
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 26–31
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

26

Neural Speech Translation using Lattice Transformations and Graph
Networks

Daniel Beck† Trevor Cohn† Gholamreza Haffari‡
†School of Computing and Information Systems

University of Melbourne, Australia
{d.beck,t.cohn}@unimelb.edu.au

‡Faculty of Information Technology
Monash University, Australia

gholamreza.haffari@monash.edu

Abstract
Speech translation systems usually follow a
pipeline approach, using word lattices as an
intermediate representation. However, previ-
ous work assume access to the original tran-
scriptions used to train the ASR system, which
can limit applicability in real scenarios. In this
work we propose an approach for speech trans-
lation through lattice transformations and neu-
ral models based on graph networks. Experi-
mental results show that our approach reaches
competitive performance without relying on
transcriptions, while also being orders of mag-
nitude faster than previous work.

1 Introduction

Translation from speech utterances is a challeng-
ing problem that has been studied both under sta-
tistical, symbolic approaches (Ney, 1999; Casacu-
berta et al., 2004; Kumar et al., 2015) and more re-
cently using neural models (Sperber et al., 2017).
Most previous work rely on pipeline approaches,
using the output of a speech recognition system
(ASR) as an input to a machine translation (MT)
one. These inputs can be simply the 1-best sen-
tence returned by the ASR system or a more struc-
tured representation such as a lattice.

Some recent work on end-to-end systems by-
pass the need for intermediate representations,
with impressive results (Weiss et al., 2017). How-
ever, such a scenario has drawbacks. From a prac-
tical perspective, it requires access to the original
speech utterances and transcriptions, which can be
unrealistic if a user needs to employ an out-of-
the-box ASR system. From a theoretical perspec-
tive, intermediate representations such as lattices
can be enriched through external, textual resources
such as monolingual corpora or dictionaries.

Sperber et al. (2017) proposes a lattice-to-
sequence model which, in theory, can address both
problems above. However, their model suffers

from training speed performance due to the lack
of efficient batching procedures and they rely on
transcriptions for pretraining. In this work, we
address these two problems by applying lattice
transformations and graph networks as encoders.
More specifically, we enrich the lattices by apply-
ing subword segmentation using byte-pair encod-
ing (Sennrich et al., 2016, BPE) and perform a
minimisation step to remove redundant nodes aris-
ing from this procedure. Together with the stan-
dard batching strategies provided by graph net-
works, we are able to decrease training time by
two orders of magnitude, enabling us to match
their translation performance under the same train-
ing speed constraints without relying on gold tran-
scriptions.

2 Approach

Many graph network options exist in the litera-
ture (Bruna et al., 2014; Duvenaud et al., 2015;
Kipf and Welling, 2017; Gilmer et al., 2017): in
this work we opt for a Gated Graph Neural Net-
work (Li et al., 2016, GGNN), which was re-
cently incorporated in an encoder-decoder archi-
tecture by Beck et al. (2018). Assume a directed
graph G = {V, E , LV , LE}, where V is a set of
nodes (v, `v), E is a set of edges (vi, vj , `e) and
LV and LE are respectively vocabularies for nodes
and edges, from which node and edge labels (`v
and `e) are defined. Given an input graph with
node embeddings X, a GGNN is defined as
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where e = (u, v, `e) is the edge between nodes u
and v, N (v) is the set of neighbour nodes for v, ρ
is a non-linear function, σ is the sigmoid function
and cv = czv = crv = |Nv|−1 are normalisation
constants.

Intuitively, a GGNN reduces to a GRU (Cho
et al., 2014) if the graph is a linear chain. There-
fore, the GGNN acts as a generalised encoder that
updates nodes according to their neighbourhood.
Multiple layers can be stacked, allowing informa-
tion to be propagated through longer paths in the
graph. Batching can be done by using adjacency
matrices and matrix operations to perform the up-
dates, enabling efficient processing on a GPU.

2.1 Lattice Transformations
As pointed out by Beck et al. (2018), GGNNs can
suffer from parameter explosion when the edge la-
bel space is large, as the number of parameters is
proportional to the set of edge labels. This is a
problem for lattices, since most of the information
is encoded on the edges. We tackle this problem
by transforming the lattices into their correspond-
ing line graphs, which swaps nodes and edges.1

After this transformation, we also add start and
end symbols, which enable the encoder to prop-
agate information through all possible paths in the
lattice. Importantly, we also remove node scores
from the lattice in most of our experiments, but
we do revisit this idea in §3.3.

Having lattices as inputs allow us to incorpo-
rate additional steps of textual transformations. To
showcase this, in this work we perform subword
segmentation on the lattice nodes using BPE. If a
node is not present in the subword vocabulary, we
split it into subwords and connect them in a left-
to-right manner.

The BPE segmentation can lead to redundant
nodes in the lattice. Our next transformation step
is a minimisation procedure, where such nodes are
joined into a single node in the graph. To perform
this step, we leverage an efficient algorithm for
automata minimisation (Hopcroft, 1971), which
traverses the graph detecting redundant nodes by
using equivalence classes, running in O(n log n)
time, where n is the number of nodes.

1This procedure is also done in Sperber et al. (2017).
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Figure 1: Proposed lattice transformations. From top
to bottom: 1) Original lattice with scores removed;
2) Line graph transformation; 3) Subword segmenta-
tion; 4) Lattice minimisation; 5) Addition of reverse
and self-loop edges.

The final step adds reverse and self-loop edges
to the lattice, where these new edges have specific
parameters in the encoder. This eases propaga-
tion of information and is standard practice when
using graph networks as encoders (Marcheggiani
and Titov, 2017; Bastings et al., 2017; Beck et al.,
2018). We show an example of all the transforma-
tion steps on Figure 1.

In Figure 2 we show the architecture of our sys-
tem, using the final lattice from Figure 1 as an
example. Nodes are represented as embeddings
that are updated according to the lattice structure,
resulting in a set of hidden states as the output.
Other components follow a standard seq2seq
model, using a bilinear attention module (Luong
et al., 2015) and a 2-layer LSTM (Hochreiter and
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Figure 2: Model architecture, using the final Spanish lattice from Figure 1 and its corresponding English translation
as an example.

Schmidhuber, 1997) as the decoder.

3 Experiments

Data We perform experiments using the
Fisher/Callhome Speech Translation corpus,
composed of Spanish telephone conversations
with their corresponding English translations.
We use the original release by Post et al. (2013),
containing both 1-best and pruned lattice outputs
from an ASR system for each Spanish utterance.2

The Fisher corpus contain 150K instances and we
use the original splits provided with the datasets.
Following previous work (Post et al., 2013;
Sperber et al., 2017), we lowercase and remove
punctuation from the English translations. To
build the BPE models, we extract the vocabulary
from the Spanish training lattices, using 8K split
operations.

Models and Evaluation All our models are
trained on the Fisher training set. For the 1-best
baseline we use a standard seq2seq architecture
and for the GGNN models, we use the same setup
as Beck et al. (2018). Our implementation is based
on the Sockeye toolkit (Hieber et al., 2017) and
we use default values for most hyperparameters,
except for batch size (16) and GGNN layers (8).3

For regularisation, we apply 0.5 dropout on the in-
put embeddings and perform early stopping on the
corresponding Fisher dev set.

2We refer the reader to Post et al. (2013) for details on the
ASR system and how the lattices were generated.

3A complete description of hyperparameter values is
available in the Supplementary Material.

1-best L L+S L+S+M

Median 32.4 34.4 34.5 34.3
Ensemble 36.1 38.3 38.7 39.1

Table 1: Out-of-the-box scenario results, in BLEU
scores. “L” corresponds to word lattice inputs, “L+S”
and “L+S+M” correspond to lattices after subword seg-
mentation and after minimisation, respectively.

Each model is trained using 5 different seeds
and we report BLEU (Papineni et al., 2001) re-
sults using the median performance according to
the dev set and an ensemble of the 5 models. For
the word-based models, we remove any tokens
with frequency lower than 2 (as in Sperber et al.
(2017)), while for subword models we do not per-
form any threshold pruning. We report all results
on the Fisher “dev2” set.4

3.1 Out-of-the-box ASR scenario

In this scenario we assume only lattices and 1-best
outputs are available, simulating a setting where
we do not have access to the transcriptions. Ta-
ble 1 shows that results are consistent with pre-
vious work: lattices provide significant improve-
ments over simply using the 1-best output. More
importantly though, the results also highlight the
benefits of our proposed transformations and we
obtain the best ensemble performance using min-
imised lattices.

4We also experimented with the Callhome test set, simi-
lar to previous work. However, we did not see any different
trends so we omit the results.
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L+S+M L+S+M+T

Median 34.3 37.1
Ensemble 39.1 42.3

Previous Work - no lattice scores
Sperber et al. (2017) – 36.9

Previous Work - with lattice scores
Post et al. (2013) – 36.8
Sperber et al. (2017) – 38.5

Table 2: Results with transcriptions, in BLEU scores.
“L+S+M” corresponds to the same results in Table 1
and “L+S+M+T” is the setting with gold transcriptions
added to the training set.

3.2 Adding Transcriptions

The out-of-the-box results in §3.1 are arguably
more general in terms of applicability in real sce-
narios. However, in order to compare with the
state-of-the-art, we also experiment with a sce-
nario where we have access to the original Spanish
transcriptions. To incorporate transcriptions into
our model, we convert them into a linear chain
graph, after segmenting using BPE. With this, we
can simply take the union of transcriptions and lat-
tices into a single training set. We keep the dev
and test sets with lattices only, as this emulates test
time conditions.

The results shown in Table 2 are consistent with
previous work: adding transcriptions further en-
hance the system performance. We also slightly
outperform Sperber et al. (2017) in the setting
where they ignore lattice scores, as in our ap-
proach. Most importantly, we are able to reach
those results while being two orders of magnitude
faster at training time: Sperber et al. (2017) report
taking 1.5 days for each epoch while our archi-
tecture can process each epoch in 15min. The rea-
son is because their model relies on the CPU while
our GGNN-based model can be easily batched and
computed in a GPU.

Given those differences in training time, it is
worth mentioning that the best model in Sperber
et al. (2017) is surpassed by our best ensemble us-
ing lattices only. This means that we can obtain
state-of-the-art performance even in an out-of-the-
box scenario, under the same training speed con-
straints. While there are other constraints that may
be considered (such as parameter budget), we nev-
ertheless believe this is an encouraging result for
real world scenarios.

3.3 Adding Lattice Scores
Our approach is not without limitations. In par-
ticular, the GGNN encoder ignores lattice scores,
which can help the model disambiguate between
different paths in the lattice. As a simple first ap-
proach to incorporate scores, we embed them us-
ing a multilayer perceptron, using the score as the
input. This however did not produce good results:
performance dropped to 32.9 BLEU in the single
model setting and 38.4 for the ensemble.

It is worth noticing that Sperber et al. (2017) has
a more principled approach to incorporate scores:
by modifying the attention module. This is ar-
guably a better choice, since the scores can di-
rectly inform the decoder about the ambiguity in
the lattice. Since this approach does not affect the
encoder, it is theoretically possible to combine our
GGNN encoder with their attention module, we
leave this avenue for future work.

4 Conclusions and Future Work

In this work we proposed an architecture for
lattice-to-string translation by treating lattices as
general graphs and leveraging on recent advances
in neural networks for graphs.5 Compared to pre-
vious similar work, our model permits easy mini-
batching and allows one to freely enrich the lat-
tices with additional information, which we ex-
ploit by incorporating BPE segmentation and lat-
tice minimisation. We show promising results and
outperform baselines in speech translation, partic-
ularly in out-of-the-box ASR scenarios, when one
has no access to transcriptions.

For future work, we plan to investigate better
approaches to incorporate scores in the lattices.
The approaches used by Sperber et al. (2017) can
provide a starting point in this direction. The
same minimisation procedures we employ can be
adapted to weighted lattices (Eisner, 2003). An-
other important avenue is to explore this approach
in low-resource scenarios such as ones involving
endangered languages (Adams et al., 2017; Anas-
tasopoulos and Chiang, 2018).
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