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Abstract

In this paper, we report our submission sys-
tems (geoduck) to the Timely Disclosure task
on the 6th Workshop on Asian Translation
(WAT) (Nakazawa et al., 2019). Our sys-
tem employs a combined approach of trans-
lation memory and Neural Machine Transla-
tion (NMT) models, where we can select fi-
nal translation outputs from either a translation
memory or an NMT system, when the similar-
ity score of a test source sentence exceeds the
predefined threshold. We observed that this
combination approach significantly improves
the translation performance on the Timely Dis-
closure corpus, as compared to a standalone
NMT system. We also conducted source-
based direct assessment on the final output,
and we discuss the comparison between hu-
man references and each system’s output.

1 Introduction

One of the desired features in automatic transla-
tion systems is the ability to flexibly make use of a
translation memory to translate known sentences
and phrase, while still allowing a more flexible
Machine Translation (MT) model to translate less-
familiar phrases and sentences without sacrific-
ing quality. Koehn and Senellart (2010) explored
methods of combining translation memories with
statistical machine translation, and proposed a
method to apply phrase fixing on the translation
candidate retrieved from the translation memory.
As for statistical machine translation models, Neu-
ral Machine Translation (NMT) models have been
nowadays employed in large-scale production MT
systems (Johnson et al., 2017; Hassan et al., 2018)
due to its state-of-the-art performance in many
languages.

There are several studies that combine trans-
lation memories with NMT models. Cao and
Xiong (2018) introduced the idea of using a trans-

Figure 1: Overview of our proposed approach combin-
ing translation memory and NMT models.

lation memory gating network with NMT mod-
els in a multi-encoder fashion so that the model
can make full use of both training data and the re-
trieved data. Zhao et al. (2018) created phrase ta-
bles as recommendation memory and let the NMT
models select the better translation. In Gu et al.
(2018), the authors proposed a search-engine-
guided NMT model, where a search engine first
collects a small subset of relevant training transla-
tion pairs from the translation memory and NMT
models are trained on the subset as well.

In this paper, we combine a translation mem-
ory with an NMT model, simply choosing either
the translation memory output or NMT output at
inference time, depending on a similarity score
of a given source sentence, and then investigate
the effectiveness of this strategy. Figure 1 illus-
trates an overview of our proposed architecture.
In Section 2, we first conduct an analysis of the
Timely Disclosure task data set and report inter-
esting characteristics. In Section 3, we explain our
approach of combining a translation memory with
an NMT model. We describe our experimental de-
sign in Section 4, and we report experimental re-
sults, human evaluation analyses, and discussion
in Section 5. In Section 6, we conclude by sum-
marizing our findings on the task and contributions
of the paper.
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size # (Ja) # (En)

Train. 1,403,995 583,805 709,358
Dev. 3,998 3,518 3,752
Devtest 4,014 3,753 3,483
Test 3,277 2,898 —–

Table 1: Data statistics of Timely Disclosure Docu-
ments Corpus. # denotes the number of unique sen-
tences in each language.

2 Analysis of Timely Disclosure
Documents Corpus

We first analyzed the data set for the Timely Dis-
closure Task1 to better understand trends in the
data set. The corpus consists of past years’ timely
disclosure documents, and contains about 1.4 mil-
lion Japanese-English sentence pairs. Table 1 re-
ports the statistics of the full corpus. Here, we
show the total size of parallel corpora, as well as
the number of unique Japanese (Ja) and English
(En) sentences in each data set. From this table,
we can observe a large number of duplicated train-
ing examples on both the source and target sides.
We also checked for duplicates between training
data (Train.), development (Dev.) and devtest (De-
vtest), and found respectively 1,047 and 1,117 du-
plicated translation pairs between Train. and Dev.
/ Devtest data sets. Note that unique hash values
are given to all translation pairs, which guarantees
that these sentence-level translation pairs are inde-
pendently sampled from the original documents.
This finding is our motivation for combining trans-
lation memory retrieval with NMT models, and we
investigate if this leads to an improvement in trans-
lation quality.

3 Combining Translation Memory with
Neural Machine Translation

As observed in Section 2, approximately 26% of
the development data set and 28% of the devtest
data set are exact duplicates on both source and
target of a sentence pair in the training data set.
Considering this characteristic of the evaluation
data sets, we use the entire training data set as a
translation memory and allow the system to di-
rectly retrieve a translation candidate for each test
sentence based on the best similarity score. If

1http://lotus.kuee.kyoto-u.ac.jp/WAT/
Timely_Disclosure_Documents_Corpus/

there is no translation candidates in the transla-
tion memory whose similarity score exceeds the
threshold, we let the NMT models generate a
translation and use it as a final output. We would
like to mention that this kind of translation sce-
nario is not specific to this task data set but also
is common in other domain text translations like
a software manual. We aim at investigating when
to and when not to translate from scratch in such
scenarios.

3.1 Retrieval Approaches on Translation
Memory

The retrieval approach on the translation memory
is useful, since it is well known that NMT mod-
els are data-hungry and it is difficult to control the
translation outputs generated by NMT models. At
inference time, we calculate a sentence-level sim-
ilarity score between a query, i.e. a given source
sentence, and all the source sentences stored in the
translation memory. If there exists a source sen-
tence in the translation memory whose similarity
score is above the threshold, we employ its tar-
get sentence as a final output. In our systems, we
provide two types of retrieval approaches: 1) Edit-
distance-based retrieval and 2) Inverse document
frequency(IDF)-based retrieval.

Edit-distance-based retrieval The edit-
distance-based retrieval is a widely-used method
in work that investigates using translation mem-
ories to enhance NMT models (Gu et al., 2018;
Cao and Xiong, 2018). We calculate the similarity
score between two source sentences (S1 and S2)
using the character-based Levenshtein distance as
follows:

Simedit(S1, S2) = 1− ∆dist(S1, S2)

max (|S1|, |S2|)
, (1)

where ∆dist indicates the Levenshtein distance of
sentences S1 and S2. |S| denotes the length of a
sentence S.

IDF-based retrieval An IDF-based retrieval ap-
proach was investigated by Bapna and Firat
(2019). Following the previous work, we calcu-
late a sentence-level similarity score by using an
IDF score ft of a token t as follows:

Simidf (S1, S2) = 2×
∑

t∈(S1
⋃

S2)

ft

−
∑

t∈(S1
⋂

S2)

ft,
(2)

http://lotus.kuee.kyoto-u.ac.jp/WAT/Timely_Disclosure_Documents_Corpus/
http://lotus.kuee.kyoto-u.ac.jp/WAT/Timely_Disclosure_Documents_Corpus/
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ft = log
|CTM |
nt

, (3)

where |CTM | is the number of sentence pairs in
the translation memory. nt denotes the number
of occurrences of a token t in the corpus. In
our preliminary experiments, we found that using
sub-words for a token unit t is better than char-
acters. We also tried IDF-based n-gram retrieval
proposed in (Bapna and Firat, 2019); however,
the two above-mentioned retrieval methods always
worked better.

3.2 Neural Machine Translation
We employ a Transformer (base) model (Vaswani
et al., 2017) as a default NMT system in our
proposed approach. Transformer is modeled as
an encoder-decoder network architecture, where
an input sentence x = (x1, x2, . . . , xn) is en-
coded into a fixed vector space and decoded
from the fixed vector to the output sequence
y = (y1, y2, . . . , ym). Following Vaswani et al.
(2017), the inputs are mapped into the 512-
dimensional embedding space with positional em-
bedding. Both the encoder and decoder networks
map the vectors through 6-layer 2048-dimensional
feed-forward networks with 8-head self-attention
and layer-normalization (Ba et al., 2016), and
the decoder has an 8-head attention layer before
the feed-forward network layer between the tar-
get hidden state and the source hidden states. We
shared the parameters across the target embed-
dings and a softmax layer in the decoder (Inan
et al., 2017; Hashimoto and Tsuruoka, 2017). To
avoid overfitting, we use dropout with the rate
of 0.1 and introduce the label-smoothed cross en-
tropy loss with the coefficient of 0.1 (Pereyra et al.,
2017). We use Adam (Kingma and Ba, 2015) to
optimize all model parameters. We apply warm-up
learning rate scheduling, increasing the learning
rate linearly during predefined warm-up updates
and applying learning rate decay based on the in-
verse square root of the update number (Vaswani
et al., 2017).

4 Experimental Design

Data Preparation All of the training corpora
provided for ITEM and TEXT data are concate-
nated into a single training corpus. We also use
the 1M Japanese-English Wikipedia parallel cor-
pus provided by Asai et al. (2018) as an additional
training resource. The corpus is automatically

created by crawling multilingual Wikipedia pages
and applying a sentence aligner. Because the par-
allel data in that corpus are pre-tokenized, we ap-
plied a detokenization script on both sides. In pre-
liminary experiments, we confirmed that using the
additional Wikipedia training data improved trans-
lation accuracy on the task.

All of the data sets are tokenized using
SentencePiece (Kudo and Richardson, 2018),
and we set the vocabulary size to 32k. To deter-
mine the optimal sentence-similarity threshold in
the retrieval approaches, we evaluated the systems
based on sacreBLEU score (Post, 2018) with
thresholds varying within {80, 100} and {10, 25}
for THRESHOLDedit and THRESHOLDIDF , re-
spectively. The best thresholds for each NMT sys-
tem are determined based on the development re-
sults. When tuning our submission systems, we
perform the threshold optimization on the devtest
data, and the development data is added into the
translation memory.

System Description A (Marian) We use a
codebase of Marian (Junczys-Dowmunt et al.,
2018) to train the Transformer model described
in Subsection 3.2. In System A, we set the mini-
batch size to 1,000. The initial learning rate and
warm-up steps are set to 0.0002 and 8,000. The
maximum length of the training examples is set to
100, and 0.4% training data are discarded during
the training. We trained the system for 200k up-
dates with 8 GPUs. Regarding data preprocessing,
we create a joint vocabulary with the size of 32k.
We refer System A as “Marian” after this.

System Description B (Fairseq) We use a vo-
cabulary set separately created in the source and
target languages, and each vocabulary size is set to
32k. We fill a mini-batch with up to 6,000 tokens,
and we use the initial learning rate of 1e-07 and
warm-up updates of 2,000. We trained the model
for 80k updates with 4 GPUs. We use a codebase
of Fairseq (Ott et al., 2019). We refer System B
as “Fairseq” in the following sections. At infer-
ence time, we use the beam-search decoding with
the size of {4, 8, 12} and select the best beam size
based on the development results for both systems.

Large-scale Black-box MT systems To verify
the effectiveness of using translation memory on
the task, we experiment by using three types
of production-level black-box MT systems, i.e.
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Dev. Devtest

Marian 48.6 50.6
Fairseq 40.9 42.2
Online A 24.8 24.8
Online B 24.5 24.4
Online C 24.5 24.5

Table 2: General translation accuracy of each system
on the concatenated data (ITEM+TEXT).

Google Translate2, Microsoft Bing Translator3,
and Mirai Translate4. More concretely, we re-
place our MT outputs with those of the production
MT systems and evaluate the translation perfor-
mance. These online MT systems are anonymized
into Online A, Online B and Online C in a random
order after this section.

5 Results and Discussion

5.1 Experimental Results
First of all, we evaluate the overall translation
accuracy of each NMT system and production
system on the concatenated data (ITEM+TEXT).
Table 2 reports the case-sensitive sacreBLEU
scores of the NMT systems and the production
systems without translation memory. Marian
shows the best BLEU score on both development
and devtest datasets. The reason for this can be
that Marian as an over-trained model translates
better on the duplicates. We also see huge gaps
between our white-box NMT systems and online
black-box MT systems at least by 16.1 and 17.4
BLEU scores on development and devtest data
sets, respectively. The three online systems show
equivalent accuracy with each other due to lacking
the training examples of the task.

Table 3 shows the experimental results of our
proposed approach using the translation memory,
reporting the sacreBLEU scores on the ITEM and
TEXT evaluation data sets. The best retrieval ap-
proach is different for those two data sets. We
found that in general, edit-distance-based retrieval
produces better results for ITEM data, while the
IDF-based retrieval works better for TEXT data.
The only exception to this was Online C on

2https://translate.google.com/, as of July,
2019.

3https://www.bing.com/translator, as of
July, 2019.

4https://miraitranslate.com/en/ as of July,
2019.

threshold Dev. Devtest

ITEM

Marian 89 54.1 58.1
Fairseq 89 53.3 57.0
Online A 83 51.2 55.6
Online B 80 51.8 55.8
Online C 83 51.6 55.6

TEXT

Marian 18 57.7 57.9
Fairseq 14 57.1 57.6
Online A 15 55.9 56.7
Online B 10 55.6 56.4
Online C 80 55.7 56.8

Table 3: BLEU results of our proposed approach on
the evaluation data sets (ITEM and TEXT).

threshold Devtest. Test

ITEM
Marian 95 57.5 54.27
Fairseq 89 56.6 50.90

TEXT
Marian 21 58.0 61.38
Fairseq 18 57.7 51.08

Table 4: BLEU results on the evaluation data sets
(ITEM and TEXT). We employed edit-distance-based
and IDF-based retrieval approaches for evaluation on
the ITEM and TEXT data sets, respectively. The
BLEU scores on the test set are cited from the official
leader board (http://lotus.kuee.kyoto-u.
ac.jp/WAT/evaluation/).

TEXT. Higher sentence-similarity thresholds were
selected for Marian and Fairseq with the ITEM
data, indicating that the outputs generated by these
systems show better quality than those by the on-
line systems. Introducing the translation memory
to the systems outputs, however, we can largely
fill the gaps between our systems and the online
systems by around 1-2 BLEU scores on both eval-
uation data sets.

Table 4 shows the results of our submission
systems on the devtest and test data sets, where
Fairseq provides the result of an ensemble with 4
replicas. We include the development translation
pairs in the translation memory, and selected the
threshold to use on the test data based on scores
on the devtest data set.

5.2 Human Evaluation

We used source-based direct assessment for hu-
man evaluation, as described in Cettolo et al.

https://translate.google.com/
https://www.bing.com/translator
https://miraitranslate.com/en/
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/
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(a) ITEM Score Distribution (b) TEXT Score Distribution

Figure 2: Human Evaluation Score Distributions

(2017). For the annotation process, we used an up-
dated version of Appraise (Federmann, 2012), the
human evaluation tool used for the Conference on
Machine Translation (WMT)5, and we followed
the evaluation campaign setup as specified in Has-
san et al. (2018). In source-based direct assess-
ment, annotators are shown source text and a can-
didate translation and are asked the question “How
accurately does the above candidate text convey
the semantics of the source text?”, answering this
using a slider ranging from 0 (Not at all) to 100
(Perfectly).

In this campaign we examined five systems:
Marian, Fairseq, Online A, Online B and Online
C. We also added human reference (HREF) to the
campaign for comparison. Table 5 shows the eval-
uation campaign parameters. We hired 25 bilin-
gual crowd-sourced annotators and assigned two
tasks to each. We collected a single score for
each of the randomly selected translations on each
system. There were no overlapping annotation
items among annotators. For the ITEM testset,
we obtained at least 873 assessments for each sys-
tem6. Likewise we obtained 511 assessments for
the TEXT testset. We collected a total of 8,308
annotation data points.

Table 6 shows the mean scores for ITEM, TEXT
and ALL (ITEM+TEXT) for each system. A bold-
faced number indicates that the mean score is in-
distinguishable from HREF in the same category
(ITEM, TEXT or ALL) using the Mann-Whitney
U Test at p-level p < 0.05. Figures 2a and 2b
show the evaluation score distributions for ITEM
and TEXT, respectively.

5http://www.statmt.org/wmt19/
6We obtained 874 assessments for some systems.

Testset: Devtest
Annotators: 25
Tasks: 50
Redundancy: 1
Task per Annotator: 2
Data points: 8308

Table 5: Human Evaluation Campaign Parameters

ITEM TEXT ALL

HREF 73.4 71.0 72.5

Fairseq 73.2 66.5 70.8
Marian 73.0 66.3 70.5
Online A 71.9 69.2 70.9
Online B 71.4 68.2 70.2
Online C 71.7 67.1 70.0

Table 6: Human Evaluation results. The boldfaced
numbers indicate that they are indistinguishable from
HREF at p-level p < 0.05.

5.3 Discussion

The human evaluation results indicate that the
translation quality of each system is comparable
with human reference for the ITEM testset while
the differences were statistically significant for the
TEXT testset. One possible reason for this is
that the retrieval approach using the translation
memory works better for shorter sentence transla-
tion in the ITEM dataset but not for longer sen-
tence translation in the TEXT dataset. The av-
erage English sentence length of the ITEM de-
vtest is 7.7, whereas that of the TEXT devtest
is 25.6. Regarding the number of unique words,
the ITEM data contains 22,453 vocabulary items,

http://www.statmt.org/wmt19/
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# ITEM

Source — 依頼者提示資料に基づき査定

HREF 28 Based on materials provided by IIA

Fairseq 99 Assessed based on documents presented by the requester.
Marian 99 Assessed based on documents presented by the requester.
Online A 99 Assessed based on documents presented by the requester.
Online B 99 Assessed based on documents presented by the requester.
Online C 99 Assessed based on documents presented by the requester.

Table 7: Translation examples of each system on the devtest data set (ITEM) that obtain a higher evaluation score
than the human reference. “#” denotes the human evaluation score. All the translations are retrieved from the
translation memory.

# TEXT

Source — なお、当社は平成31年3月期の配当予想を年間配当金62円00銭といたしました。

HREF 97
In addition, the Company made an annual dividend of 62.00 yen for the fiscal year
ending March 31, 2019.

Fairseq 96 The dividend forecast for the fiscal year ending March 31, 2019 is 62.00 yen per share.

Marian 95
The Company’s dividend forecast for the fiscal year ending March 31, 2019 is projected
to be Y=62.00 per share.

Table 8: Translation examples of each system on the devtest data set (TEXT) that are highly evaluated by human
annotators. The column of “#” reports the human evaluation score of each output. Both translation outputs are
generated by the NMT models.

while the TEXT datasets does 28,507. These dif-
ferent trends between the ITEM and TEXT data
suggest that the systems are required to translate
relatively fixed phrases or sentences more in the
ITEM data set, which is a suitable scenario for
translation memories. On the other hand, it also
suggests that MT is more desirable in the cases
where long sentences with a variety of expressions
need to be translated. However, this is not always
the case for the TEXT translations with our sys-
tems because longer sentences which may contain
major semantic errors can be chosen due to their
high similarity scores. Tables 7 and 8 show each
system’s translation outputs and its human eval-
uation score on the devtest data set (ITEM and
TEXT).

Our approach of combining a translation mem-
ory with MT systems is evaluated lower than
the human reference by human annotators on the
TEXT data, whereas the online systems are more
highly evaluated among all the systems. It is be-
cause those production systems are better at trans-
lating longer sentences due to much larger training
corpora. For instance, Google Translate is trained
on three or four orders of magnitudes larger train-

ing data (Johnson et al., 2017), and such a sys-
tem should cover a variety of expressions and
domains. Thus, it is still important to improve
the translation quality of NMT models on longer
sentences, which has been actively studied in the
context of document-level translation (Jean et al.,
2017; Tiedemann and Scherrer, 2017; Junczys-
Dowmunt, 2019).

6 Conclusion

This paper describes our submission systems to
WAT’19 Timely Disclosure task. The system is a
combination approach of translation memory and
NMT model. First, we observed that 26-28% of
data are duplicated between training data and test
sets. The system enables us to directly retrieve a
translation candidate from the translation memory.
Any MT model can be applied to our approach,
and we confirmed its effectiveness even when us-
ing black-box MT production systems. Results
from the human evaluation campaign demonstrate
that translation on a fixed form or short expres-
sions can be covered well with translation mem-
ory, while NMT is much more robust especially
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when flexible translation on longer sentences is re-
quired.
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