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Abstract

This paper describes the NICT-2 neural ma-
chine translation system at the 6th Workshop
on Asian Translation. This system employs
the standard Transformer model but features
the following two characteristics. One is
the long warm-up strategy, which performs
a longer warm-up of the learning rate at the
start of the training than conventional ap-
proaches. Another is that the system intro-
duces self-training approaches based on mul-
tiple back-translations generated by sampling.
We participated in three tasks—ASPEC.en-
ja, ASPEC.ja-en, and TDDC.ja-en—using this
system.

1 Introduction

This paper describes the NICT-2 neural machine
translation (NMT) system at the 6th Workshop on
Asian Translation (WAT-2019) (Nakazawa et al.,
2019). This system employs Vaswani et al.
(2017)’s Transformer base model but improves
translation quality by applying the following train-
ing strategies and hyperparameters.

• We investigated the relationship between the
learning rate, warm-up, and model perplex-
ity, and found that a long warm-up allows
high learning rates, and consequently the
translation quality improves. According to
this finding, we applied the long warm-up.

• We applied the self-training strategy, which
uses multiple back-translations generated by
sampling (Imamura et al., 2018) to increase
the robustness of the encoder and improve the
translation quality.

The remainder of this paper is organized as fol-
lows. Section 2 summarizes the system, includ-
ing its settings. We describe the characteristics

Corpus Set # Sents. Note
ASPEC Train 3,007,754 ≤ 128 tokens

Dev. 1,790
Test 1,812

TDDC Train 1,398,184 ≤ 128 tokens
Dev. Items 2,845

Texts 1,153
DevTest Items 2,900

Texts 1,114
Test Items 2,129

Texts 1,148

Table 1: Corpus sizes.

of our system—the long warm-up and the self-
training based on multiple back-translations by
sampling—in Sections 3 and 4, respectively. The
results are presented in Section 5. Finally, Section
6 concludes the paper.

2 System Summary

We participated in three tasks, namely English-to-
Japanese and Japanese-to-English of ASPEC (ab-
breviated to ASPEC.en-ja and ASPEC.ja-en, re-
spectively), and Japanese-to-English of the TDDC
(TDDC.ja-en).

The corpus used in the ASPEC tasks is Asian
Scientific Paper Excerpt Corpus (Nakazawa et al.,
2016), which is a collection of scientific papers. In
the TDDC task, the Timely Disclosure Documents
Corpus (TDDC) was used. The development and
test sets of TDDC are divided into items and texts
sets, which are collections of titles and body texts,
respectively. The sizes of the corpora are shown in
Table 1.

All corpora were divided into sub-words us-
ing the byte-pair encoding rules (Sennrich et al.,
2016b) acquired from the training sets of each cor-
pus. The rules were independently acquired from
the source and target languages, to give a vocabu-
lary size around 16K.
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Attribute Value
Model # Layers 6

dmodel 512
dff 2,048
# Heads 8

Training Optimizer Adam
(β1 = 0.9, β2 = 0.99)

Loss function Label-smoothed cross-
entropy

Label smoothing 0.1
Batch size Approx. 500 sentences
Learning rate 0.0004
Warm-up Linear, approx. 5 epochs
Cool-down Inverse square root
Dropout Selected from {0.1, 0.15,

0.2}
Clip norm 5
Etc. Early stopping

Checkpoint averaging of
10 models

Test Beam 10
Length penalty Tuned by Dev. set
Etc. Ensemble of 4 models

Table 2: Summary of system settings.

We used fairseq1 as a basic translator. The
model used here is the Transformer base model
(six layers). Table 2 shows the hyperparameters
of the model, training, and test.

Training was performed on Volta 100 GPUs
(two GPUs for the ASPEC dataset and one GPU
for the TDDC dataset) using 16-bit floating point
computation. The training was stopped when the
loss of the development set was minimized (i.e.,
early stopping). We also used checkpoint averag-
ing: using the best checkpoint and the next nine
checkpoints (10 checkpoints in total).

During testing, we used 32-bit floating point
computation. For the final submission, four mod-
els, which were trained using different random
seeds, were ensembled (Imamura and Sumita,
2017)．

3 Long Warm-up

The warm-up is a technique that gradually in-
creases the learning rate at the beginning of train-
ing. The most general strategy is to increase
the learning rate linearly. Using the warm-up,
the model parameters are updated toward conver-
gence, even if they were randomly initialized. This
allows us to obtain stable models.

We generally use a fixed time for the warm-up.
For example, Vaswani et al. (2017) used 4,000 up-
dates in their experiments. However, the warm-up

1https://github.com/pytorch/fairseq
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Figure 1: Relationship between learning rate, warm-
up, and perplexity of development set in ASPEC.ja-en
task.

time influences the final quality of models.
Figure 1 shows how the development set per-

plexity (Dev. PPL) changes as the learning rate
and warm-up time vary, using the ASPEC.ja-en
dataset (as explained in Section 5). Lower per-
plexity indicates a better model. We can observe
that both the learning rate and the warm-up time
influence the perplexity. When we use a long
warm-up, we can apply high learning rates and
consequently obtain low-perplexity models. We
observed a similar tendency in the TDDC.ja-en
task.

Based on the above experiment, we used 0.0004
as the learning rate and set the warm-up time to
30K updates for ASPEC datasets and 14K updates
for TDDC datasets.2 These values almost mini-
mize the development perplexity.

Recently, a variant of Adam optimization
(called RAdam), which automatically adapts the
learning rate and does not require any warm-up,
has been proposed (Liu et al., 2019). To confirm
the relationship between the warm-up and RAdam
is our future work.

4 Self-Training Based on
Back-Translation

Back-translation is a technique to enhance neural
machine translators (NMT), particularly the de-
coder part of NMT, using monolingual corpora
(Sennrich et al., 2016a). It translates sentences of
the target language into those of the source lan-
guage. A forward translator is trained using this
pseudo-parallel corpus with corpora that are cre-

2The warm-up time is around five epochs because the
mini-batch size is approximately 500 sentences.

https://github.com/pytorch/fairseq
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Figure 2: Data flow of self-training based on back-
translation.

ated manually. The back-translation can be ap-
plied to self-training if the pseudo-parallel corpora
are created from the manually created corpora that
will be used for training the forward translator
(Figure 2).

4.1 Back-Translation with Sampling
Generation

A problem with back-translation is that the
pseudo-parallel sentences become less varied than
those created manually, because of machine trans-
lation. This characteristic makes it difficult for the
back-translation method to enhance the encoder,
in contrast to the decoder.

To solve this problem, Imamura et al. (2018)
proposed a method that combines the following
two methods.

• To generate diverse pseudo-parallel sen-
tences, words are generated by sampling
based on the word probability distribution
(Eq. 1) instead of the maximum likelihood
during the back-translation.

ŷt ∼
Pr(y|y<t,x)

1/τ∑
y′ Pr(y

′|y<t,x)1/τ
, (1)

where ŷt, y<t, and x denote the generated
word at time t, the history until time t, and the
input word sequence, respectively. τ denotes
the temperature parameter, which is used to
control the diversity, but we use τ = 1.0 in
this paper.

• Multiple pseudo-source sentences, for a tar-
get sentence, are used for training.

Both methods are intended to enhance the encoder
by increasing the diversity of source sentences,
while fixing the target sentences.

4.2 Training Procedure

The training procedure is summarized as follows
(Figure 2).

1) Train a back-translator from the target lan-
guage to the source language, using the orig-
inal parallel corpus.

2) Translate the target side of the original cor-
pus to the source language, using the back-
translator. During the back-translation, K
pseudo-source sentences are generated for
each target sentence, using sampling.

3) Construct K sets of pseudo-parallel sen-
tences by pairing the target and pseudo-
source sentences.

4) Build the training set by mixing the origi-
nal and pseudo-parallel corpora, and train the
forward translator from the source language
to the target language.

4.3 Static and Dynamic Self-Training

There are two types of self-training based on back-
translation, depending on the pseudo-parallel sen-
tences and the structure of mini-batches: the static
self-training (Imamura et al., 2018) and dynamic
self-training (Imamura and Sumita, 2018). Steps
3 and 4 of Section 4.2 are different for each type.

Static self-training constructs a training set by
combining Kstatic pseudo-parallel sentences with
each of the original sentences. In this paper, we
set Kstatic = 4. During training, the training set is
fixed.

In static self-training, the number of pseudo-
parallel sentences is Kstatic times larger than the
number of original sentences. If we simply mix
these sentences, the ratio of pseudo-parallel sen-
tences to original sentences would be too high.
To avoid this problem, we oversample the orig-
inal sentences by a factor of Kstatic, instead of
changing the learning rate depending on the sen-
tence (Imamura et al., 2018). Therefore, the total
size of the training set is 2Kstatic times larger than
the size of the original corpus.

In contrast, dynamic self-training constructs
Kdynamic training sets. A training set includes
one pseudo-parallel set and one original set. For
each epoch, a set is randomly selected from the
Kdynamic training sets, and the model is trained
using the set. In this paper, we set Kdynamic = 20.
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In dynamic self-training, the size of a training
set is twice the size of the original corpus. There-
fore, the training time for an epoch is shorter than
that for static self-training. However, a greater
number of epochs are required until convergence,
because diverse training sets are used.

5 Results of ASPEC and TDDC Tasks

The results of ASPEC and TDDC are shown in
Tables 3 and 4, respectively. Both tables show the
translation quality (BLEU) and the perplexity of
the development set (Dev. PPL), depending on the
model type and training method. The effect of the
long warm-up has already been shown in Section
3.

5.1 Notes of Experimental Settings

The BLEU scores (Papineni et al., 2002) in the
tables were computed based on the tokenizers
MeCab (for Japanese (Kudo et al., 2004)) and
Moses (for English (Koehn et al., 2007)). We
trained four models with different random seeds.
The single model rows of the tables show the av-
erage score of four models, and the ensemble rows
show the score of the ensemble of four models.

The length penalty for testing was set to max-
imize the BLEU score of the development set.
However, in the TDDC task, we used different
penalties for the items and texts sets, and indepen-
dently optimized according to the set.

Finally, we submitted the ensemble models for
which the BLEU scores of the development set (in
the single model cases) were the highest.

5.2 Results

First, we focus on the ASPEC.en-ja task. In
the single model cases, the BLEU scores im-
proved around +0.20 to +0.58 by adding static
self-training to the base model. In the case of
dynamic self-training, the improvements were be-
tween +0.46 and +0.60. The ensemble models
have a similar tendency, and we can conclude that
self-training is effective because the BLEU scores
significantly improved in many cases. Comparing
static and dynamic self-training, there were no sig-
nificant differences, even though the scores of dy-
namic self-training were higher than those of static
self-training.

In contrast, for the ASPEC.ja-en task, the
BLEU scores of static self-training were worse
than those of the base model, in both the single

model and ensemble cases. However, for dynamic
self-training, some BLEU scores significantly im-
proved. Dynamic self-training tends to be more
effective for the ASPEC tasks.

In terms of the training time, the number
of epochs of the static self-training was lower
than that of the dynamic self-training in both
ASPEC.en-ja and ASPEC ja-en tasks. However,
conversely, the total number of updates of the dy-
namic self-training was lower. As the training data
size increased, the total training time increased in
the static self-training. The dynamic self-training
was more efficient from the perspective of training
time.

For the TDDC.ja-en task, the items and texts
sets have a different tendency. For the items set,
the BLEU scores improved by applying static self-
training, but became worse for the texts set.

Self-training based on back-translation is not al-
ways effective; that is, there are effective and inef-
fective datasets. Investigating the conditions that
influence translation quality is our future work.
Note that this phenomenon is only observed for
self-training; the back-translation of additional
monolingual corpora has different features.

6 Conclusions

This paper explained the NICT-2 NMT system
at WAT-2019. This system employs the Trans-
former model and applies the following two train-
ing strategies.

• We employed the long warm-up strategy and
trained the model using a high learning rate.

• We also employed the self-training strategy,
which uses multiple back-translations gener-
ated by sampling.
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Task BLEU ↑
/Lang Model Dev. PPL ↓ Dev. DevTest Test Remark
ASPEC Single Base 3.21 43.80 43.05 44.11 392K updates (65 epochs)
en-ja Static ST 3.12 44.38 (+) 43.25 44.54 (+) 2,162K updates (45 epochs)

Dynamic ST 3.14 44.40 (+) 43.51 (+) 44.71 (+) 810K updates (71 epochs)
Ensemble Base – 45.14 44.01 45.13
(4 Models) Static ST – 45.53 44.41 (+) 45.64 (+)

Dynamic ST – 45.39 44.58 (+) 45.66 (+) Submitted model
ASPEC Single Base 4.42 27.90 26.12 28.40 161K updates (27 epochs)
ja-en Static ST 4.31 27.05 (-) 25.97 27.39 (-) 798K updates (16 epochs)

Dynamic ST 4.26 28.24 (+)§ 26.62 (+)§ 28.57 § 502K updates (42 epochs)
Ensemble Base – 28.94 27.31 29.41
(4 Models) Static ST – 28.47 26.73 (-) 28.25 (-)

Dynamic ST – 29.19 § 27.59 § 29.40 § Submitted model

Table 3: Results of ASPEC tasks.
The bold values indicate the highest score among base, static self-training (ST), and dynamic ST. The
(+) and (-) symbols denote significant improvement and degradation, respectively, from the base model
(p ≤ 0.05). The § symbol indicates that there is a significant difference between static and dynamic ST
cases.

BLEU ↑
Task Dev. DevTest
/Lang Model / Training Dev. PPL Items Texts Items Texts Remark
TDDC Single Base 2.76 52.75 52.45 54.28 52.76 115K updates (42 epochs)
ja-en Static ST 2.74 52.94 51.78 (-) 54.99 (+)§ 51.92 (-) 335K updates (15 epochs)

Dynamic ST 2.68 52.95 51.35 (-) 54.41 51.82 (-) 239K updates (43 epochs)
Ensemble Base – 54.35 54.74 55.56 54.98 Submitted text model
(4 Models) Static ST – 54.34 53.53 (-) 56.60 (+)§ 53.81 (-) Submitted item model

Dynamic ST – 54.29 53.04 (-) 55.92 53.97 (-)

Table 4: Results of TDDC task.
The bold values indicate the highest score among base, static self-training (ST), and dynamic ST. The
(+) and (-) symbols denote significant improvement and degradation, respectively, from the base model
(p ≤ 0.05). The § symbol indicates that there is a significant difference between static and dynamic ST
cases.
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