigm, the more
complex ones are much more nuanced about what
actually constitutes a node, and how reliable the
arcs are between them. Indeed, there is also a col-
lection of if/then explanations, including ex-
amples such as : “[if] [something] [has a] [posi-
tive impact on] [something else] [then] [increas-
ing] [the] [amount of] [that something] [has a]
[positive impact on] [that something else]” - where
the explanation has meta-effect on the graph itself,
and includes ‘unbound variables’. 1

2 Preliminary Steps

In this work, we used the pure textual form of each
explanation, problem and correct answer, rather
than using the semi-structured form given in the
column-oriented files provided in the dataset. For
each of these we performed Penn-Treebank to-
kenisation, followed by lemmatisation using the
lemmatisation files provided with the dataset, and
then stop-word removal.2

Concerned by the low performance of the
Python Baseline method (compared to the Scala
Baseline, which seemed to operate using an al-
gorithm of similar ‘strength’), we identified an
issue in the organizer’s evaluation script where
predicted explanations that were missing any of
the gold explanations were assigned a MAP score
of zero. This dramatically penalised the Python
Baseline, since it was restricted to only returning
10 lines of explanation. It also effectively forces
all submissions to include a ranking over all ex-
planations - a simple fix (with the Python Baseline
rescored in Table 1) will be submitted via GitHub.
This should also make the upload/scoring process
faster, since only the top ∼1000 explanation lines
meaningfully contribute to the rank scoring.

1The PROTO-IF-THEN explanation table should have
been annotated with a big red warning sign

2PTB tokenisation and stopwords from the NLTK pack-
age)

3 Model Architectures

Although more classic graph methods were ini-
tially attempted, along the lines of Kwon et al.
(2018), where the challenge of semantic drift in
multi-hop inference was analysed and the effec-
tiveness of information extraction methods was
demonstrated, the following 3 methods (which
now easily surpass the score of our competition
submission) were ultimately pursued due to their
simplicity/effectiveness.

Data Optimised Iterated BERT

split TF-IDF TF-IDF Re-ranking

Train 0.4525 0.4827 0.6677

Dev 0.4581 0.4966 0.5089

Test 0.4274 0.4576 0.4771

Time 0.02 46.97 92.96

Table 2: MAP scoring of new methods. The timings
are in seconds for the whole dev-set, and the BERT
Re-ranking figure includes the initial Iterated TF-IDF
step.

3.1 Optimized TF-IDF

As mentioned above, the original TF-IDF imple-
mentation of the provided Python baseline script
did not predict a full ranking, and was penalized
by the evaluation script. When this issue was
remedied, its MAP score rose to 0.2140.

However, there are three main steps that signif-
icantly improve the performance of this baseline:

1. The original question text included all the an-
swer choices, only one of which was correct
(while the others are distractors). Removing
the distractors resulted in improvement;

2. The TF-IDF algorithm is very sensitive to
keywords. Using the provided lemmatisation
set and NLTK for tokenisation helped to align
the different forms of the same keyword and
reduce the vocabulary size needed;

3. Stopword removal gave us approximately
0.04 MAP improvement throughout - remov-
ing noise in the texts that was evidently ‘dis-
tracting’ for TF-IDF.

As shown in Table 2, these optimisation steps
increased the Python Baseline score significantly,
without introducing algorithmic complexity.
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3.2 Iterated TF-IDF

While graph methods have shown to be effective
for multi-hop question answering, the schema in
the textgraphs dataset is unconventional (as illus-
trated earlier). To counter this, the previous TF-
IDF method was extended to simulate jumps be-
tween explanations, inspired by graph methods,
but without forming any actual graphs:

1. TF-IDF vectors are pre-computed for all
questions and explanation candidates;

2. For each question, the closest explanation
candidate by cosine proximity is selected,
and their TF-IDF vectors are aggregated by
a max operation;

3. The next closest (unused) explanation is se-
lected, and this process was then applied it-
eratively up to maxlen=128 times3, with
the current TF-IDF comparison vector pro-
gressively increasing in expressiveness. At
each iteration, the current TF-IDF vector was
down-scaled by an exponential factor of the
length of the current explanation set, as this
was found to increase development set results
by up to +0.0344.

By treating the TF-IDF vector as a representa-
tion of the current chain of reasoning, each succes-
sive iteration builds on the representation to accu-
mulate a sequence of explanations.

The algorithm outlined above was additionally
enhanced by adding a weighting factor to each
successive explanation as it is added to the cumu-
lative TF-IDF vector. Without this factor, the ef-
fectiveness was lower because the TF-IDF repre-
sentation itself was prone to semantic drift away
from the original question. Hence, each succes-
sive explanation’s weight was down-scaled, and
this was shown to work well.4

3.3 BERT Re-ranking

Large pretrained language models have been
proven effective on a wide range of downstream
tasks, including multi-hop question answering,
such as in Liu et al. (2019) on the RACE dataset,

3 This maxlen value was chosen to minimise computa-
tion time, noting that explanation ranks below approximately
100 have negligible impact on the final score.

4Full, replicable code is available on GitHub for all
3 methods described here, at https://github.com/
mdda/worldtree_corpus/tree/textgraphs

and Xu et al. (2019) which showed that large fine-
tuned language models can be beneficial for com-
plex question answering domains (especially in a
data-constrained context).

Inspired by this, we decided to adapt BERT
(Devlin et al., 2018) - a popular language model
that has produced competitive results on a variety
of NLP tasks - for the explanation generation task.

For our ‘BERT Re-ranking’ method, we attach a
regression head to a BERT Language Model. This
regression head is then trained to predict a rele-
vance score for each pair of question and explana-
tion candidate. The approach is as follows :

1. Calculate a TF-IDF relevance score for every
tokenised explanation against the tokenised
‘[Problem] [CorrectAnswer] [Gold explana-
tions]’ in the training set. This will rate the
true explanation sentences very highly, but
also provide a ‘soft tail’ of rankings across
all explanations;

2. Use this relevance score as the prediction
target of the BERT regression head, where
BERT makes its predictions from the original
‘[Problem] [CorrectAnswer]’ text combined
with each potential Explanation text in turn
(over the training set);

3. At prediction time, the explanations are
ranked according to their relevance to ‘[Prob-
lem] [CorrectAnswer]’ as predicted by the
BERT model’s output.

We cast the problem as a regression task (rather
than a classification task), since treating it as a task
to classify which explanations are relevant would
result in an imbalanced dataset because the gold
explanation sentences only comprise a small pro-
portion of the total set. By using soft targets (given
to us by the TF-IDF score against the gold answers
in the training set), even explanations which are
not designated as “gold” but have some relevance
to the gold paragraph can provide learning signal
for the model.

Due to constraints in compute and time, the
model is only used to rerank the topn = 64 pre-
dictions made by the TF-IDF methods.

The BERT model selected was of “Base” size
with 110M parameters, which had been pretrained
on BooksCorpus and English Wikipedia. We
did not further finetune it on texts similar to the
TextGraphs dataset prior to regression training. In

https://github.com/mdda/worldtree_corpus/tree/textgraphs
https://github.com/mdda/worldtree_corpus/tree/textgraphs
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Figure 1: Mean MAP score against gold explanation
lengths

other tests, we found that the “Large” size model
did not help improve the final MAP score.

4 Discussion

The authors’ initial attempts at tackling the Shared
Task focussed on graph-based methods. However,
as identified in (Jansen, 2018), the uncertainty in-
volved with interpreting each lexical representa-
tion, combined with the number of hops required,
meant that this line of enquiry was put to one side5.

While the graph-like approach is clearly attrac-
tive from a reasoning point of view (and will be the
focus of future work), we found that using purely
the textual aspects of the explanation database
bore fruit more readily. Also. the complexity of
the resulting systems could be minimised such that
the description of each system could be as consise
as possible.

Specifically, we were able to optimise the TF-
IDF baseline to such an extent that our ‘Opti-
mised TF-IDF’ would now place 2nd in the sub-
mission rankings, even though it used no special
techniques at all.6

The Iterated TF-IDF method, while more algo-
rithmically complex, also does not need any train-
ing on the data before it is used. This shows how
effective traditional text processing methods can
be, when used strategically.

The BERT Re-ranking method, in contrast, does
require training, and also applies one of the more
sophisticated Language Models available to ex-
tract more meaning from the explanation texts.

Figure 1 illustrates how there is a clear trend to-

5Having only achieved 0.3946 on the test set
6Indeed, our Optimized TF-IDF, scoring 0.4581 on the

dev set, and 0.4274 on the test set, could be considered a new
baseline for this corpus, given its simplicity.

Explanation Optimised Iterated BERT

role TF-IDF TF-IDF Re-ranking

GROUNDING 0.1373 0.1401 0.0880

LEX-GLUE 0.0655 0.0733 0.0830

CENTRAL 0.4597 0.5033 0.5579

BACKGROUND 0.0302 0.0285 0.0349

NEG 0.0026 0.0025 0.0022

ROLE 0.0401 0.0391 0.0439

Table 3: Contribution of Explanation Roles - Dev-Set
MAP per role (computed by filtering explanations of
other roles out of the gold explanation list then com-
puting the MAP as per normal)

wards being able to build longer explanations as
our semantic relevance methods become more so-
phisticated.

There are also clear trends across the data in Ta-
ble 3 that show that the more sophisticated meth-
ods are able to bring more CENTRAL explanations
into the mix, even though they are more ‘textually
distant’ from the original Question and Answer
statements. Surprisingly, this is at the expense of
some of the GROUNDING statements.

Since these methods seem to focus on different
aspects of solving the ranking problem, we have
also explored averaging the ranks they assign to
the explanations (essentially ensembling their de-
cisions). Empirically, this improves performance7

at the expense of making the model more obscure.

4.1 Further Work

Despite our apparent success with less sophis-
ticated methods, it seems clear that more ex-
plicit graph-based methods appears will be re-
quired to tackle the tougher questions in this
dataset (for instance those that require logical de-
ductions, as illustrated earlier, or hypothetical sit-
uations such as some ‘predictor-prey equilibrium’
problems). Even some simple statements (such as
‘Most predators ...’) present obstacles to existing
Knowledge-Base representations.

In terms of concrete next steps, we are ex-
ploring the idea of creating intermediate forms of
representation, where textual explanations can be
linked using a graph to plan out the logical steps.
However these grander schemes suffer from being

7The combination of ‘Iterated TF-IDF’ and ‘BERT Re-
ranking’ scoring 0.5195 on the dev set, up from their scores
of 0.4966 and 0.5089 respectively
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incrementally less effective than finding additional
‘smart tricks’ for existing methods!

In preparation, we have begun to explore doing
more careful preprocessing, notably :

1. Exploiting the structure of the explanation
tables individually, since some columns are
known to be relationship-types that would be
suitable for labelling arcs between nodes in a
typical Knowledge Graph setting;

2. Expanding out the conjunction elements
within the explanation tables. For instance
in explanations like “[coral] [lives in the]
[ocean OR warm water]”, the different sub-
explanations “(Coral, LIVES-IN, Ocean)”
and “(Coral, LIVES-IN, WarmWater)” can
be generated, which are far closer to a ‘graph-
able’ representation;

3. Better lemmatisation : For instance ‘ice cube’
covers both ‘ice’ and ‘ice cube’ nodes. We
need some more ‘common sense’ to cover
these cases.

Clearly, it is early days for this kind of multi-
hop inference over textual explanations. At this
point, we have only scratched the surface of the
problem, and look forward to helping to advance
the state-of-the-art in the future.
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