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Abstract

Recent advances in reading comprehension
have resulted in models that surpass human
performance when the answer is contained in
a single, continuous passage of text. However,
complex Question Answering (QA) typically
requires multi-hop reasoning – i.e. the integra-
tion of supporting facts from different sources,
to infer the correct answer.

This paper proposes Document Graph Net-
work (DGN), a message passing architecture
for the identification of supporting facts over a
graph-structured representation of text.

The evaluation on HotpotQA shows that DGN
obtains competitive results when compared to
a reading comprehension baseline operating
on raw text, confirming the relevance of struc-
tured representations for supporting multi-hop
reasoning.

1 Introduction

Question Answering (QA) is the task of inferring
the answer for a natural language question in a
given knowledge source. Acknowledged as a suit-
able task for benchmarking natural language un-
derstanding, QA is gradually evolving from mere
retrieval task to a well-established tool for testing
complex forms of reasoning. Recent advances in
deep learning have sparked interest in a specific
type of QA emphasising Machine Comprehension
(MC) aspects, where background knowledge is en-
tirely expressed in form of unstructured text.

State-of-the-art techniques for MC typically re-
trieve the answer from a continuous passage of
text by adopting a combination of character and
word-level models with various forms of attention
mechanisms (Seo et al., 2016; Yu et al., 2018). By
employing unsupervised pre-training on large cor-
pora (Devlin et al., 2018), these models are capa-
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Document A: Erik Watts

Erik Watts (born December 19, 1967) is an American semi-retired professional wrestler. He is
best known for his appearances with World Championship Wrestling and the World Wrestling
Federation in the 1990s. He is the son of WWE Hall of Famer Bill Watts.

Document B: Bill Watts

William F. Watts Jr. (born May 5, 1939) is an American former professional wrestler, promoter,
and WWE Hall of Fame Inductee (2009).Watts was famous under his "Cowboy" gimmick in his
wrestling career, and then as a tough, no-nonsense promoter in the Mid-South United States,
which grew to become the Universal Wrestling Federation (UWF).
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Figure 1: Is structure important for complex, multi-
hop Question Answering (QA) over unstructured text
passages? To answer this question we explore the task
of identifying supporting facts (rounded rectangles) by
transforming a corpus of documents (1) into an undi-
rected graph (2) connecting sentence nodes (rectan-
gles) and document nodes (hexagons).

ble of outperforming humans in reading compre-
hension tasks where the context is represented by
a single paragraph (Rajpurkar et al., 2018).

However, when it comes to answering complex
questions on large document collections, it is un-
likely that a single passage can provide sufficient
evidence to support the answer. Complex QA typ-
ically requires multi-hop reasoning, i.e. the abil-
ity of combining multiple information fragments
from different sources.

Moreover, recent studies have raised concerns
on inference capabilities, generalisation and inter-
pretability of current MC models (Wiese et al.,
2017; Dhingra et al., 2017; Kaushik and Lipton,
2018), leading to the creation of novel datasets that
propose multi-hop reading comprehension as a
benchmark for evaluating complex reasoning and
explainability (Yang et al., 2018).
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Consider the example in Figure 1. In order to
answer the question “When was Erik Watts’ father
born?” a QA system has to retrieve and combine
supporting facts stored in different documents:

1. Document A: “Erik Watts is the son of WWE
Hall of Famer Bill Watts”;

2. Document B: “William F. Watts Jr. (born
May 5, 1939) is an American former profes-
sional wrestler, promoter, and WWE Hall of
Fame Inductee (2009)”.

The explicit selection of supporting facts has a
dual role in a multi-hop QA pipeline:

(a) It allows the system to consider all and only
those facts that are relevant to answer a spe-
cific question;

(b) It provides an explicit trace of the reasoning
process, which can be presented as justifica-
tion for the answer.

This paper explores the task of identifying sup-
porting facts for multi-hop QA over large collec-
tions of documents where several passages act as
distractors for the MC model. In this setting, we
hypothesise that graph-structured representations
play a key role in reducing complexity and im-
proving the ability to retrieve meaningful evidence
for the answer.

As shown in Figure 1.1, identifying support-
ing facts in unstructured text is challenging as it
requires capturing long-term dependencies to ex-
clude irrelevant passages. On the other hand (Fig-
ure 1.2), a graph-structured representation con-
necting related documents simplifies the integra-
tion of relevant facts by making them mutually
reachable in few hops. We put this observation in
practice by transforming a text corpus in a global
representation that links documents and sentences
by means of mutual references.

In order to identify supporting facts on undi-
rected graphs, we investigate the use of message
passing architectures with relational inductive bias
(Battaglia et al., 2018). We present the Document
Graph Network (DGN), a specific type of Gated
Graph Neural Network (GGNN) (Li et al., 2015)
trained to identify supporting facts in the afore-
mentioned structured representation.

We evaluate DGN on HotpotQA (Yang et al.,
2018), a recently proposed dataset for assessing

MC performance on supporting facts identifica-
tion. The experiments show that DGN is able to
obtain improvements in F1 score when compared
to a MC baseline that adopts a sequential reading
strategy. The obtained results confirm the value of
pursuing research towards the definition of novel
MC architectures, which are able to incorporate
structure as an integral part of their learning and
inference processes.

2 Document Graph Network

The following section presents the Document
Graph Network (DGN), a message passing archi-
tecture designed to identify supporting facts for
multi-hop QA on graph-structured representations
of documents.

Here, we discuss in details the construction of
the underlying graph, the DGN model, and a pre-
filtering step implemented to alleviate the impact
of large graphs on model complexity.

2.1 Graph-structured Representation

Given an arbitrary corpus of documents D =
{D1, D2, . . . , Dn}, we aim to build an undirected
document graph DG as structured representation
of D (Figure 1).

The advantage of using graph-structured repre-
sentations lies in reducing the inference steps nec-
essary to combine two or more supporting facts.
Therefore, we want to extract a representation that
increases the probability of connecting relevant
sentences with short paths in the graph. We ob-
serve that multi-hop questions usually require rea-
soning on two concepts/entities that are described
in different, but interlinked documents. We put in
practice this observation by connecting two docu-
ments if they contain mentions to the same enti-
ties.

The Document Graph (DG) contains nodes of
two types. We represent each document Di in D
as a document node di and each of its sentences
SjDi as a sentence node sjDi . We then add an
edge of type esentence−document that links them.
This edge type represents the fact that a specific
sentence belongs to a specific document. We ap-
ply coreference resolution to solve implicit entity
mentions within the documents. Subsequently,
we add an edge of type edocument−document be-
tween two document nodes d1, d2, if the entities
described in D1 are referenced in D2 or vice-
versa.
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Figure 2: Overview of the approach for the identification of supporting facts in a multi-hop QA pipeline. Step 1 is
applied offline for extracting a graph-structured representation from large corpora (Sec. 2.1). In Step 2, we employ
a filtering algorithm (Sec. 2.3) to retrieve a sub-graph containing the top k relevant sentences nodes. The final step
(Step 3) adopts the DGN model for message passing and binary classification of the supporting facts (Sec. 2.4).

Given a question q, we useDG (instead ofD) as
input for the DGN model. the representation does
not include edges between sentences since we ob-
served increasing complexity in the model with-
out gaining substantial benefits in terms of perfor-
mance.

2.2 Architectural Overview

Figure 2 highlights the main components of the
DGN architecture.

From the target corpus, we automatically ex-
tract a Document Graph DG encoding the back-
ground knowledge expressed in a corpus of docu-
ments (Step 1). This data and its graphical struc-
ture is permanently stored into a database, ready
to be loaded when it is required. The first step is
performed offline, allowing the integration of new
knowledge regardless of the runtime pipeline im-
plemented to address the task.

In order to speed up the computation and al-
leviate current drawbacks of Gated Graph Neu-
ral Networks (Li et al., 2015), the question an-
swering pipeline is augmented with a prefiltering
step (Step 2). The adopted algorithm (Sec 2.3),
based on a relevance score, is aimed at reducing
the number of nodes involved in the computation.
Current limitations of Gated Graph Neural Net-
works, in fact, are mainly connected with the size
of the input graph used for learning and predic-

tion. Performance in terms of computational ef-
ficiency and learning degrades proportionally to
the number of nodes and edge types in the in-
put graph. In order to reduce the negative impact
of large graphs, we adopt the prefiltering step to
prune DG, and retrieve a set of sentence nodes
S = {S1, S2, . . . , Sk} expected to contain sup-
porting facts for a question q.

The subsequent step (Step 3) is aimed at select-
ing supporting facts for q. For this task we em-
ploy the Document Graph Network (DGN) on the
subset of DG induced by S (section 2.4). Specif-
ically, we apply the aforementioned architecture
to learn a distributed representation of each node
in the graph via message passing. This represen-
tation is then used by an Output Network (ON)
to perform binary classification on the sentence
nodes in S and select a set of supporting facts
SF = {sf1, sf2, . . . , sfm} with SF ⊆ S. In
the experiments we perform supervised learning
on the training set provided by HotpotQA (Yang
et al., 2018) to correctly predict the elements be-
longing to SF .

2.3 Prefiltering Step

Given a question q and a set of documents D =
{D1, D2, . . . , Dn} as context, the aim of the pre-
filtering step is to retrieve a subset of the context
containing the k most relevant sentences to q.
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In order to achieve this goal, we adopt a rank-
ing based approach similar to the one illustrated in
(Narasimhan et al., 2018). Specifically, we con-
sider all the sentences occurring in the documents
and compute the similarity between each word
in a sentence and each word in the question q.
We adopt pre-trained GloVe vectors (Pennington
et al., 2014) to obtain the distributed representa-
tion of each word. Subsequently, we produce the
relevance score of each sentence by calculating the
mean among the m highest similarity values. The
final subset is obtained by selecting the sentences
with the top k relevance scores.

An empirical analysis suggested that m = 5
gives the best results on the development set. We
evaluated this approach by computing the recall
of retrieving the top k supporting facts for k =
{20, 25, 30}, obtaining values greater than 90%
for k = 25 and k = 30. Since the average num-
ber of candidate sentences for each question in the
corpus is 50.89, the described algorithm allows us
to discard 60.7% (k = 20), 50.87% (k = 25) and
41.05% (k = 30) of irrelevant context.

2.4 Identifying Supporting Facts
The Document Graph Network (DGN) is em-
ployed for the identification of supporting facts.
The DGN model is based on a standard Gated
Graph Neural Network architecture (GGNN) (Li
et al., 2015) where the inner representation of the
nodes is customised to carry out this specific task.
We apply DGN on the sub-graph retrieved by the
filtering module.

In alignment with prior research in the field we
encode Question(Q), Nodes(N ) and Graph(G) as
follows:

1. Question Representation: The question is
stripped of punctuation and stop words and
tokenised to obtain W words. These words
are subsequently converted into a tensor
Q ∈ R|W |×D using pre-trained GloVe vec-
tors (Pennington et al., 2014) of dimension
D.

2. Node Representation: Similar to the ques-
tion representation, each node is also con-
verted to V ∈ R|W |×D using entities for doc-
ument nodes and sentences words for sen-
tence nodes.

3. Graph Representation: Each document
graphDG is represented by an adjacency ma-

trix A ∈ R|V |×2|E||V | where V and E denote
the vertices and edge types respectively.

Each node (vi) is conditioned on the question
(qi) using Bi-Linear Attention (Kim et al., 2018).
The attention weights αi of each word w in the
nodes are determined by a learned function fBAN

as shown in Equation 2. Here fBAN computes the
attention scores between two matrices using a bi-
linear attention function. This function has a ma-
trix of weights W and a bias vector b used to cal-
culate the similarity between the two matrices as
VWQT + b:

eiw = fBAN (viw, qi) (1)

αiw =
exp(eiw)∑|W |
k=1 exp(eik)

(2)

Following the calculation of the attention
scores, the question conditioned vectors are deter-
mined as follows:

v̂i = φ({vi}, {αi}) (3)

Here, φ is a learned function that combines the
attention scores of each word by employing a non-
linear transformation.

After conditioning the nodes representation on
the question, we employ a Self-Attention Model
function fSAN (Vaswani et al., 2017) to calculate
the weight of each vector δi. Here, the learned
function fSAN is responsible for computing the
weights of each vector in a node. The rationale be-
hind this operation is to condense the matrices to a
vector suitable for a Gated Graph Neural Network
architecture while retaining the most discrimina-
tive semantic information.

riw = fSAN (v̂iw) (4)

δiw =
exp(riw)∑|W |
k=1 exp(rik)

(5)

After computing the self-attention score, we
calculate the initial annotation vectors for the
GGNN as follows:

xv = σ({v̂i}, {δi}) (6)

where σ is a function that returns a single vector
by multiplying the corresponding attention scores
and summing them up. The basic recurrent unit of
a GGNN can be formalised as follows:
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h(1)v = [xTv , 0]
T (7)

a(t)v = AT
v:[h

(t−1)T
1 ...h

(t−1)T
|V | ]T + b (8)

ztv = σ(W za(t)v + U zh(t−1)v ) (9)

rtv = σ(W ra(t)v + U rh(t−1)v ) (10)

h̃tv = tanh(Wa(t)v + U(rtv � h(t−1)v )) (11)

h(t)v = (1− ztv)� h(t−1)v + ztv � h̃
(t)
v (12)

We perform T time steps of propagation and re-
trieve the distributed nodes representation by us-
ing the final hidden state. The computed represen-
tation of each node implicitly captures the seman-
tic information of its neighbours at a distance up to
T hops. In the experiments, we found it sufficient
to set T = 3.

The graph is heterogeneous with nodes repre-
senting questions, sentences and documents. As
the supporting facts identification task requires
sentence classification, we retain the final hidden
state of the sentence nodes while discarding the
others. We use the sentence representations as in-
put to a feed forward neural network called Output
Network. We perform binary classification of each
sentence to predict whether it is a supporting fact
or not:

ov = g(h(T )
v , xv) (13)

3 Evaluation

The experiments are motivated by the guiding re-
search question of the paper: Does structure play
a role in identifying supporting facts for multi-hop
Question Answering? We further break down the
question in the following research hypotheses:

• RH1: Existing machine comprehension
models benefit from reducing the context to
a small number of sentences necessary to an-
swer a question.

• RH2: Models operating on a graph-
structured representation perform better, sup-
porting the identification of relevant facts
when compared to a baseline that uses a se-
quential strategy.

We seek to provide evidence for those claims by
conducting the following experiments:

• Experiment 1: investigate how a representa-
tive state-of-the-art MC model performs on
different passages with varying coherency
and length.

• Experiment 2: evaluate the capability of
the proposed approach to identify supporting
facts in a question answering scenario where
the relevant facts are distributed across mul-
tiple documents.

Specific tests are performed to identify con-
tributing features and compare the overall perfor-
mance of the approach with a sequential baseline
reported in the literature.

HotpotQA We ran the experiments over the re-
cently proposed HotpotQA dataset (Yang et al.,
2018), which requires MC models to find support-
ing passages in a large set of documents, and per-
form multi-hop reasoning to arrive at the correct
answer. HotpotQA provides 105,547 first para-
graphs extracted from Wikipedia articles, and cor-
responding question-answer pairs created by hu-
man annotators. Questions are designed to only be
answerable by combining information from two
articles and require to bridge documents via a con-
cept or entity mentioned in both articles. A subset
of questions require a comparison of similar con-
cepts concerning their common or differing prop-
erties. Furthermore, the dataset provides labels for
supporting sentences, making it possible to per-
form quantitative analysis on the retrieval of sup-
porting facts.

In all of the reported experiments, if not stated
otherwise, training is performed on the HotpotQA
training set while the evaluation is performed on
the development set in the distractor setting. In
order to address this setting, a system has to re-
trieve the answer and the supporting facts for a
given question by reasoning over a set of ten doc-
uments. Only two of the supplied documents are
guaranteed to contain the information that is suf-
ficient and necessary to answer the question. The
remaining eight documents are similar documents
retrieved by an information retrieval model (hence
the name distractor).

3.1 State-of-the-Art Machine
Comprehension Performance

This experiment is designed to investigate the ca-
pabilities of single passage MC models to retrieve
the correct answer when provided with a context
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of varying size and coherency. For this analysis we
adopt BERT (Devlin et al., 2018), a neural trans-
former architecture (Vaswani et al., 2017) consti-
tuting the state-of-the-art latent representation for
various NLP tasks.

The publicly available model is pre-trained in an
unsupervised manner on a large text corpus with
the objective of language modelling and next sen-
tence prediction. Fine-tuning this model to spe-
cific NLP tasks has shown to achieve state-of-
the-art-results for many NLP tasks, among others
question answering and machine reading compre-
hension (Devlin et al., 2018). To that end, we fine-
tune the model on the training split of HotpotQA
and evaluate it on the evaluation split. Before
training, we manually remove all the questions
that cannot be answered by retrieving a continu-
ous passage in the supporting facts (e.g. we ex-
clude comparison questions that typically require
yes/no type of answers).

We evaluate the performance of BERT with
supporting facts only, and then progressively en-
rich the context by a rising number of sentences
retrieved by the filtering algorithm (Sec. 2.3). The
results of this experiment are reported in Table 1.

Note that these results can not be interpreted as
a resilient comparison baseline as (1) we don’t op-
timise the set of hyper-parameters associated with
the model training and (2) we ensure the existence
of supporting facts in the evaluation, since we are
interested in the intrinsic performance of BERT in
answer retrieval.

Unsurprisingly, the best results are achieved
when the context provided to BERT is composed
of supporting facts only. Conversely, the perfor-
mance of the model gradually deteriorates when
distracting information is added to the context.

These results reinforce our assumption that a
module capable of identifying the correct set of
supporting facts represents a fundamental com-
ponent in a multi-hop QA pipeline. Moreover,
this component may be complementary to down-
stream machine comprehension models, consti-
tuting a valid support to improve overall perfor-
mances in answer retrieval.

3.2 Supporting Facts Identification

We compare the DGN model on the task of iden-
tifying supporting facts against the neural baseline
reported in (Yang et al., 2018). In order to suit the
task, the baseline architecture extends the state-of-

Table 1: F1 and exact match (EM) score of BERT when
evaluated on answer retrieval over contexts of varying
size.

Sentences SF only +5 +10 +20 +25 +30
F1 0.75 0.60 0.52 0.44 0.42 0.42
EM 0.60 0.47 0.40 0.33 0.32 0.31

Table 2: Supporting facts identification: Harmonic
mean (F1), Precision and Recall

Model F1 P R
Baseline (Yang et al., 2018) 66.66 - -
Baseline Replication (Answer + SF) 65.28 63.28 67.43
Baseline Replication (SF only) 46.44 48.80 44.31
DGN (best) 68.02 61.51 76.07
DGN (no edge types) 45.84 - -

the-art answer passage retrieval model (Seo et al.,
2016) by an additional recurrent layer that classi-
fies whether a sentence is a supporting fact or not.
The model is trained jointly and under strong su-
pervision on the objectives of retrieving both an-
swer and supporting facts. We replicate the exper-
iment on our infrastructure in order to obtain more
detailed measures, such as precision an recall. The
results of the evaluation are reported in Table 2.

The experiments show that the DGN model out-
performs the baseline in terms of F1 score (≈2%
improvement compared to the results reported in
the paper, ≈3% improvement compared to our
replication), and recall (≈14% improvement over
our replication). However, the baseline implemen-
tation has a higher precision. We attribute that to
the fact that the baseline optimises for both answer
extraction and supporting facts retrieval.

In general we observe that recall is higher than
precision throughout the experiments. Compared
to the DGN model, the baseline is less penalised
when the retrieved answer still matches the ex-
pected answer, even if retrieved from an unrelated
sentence spuriously. in the absence of the answer
selection optimisation criterion, the DGN model
is only penalised if it fails to predict the correct
supporting facts. This forces the model to priori-
tise recall over precision during training. Adding a
weight to the loss calculation as an additional hy-
perparameter can balance the precision and recall
metric.

We don’t evaluate DGN on the task of answer
retrieval, since the proposed architecture focuses
on the classification of the relevant supporting
facts. The task of jointly retrieving answer and
supporting facts is left for future work.
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Table 3: Precision, Recall and F1 score of the DGN
model with different values of k assigned to the pre-
filtering algorithm. The best values are highlighted.

k = 20 k = 25 k = 30 full
Prefiltering (R) 84.72 90.23 94.29 100.00
DGN (F1) 63.40 67.38 68.02 66.00
DGN (P) 57.83 61.92 61.51 53.37
DGN (R) 70.17 73.90 76.07 86.47

3.3 Analysis

In order to understand the interaction of the key
contributing parts of the architecture, we analyse
the behaviour of the full pipeline in different set-
tings. Specifically, we measure the DGN perfor-
mance when trained and evaluated on the output
of the filtering step. During the training, we en-
sure the existence of the supporting facts in the in-
put graph of the DGN model. We then evaluate it
on the development set by performing prediction
on the subset retrieved by the filtering algorithm.
The results reported in Table 3 take into account
the combined performance of the full pipeline with
different hyperparameters assigned to the prefilter-
ing algorithm.

Firstly, we observe the increase of recall with
the increasing number of retrieved sentences. This
fact is unsurprising and it is in line with the higher
recall score of the filtering module. More sen-
tences means broader coverage, and thus higher
recall even before executing DGN prediction.

Secondly, across the experiments, we observe
that k = 30 is the best number of sentences for
the model to learn from. This is confirmed by the
best precision and overall F1 score obtained when
training and predicting on the top 30 sentences.
Moreover, we observed that the application of the
filtering algorithm sensibly speeds up the training,
decreasing at the same time the amount of mem-
ory required to store matrices and weights of the
graph network. The application of a light filtering
is then justified both in terms of performance and
computational complexity.

Regarding the baseline model, we aim to anal-
yse the impact of multi-task learning, where the
model is jointly trained to retrieve supporting facts
and the final answer. We observe a significant drop
in performance (≈20% F1 score) when we opti-
mise the baseline only for supporting facts identi-
fication (see Baseline Replication in Table 2). This
observation is perfectly in line with the literature.
(Hashimoto et al., 2016) report improvements on

low level tasks when jointly optimised with higher
level tasks in a hierarchical learning setting. Re-
garding multi-hop QA, the identification of sup-
porting facts directly depends on the answer being
predicted correctly and vice-versa. A plausible fu-
ture work may be to understand whether DGN can
benefit from a similar multi-task learning setup.

Finally, we investigate the role of the semantic
information expressed explicitly in the Document
Graph. To that end, we train the DGN model us-
ing the same configuration of the best performing
model without edge type information. This results
in a notable drop of F1 score (see Table 2) rein-
forcing the evidence that explicit semantic infor-
mation encoded in relational form contributes to-
wards the performance of the model. A promising
future direction will be to investigate whether dif-
ferent types of semantic representation benefit the
performance of the model and to what extent.

4 Related Work

State-of-the-art approaches for Open-Domain
Question Answering over large collections of doc-
uments employ a combination of character-level
models, self-attention (Wang et al., 2017), and bi-
attention (Seo et al., 2016) to operate over unstruc-
tured paragraphs without exploiting any structured
text representation. Despite these methods have
demonstrated impressive results reaching in some
cases super-human performances (Seo et al., 2016;
Chen et al., 2017; Yu et al., 2018), recent studies
have raised important concerns related to general-
isation (Wiese et al., 2017; Dhingra et al., 2017)
complex reasoning (Welbl et al., 2018) and ex-
plainability (Yang et al., 2018). Specifically, the
lack of structured representation makes it hard for
current Machine Comprehension models to find
meaningful patterns in large corpora, generalise
beyond the training domain and justify the answer.

Research efforts towards the creation of
message-passing architectures with relational in-
ductive bias (Battaglia et al., 2018) have enabled
machine learning algorithms to incorporate graph-
ical structures in their training process. These
models, trained over explicit entities and rela-
tions, have the potential to boost generalisation,
interpretability and abstract reasoning capabilities.
A variety of Graph Neural Network architectures
have already demonstrated remarkable results in a
large set of applications ranging from Computer
Vision, Physical Systems and Protein-Protein In-
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teraction (Zhou et al., 2018).

Our research is in line with recent trends in
Question Answering prone to explore message-
passing architectures over graph-structured rep-
resentation of documents to enhance perfor-
mance and overcome challenges involved in deal-
ing with unstructured text. (Sun et al., 2018)
fuse text corpus with manually-curated knowl-
edge bases to create heterogeneous graphs of KB
facts and text sentences. Their model, GRAFT-
Net, built upon Graph Convolutional Networks
(Schlichtkrull et al., 2018), is used to propagate
information between heterogeneous nodes in the
graph and perform binary classification on en-
tity nodes to select the answer. Differently from
the proposed approach, the latter work focuses on
links between whole paragraphs and external en-
tities in a Knowledge Base. Moreover, GRAFT-
Net is designed for single-hop Question Answer-
ing, assuming that the question is always about a
single entity.

The proposed approach is similar to (De Cao
et al., 2018) and (Song et al., 2018), where the aim
is to answer complex questions that require the in-
tegration of multiple text passages. However, our
research is focused on the identification of sup-
porting facts instead of answer retrieval.

Another line of research focuses on narrow-
ing down the context for later Machine Compre-
hension models by selecting relevant passages as
supporting facts. Work in that direction includes
(Watanabe et al., 2017) which present a neural
information retrieval system to retrieve a suffi-
ciently small paragraph and (Geva and Berant,
2018) which employ a Deep Q-Network (DQN)
to solve the task by learning to navigate over an
intra-document tree. A similar approach is cho-
sen by (Clark and Gardner, 2017). However, in-
stead of operating on document structure, they
adopt a sampling technique to make the model
more robust towards multi-paragraph documents.
These approaches are not directly comparable to
our work since they focus either on single para-
graphs or intra-document (local) structure.

Strongly related to our work is (Yang et al.,
2018) which presents HotpotQA, a novel dataset
for multi-hop QA. The authors highlight the im-
portance of identifying supporting facts for im-
proving reasoning and explainability of current
systems. We compare the proposed architecture
with the baseline described in their paper. The

model is based on a state-of-the-art MC model
(Seo et al., 2016) that adopts a sequential reading
strategy to identifying supporting facts from large
collections of documents.

5 Conclusion

In this paper, we investigated the role played by
interlinked sentence representation for complex,
multi-hop question answering under the focus of
supporting facts identification, i.e. retrieving the
minimum set of facts required to answer a given
question. We emphasise that this problem is worth
pursuing, showing that the performance of state-
of-the-art models substantially deteriorates as the
size of the accompanying context increases.

We present Document Graph Network (DGN),
a novel approach for selecting supporting facts in
a multi-hop QA pipeline. The model operates over
explicit relational knowledge, connecting docu-
ments and sentences extracted from large text cor-
pora. We adopt a pre-filtering step to limit the
number of nodes and train a customised Graph
Gated Neural Network directly on the extracted
representation.

We train and evaluate the DGN model on a
newly proposed dataset for complex, multi-hop
question answering over unstructured text. The
evaluation shows that DGN outperforms a base-
line adopting a sequential reading strategy. Addi-
tionally, we show that when trained to retrieve just
supporting facts, the performance of the baseline
degrades by ≈20%.

Perhaps most importantly, we highlight a way
to combine structured and distributional sentence
representation models and propose further re-
search lines in that direction. As future work, we
aim to investigate the role and impact of different
structured sentence representation models within
the inference process, linking it with the Open In-
formation Extraction (Cetto et al., 2018; Niklaus
et al., 2018) and sentence simplification (Niklaus
et al., 2019, 2017) literature.

We believe that further research can be dedi-
cated to inject richer structured knowledge in the
model, allowing for fine-grained message passing
and improved representation learning. Another
important line of research will focus on the im-
plementation of advanced mechanisms and tech-
niques to scale the approach to massive text cor-
pora such as the whole Wikipedia.
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