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Abstract

This paper describes Facebook AI’s submis-
sion to the WAT 2019 Myanmar-English trans-
lation task (Nakazawa et al., 2019). Our base-
line systems are BPE-based transformer mod-
els. We explore methods to leverage monolin-
gual data to improve generalization, including
self-training, back-translation and their com-
bination. We further improve results by us-
ing noisy channel re-ranking and ensembling.
We demonstrate that these techniques can sig-
nificantly improve not only a system trained
with additional monolingual data, but even the
baseline system trained exclusively on the pro-
vided small parallel dataset. Our system ranks
first in both directions according to human
evaluation and BLEU, with a gain of over 8
BLEU points above the second best system.

1 Introduction

While machine translation (MT) has proven very
successful for high resource language pairs (Ng
et al., 2019; Hassan et al., 2018), it is still an open
research question how to make it work well for
the vast majority of language pairs which are low
resource. In this setting, relatively little parallel
data is available to train the system and the trans-
lation task is even more difficult because the lan-
guage pairs are usually more distant and the do-
mains of the source and target language match less
well (Shen et al., 2019).

English-Myanmar is an interesting case study
in this respect, because i) the language of Myan-
mar is morphologically rich and very different
from English, ii) Myanmar language does not bear
strong similarities with other high-resource lan-
guages and therefore does not benefit from multi-
lingual training, iii) there is relatively little paral-
lel data available and iv) even monolingual data in
Myanmar language is difficult to gather due to the
multiple encodings of the language.
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Motivated by this challenge, we participated in
the 2019 edition of the competition on Myanmar-
English, organized by the Workshop on Asian
Translation. This paper describes our submission,
which achieved the highest human evaluation and
BLEU score (Papineni et al., 2002) in the compe-
tition.

Following common practice in the field, we
used back-translation (Sennrich et al., 2015) to
leverage target side monolingual data. However,
the domain of Myanmar monolingual data is very
different from the test domain, which is English
originating news (Shen et al., 2019). Since this
may hamper the performance of back-translation,
we also explored methods that leverage monolin-
gual data on the source side, which is in-domain
with the test set when translating from English
to Myanmar. We investigated the use of self-
training (Yarowski, 1995; Ueffing, 2006; Zhang
and Zong, 2016; He et al., 2019) which augments
the original parallel data with synthetic data where
sources are taken from the original source mono-
lingual dataset and targets are produced by the cur-
rent machine translation system. We show that
self-training and back-translation are often com-
plementary to each other and yield additional im-
provements when applied in an iterative fashion.

In fact, back-translation and self-training can
also be applied when learning from the paral-
lel dataset alone, greatly improving performance
over the baseline using the original bitext data.
We also report further improvements by swap-
ping beam search decoding with noisy channel re-
ranking (Yee et al., 2019) and by ensembling.

We will start by discussing the data preparation
process in §2, followed by our model details in §3
and results in §4. We conclude with some final re-
marks in §5. In Appendix A we report training de-
tails and describe the methods that have not proved
useful for this task in Appendix B.
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2 Data

In this section, we describe the data we used for
training and the pre-processing we applied.

2.1 Parallel Data

The parallel data was provided by the organizers
of the competition and consists of two datasets.
The first dataset is the Asian Language Treebank
(ALT) corpus (Thu et al., 2016; Ding et al., 2018,
2019) which consists of 18,088 training sentences,
1,000 validation sentences and 1,018 test sen-
tences from English originating news articles. In
this dataset, there is a space character separating
each Myanmar morpheme (Thu et al., 2016).

The second dataset is the UCSY dataset' which
contains 204,539 sentences from various domains,
including news articles and textbooks. The orig-
inating language of these sentences is not speci-
fied. Unlike the ALT dataset, Myanmar text in the
UCSY dataset is not segmented and contains very
little spacing as it is typical in this language.

The organizers of the competition evaluate sub-
mitted systems on the ALT test set.

We denote the parallel dataset by P = {X,Y'}.

2.2 Monolingual Data

We gather English monolingual data by taking a
subset of the 2018 Newscrawl dataset provided
by WMT (Barrault et al., 2019), which contains
approximately 79 million unique sentences. We
choose Newscrawl data to match the domain of the
ALT dataset, which primarily contains news orig-
inating from English sources.

For Myanmar language, we take five snapshots
of the Commoncrawl dataset and combine them
with the raw data from Buck et al. (2014). After
de-duplication, this resulted in approximately 28
million unique lines. This data is not restricted to
the news domain.

We denote by Mg the source monolingual
dataset and by M7 target monolingual dataset.

2.3 Data Preprocessing

The Myanmar monolingual data we collect
from Commoncrawl contains text in both Uni-
code and Zawgyi encodings. We use the
myanmar—tools? library to classify and con-

1http://lotus.kuee.kyoto—u.ac.jp/WAT/
my—-en—data/

https://github.com/google/
myanmar—-tools
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vert all Zawgyi text to Unicode. Since text clas-
sification is performed at the document level, the
corpus is left with many embedded English sen-
tences, which we filter by running the fastText
classifier (Joulin et al., 2017) over individual sen-
tences.

We tokenize English text using Moses (Koehn
et al., 2007) with aggressive hyphen splitting.
We explored multiple approaches for tokenizing
Myanmar text, including the provided tokenizer
and several open source tools. However, initial
experiments showed that leaving the text untok-
enized yielded the best results. When generat-
ing Myanmar translations at inference time, we
remove separators introduced by BPE, remove all
spaces from the generated text, and then apply the
provided tokenizer?.

Finally, we use SentencePiece (Kudo and
Richardson, 2018) to learn a BPE vocabulary of
size 10,000 over the combined English and Myan-
mar parallel text corpus.

3 System Overview

Our architecture is a transformer-based neu-
ral machine translation system trained with
fairseqg* (Ott et al., 2019). We tuned model
hyper-parameters via random search over a range
of possible values (see Appendix A for details).
We performed early stopping based on perplexity
on the ALT validation set, and final model hyper-
parameter selection based on the BLEU score on
the same validation set. We never used the ALT
test set during development, and only used it for
the final reporting at submission time.

Next, we describe several enhancements to this
baseline model (§3.1) and to the decoding process
(§3.2). We also describe several methods for lever-
aging monolingual data, including our final itera-
tive approach (§3.3).

3.1 Improvements to the Baseline Model

We improve our baseline neural machine transla-
tion system with: tagging (Sennrich et al., 2016;
Kobus et al., 2016; Caswell et al., 2019), fine-
tuning and ensembling.

Tagging: Since our test set comes from the ALT
corpus and our training set is composed by sev-

*myseg.py can be found in the parallel dataset file
on the page http://lotus.kuee.kyoto-u.ac.jp/
WAT/my-en-data/

*nttps://github.com/pytorch/fairseq
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eral datasets from different domains, we prepend
to the input source sentence a token specifying
the domain of the input data. We have a total of
four domain tokens, indicating whether the input
source sentence comes from the ALT dataset, the
UCSY dataset, the source monolingual data or if
it is a back-translation of the target monolingual
data (see §3.3 for more details).

Fine-tuning: The models submitted for final
evaluation have also been fine-tuned to the train-
ing set of the ALT dataset, as a way to better adapt
to the domain of the test set. Fine-tuning is early-
stopped based on BLEU on the validation set.

Ensembling: Finally, since we tune our model
hyper-parameters via randomized grid search, we
are able to cheaply build an ensemble model
from the top k best performing hyper-parameter
choices. Ensembling yielded consistent gains of
about 1 BLEU point.

3.2 Improvements to Decoding

Neural machine translation systems typically em-
ploy beam search decoding at inference time
to find the most likely hypothesis for a given
source sentence. In this work, we improve
upon beam search through noisy-channel rerank-
ing (Yee et al.,, 2019). This approach was a
key component of the winning submission in
the WMT 2019 news translation shared task
for English-German, German-English, English-
Russian and Russian-English (Ng et al., 2019).

More specifically, given a source sentence z and
a candidate translation y, we compute the follow-
ing score:

log P(y|xz) + A1log P(z|y) + A2log P(y) (1)

where log P(y|x), log P(x|y) and log P(y) are
the forward model, backward model and language
model scores, respectively. This combined score
is used to rerank the n-best target hypotheses pro-
duced by beam search. In our experiments we set
n to 50 and output the highest-scoring hypothesis
from this set as our translation. The weights \;
and )9 are tuned via random search on the valida-
tion set. The ranges of values for \; and A\ are
reported in Appendix A.

Throughout this work we use noisy channel
reranking every time we decode, whether it is to
generate forward or backward translations or to
generate translations from the final model for eval-
uation purposes.
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Model My—En En—My
P — beam 25.1 359
P — reranking 26.3 36.9
P U M7, beam — beam 322 38.8
P U M, reranking — beam 325 389
P U M, reranking — reranking 35.2 394

Table 1: Effect of noisy channel reranking when eval-
uating on the validation set. On the left of the "—”
symbol there is the dataset used to train the system and
the decoding process used to generate back-translated
data (if any). On the right of the ”—" symbol there is
the decoding process used to generate hypotheses from
the forward model. P refers to the parallel dataset and
M refers to the target monolingual dataset.

Our language models are also based on the
transformer architecture and follow the same setup
as Radford et al. (2018). The English language
model is trained on the CC-News dataset (Liu
et al., 2019) and consists of 12 transformer lay-
ers and a total of 124M parameters. The Myan-
mar language model is first trained on the Com-
moncrawl monolingual data and then fine-tuned
on the Myanmar portion of the ALT parallel train-
ing data; it consists of 6 transformer layers and
70M parameters. For our constrained submission,
which does not make use of additional data, we
trained smaller transformer language models for
each language (5 transformer layers, 8M parame-
ters) using each side of the provided parallel cor-
pus. For both directions, we observed gains when
applying noisy channel reranking, as shown in Ta-
ble 1.

3.3 Leveraging Monolingual Data

In this section we describe basic approaches to
leverage monolingual data. Notice however that
these methods also improve system performance
in the absence of additional monolingual data (i.e.,
by reusing the available parallel data), see §4.1.

We denote by f and ‘g the forward (from
source to target) and the backward (from target to
source) machine translation systems.

Back-translation (BT) (Sennrich et al., 2015)
is an effective data augmentation method lever-
aging target side monolingual data. To perform
back-translation, we first train ‘g on {Y, X} and
use it to translate M to produce synthetic source
side data, denoted by ‘g (M ). We then concate-
nate the original bitext data { X, Y’} with the back-
translated data {‘g (M), M} and train the for-
ward translation model from scratch. We typi-



Model My—En En—My

BT 33.1 39.5
ST 33.2 39.9
BT + ST 34.1 40.3

Table 2: Combining BT and ST yields better BLEU
score than BT and ST.

cally upsample the original parallel data, with the
exact rate tuned together with the other hyper-
parameters on the validation set (see Appendix A
for the upsample ratio range).

Self-Training (ST) (Ueffing, 2006; Zhang and
Zong, 2016; He et al., 2019) instead augments
the original parallel dataset P = {X,Y} with
synthetic pairs composed by a sentence from
the source monolingual dataset with the cor-
responding forward model translation as target,
{Ms, 7(/\43)} The potential advantage of this
method is that the source side monolingual data
can be more in-domain with the test set, which
is the case for the English to Myanmar direction.
The shortcoming is that synthetic targets are often
incorrect and may deteriorate performance.

Combining BT + ST: Self-training and back-
translation are complementary to each other. The
former is better when the source monolingual data
is in-domain while the latter is better when the tar-
get monolingual data is in-domain, relative to the
domain of the test set.

In Table 2, we show that these two approaches
can be combined and yield better performance
than either method individually. Specifically, we
combine bitext data together with self-trained and
back-translated data, { X, Y }U{g (M7), M7}U
{Ms, f(Ms)}. As for BT, we upsample the
bitext data, concatenate it with the forward and
backward translations and train a new forward
model from scratch. The upsample ratios for each
dataset are tuned via hyper-parameter search on
the validation set.

3.3.1 Final Iterative Algorithm

The final algorithm proceeds in rounds as de-
scribed in Alg. 1. At each round, we are provided
with a forward model and a backward model
g. The forward model translates source side
monolingual data (line 6). This is used as forward-
translated data to improve the forward model, and
as back-translated data to improve the backward

model. Similarly, the backward model is used
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1 Data: Given a parallel dataset { X, Y}, a source
monolingual dataset Ms and a target

monolingual dataset M
Given an initial forward model ? and backward model
‘g trained on {X,Y'};
Let N be the number of hyper-parameter configurations
evaluated during random search;
Let k be the number of models used in the ensemble;
fortin[1...T]do
forward-translated data: F <+— 7(/\/!5);
back-translated data: B «+— g (M71);

{?i}i=1mN <— random search using:
{X,)Y}U{Ms, F}U{B,Mr};
{?i}i=1mN <— random search using:
{Y, X} U{F, Ms} U{M7,B}:
if t == T then
Fine-tune {?i}izlmN and {7, }i=1...v on
the in-domain ALT dataset;
end

10
11

? <— ensemble of top k best models from

{?i}izlmN;

G +— ensemble of top k best models from
{?i}izlmN;

12

13

end

Result: Forward MT system ? and backward MT
system ‘g
Algorithm 1: Iterative Learning Algorithm

to back-translate target monolingual data (line 7).
This data is then used to improve the forward
model via back-translation, but also the backward
model via self-training. All these datasets are con-
catenated and weighted to train new forward and
backward models (see lines 8 and 9). At the very
last iteration, models are fine-tuned on the ALT
training set (line 11 and 12), and either way, the
best models from the random search are combined
into an ensemble to define the new forward and
backward models (line 13 and 14) to be used at
the next iteration. This whole process of gener-
ation and training then repeats as many times as
desired. In our experiments we iterated at most
three times.

4 Results

In this section we report validation BLEU scores
for the intermediate iterations and ablations, and
test BLEU scores only for our final submission.
Details of the model architecture, data process-
ing and optimization algorithm are reported in Ap-
pendix A.

Our baseline system is trained on the provided
parallel datasets with the modeling extensions de-
scribed in §3.1. According to our hyper-parameter
search, the optimal upsampling ratio of the smaller
in-domain ALT dataset is three and the best for-



Description My — En | En - My Description My — En | En -+ My

1 | Baseline (single) 23.3 349 Baseline (ensemble) 25.1 359
Baseline + reranking 27.7 36.9

2 (ensemble) 251 359 +iter. 1 of ST + BT 35.5 40.1

3 | 2 + reranking 26.3 36.9 +iter. 2 of ST + BT 36.9 40.4

4| 3+ST 26.4 38.2 +iter. 3 of ST + BT 379 40.6

5| 3+BT 26.5 36.9

6 | 3+(ST+BT) 27.0 38.1 Table 4: BLEU scores of systems trained using addi-

Table 3: BLEU scores of systems trained only on the
provided parallel datasets.

ward and backward model have 5 encoder and 5
decoder transformer layers, where the number of
attention heads, embedding dimension and inner-
layer dimension are 4, 512, 2048, respectively.
Each single model is trained on 4 Volta GPUs for
1.4 hours. We refer to this model as the “Baseline”
in our result tables.

4.1 System Trained on Parallel Data Only

We submitted a machine translation system that
only uses the provided ALT and UCSY parallel
datasets, without any additional monolingual data,
results are reported in Tab. 3. The baseline system
achieves 23.3 BLEU points for My—En and 34.9
for En—+My . Ensembling 5 models yields +1.8
BLEU points gain for My—En and +1.0 point for
En—My . To apply noisy channel reranking, we
train language models using data from the ALT
and UCSY training set. The language model archi-
tectures are the same for both languages, each has
5 transformer layers, 4 attention heads, 256 em-
bedding dimensions and 512 inner-layer dimen-
sions. Noisy channel ranking yields a gain of
+1.2 BLEU points for My—En and +1.0 points
for En—My on top of the ensemble models.

To further improve generalization, we also
translated the source and target portion of the par-
allel dataset using the baseline system in order
to collect forward-translations of source sentences
and back-translations of target sentences. Based
on our grid search, we then train a different model
architecture than the baseline system, consisting
of 4 layers in encoder and decoder, 8 attention
heads, 512 embedding dimensions and 2048 inner-
layer dimensions. Each model is trained on 4 Volta
GPUs for 2.8 hours. In this case, we train only for
one iteration and we ensemble 5 models for each
direction followed by reranking.

By applying back-translation and self-training
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tional monolingual data.

to the parallel data we obtain an additional gain
of 4+0.7 points for My—En and +1.2 points for
En—My over the baseline model. We also find
that combining back-translation and self-training
is beneficial for My—En direction, where we at-
tain an increase of +-0.5 BLEU compared to ap-
plying each method individually. The final BLEU
scores on test set are 26.8 for My—En and 36.8
for En—My .

4.2 System Using Also Monolingual Data

The results using additional monolingual data are
reported in Tab. 4. Starting from the ensemble
baseline of the previous section, noisy channel
reranking now yields a bigger gain for My—En ,
+2.64 points, since the language model is now
trained on much more in-domain target monolin-
gual data.

Using the ensemble and the additional mono-
lingual data, we apply back-translation and self-
training for three iterations. For each iteration, we
use the best model from the previous iteration to
translate monolingual data with noisy channel re-
ranking. As before, we combine the original par-
allel data with the two synthetic datasets, and train
models from random initialization. We search
over hyper-parameters controlling the model ar-
chitecture whenever we add more monolingual
data.

At the first iteration we back-translate 18M En-
glish sentences from Newscrawl and 23M Myan-
mar sentences from Commoncrawl. The best
model architecture has 6 layers in the encoder
and decoder, where the number of attention heads,
embedding dimension and inner-layer dimension
are 1024, 4096, 8, respectively. Each model is
trained on 4 Volta GPUs for 17 hours. Ensem-
bling two models for My—En and three mod-
els for En—My strikes a good trade-off between
translation quality and decoding efficiency to gen-
erate data for the next iteration. The re-ranked



Description (My — En) | BLEU | Adequacy Description (En —+ My) | BLEU | Adequacy
FBAI 38.6 4.4 FBAI 39.3 3.9
Teaml1 30.2 4.0 FBAI 36.8 -
FBAI 26.8 - Team A 31.3 2.4
Team?2 24.8 2.8 Team B 30.8 2.7
Team3 19.6 1.3 Team C 30.8 -
Team4 18.5 - Team D 28.2 -
Team5 14.9 - Team F 259 -
Team6 10.7 - Team G 22.5 -
Team H 20.9 1.1
Table 5: My—En leaderboard’. The values are BLEU Team I 19.9 _

score (second column) and Adequacy scores (third col-
umn). Rows highlighted in yellow identify systems that
make use of additional monolingual data. Our system
is tagged as FBAL

ensemble improves by +7.78 BLEU points for
My—En compared to best supervised model, and
+3.18 points for En—My .

At the second iteration, we use the same amount
of monolingual data of iteration 1 and repeat the
same exact process. The model architecture is the
same as in the first iteration. We ensemble two
models for My—En and use a single model for
En—My . We further improve upon the previous
iteration by +1.41 points for My—En and +0.27
points for En—My .

At the third and last iteration, we use more
monolingual data for both languages, 28M Myan-
mar sentences and 79M English sentences. We
found beneficial (Ng et al., 2019) at this iteration
to increase FFN dimension to 8192 and the num-
ber of heads to 16. Each model is trained on 8
Volta GPUs for 30 hours. After training mod-
els on the parallel and synthetic datasets, we fine-
tune each of them on the ALT training set, fol-
lowed by ensembling. We ensemble 5 models for
both directions and apply noisy channel re-ranking
as our final submission. Compared to iteration 2
models, the final models yield +0.94 points gain
for My—En and +0.26 points for En—+My . The
BLEU scores of this system on the test set are
38.59 for My—En and 39.25 for En—My .

4.3 Final Evaluation

Tables 5 and 6 report the leaderboard results pro-
vided by the organizers of the competition. For
each direction, they selected the best system of

Shttp://lotus
evaluation/list
Shttp://lotus
evaluation/list

.kuee.kyoto-u.ac. jp/WAT/
.php?t=70&0=4
.kuee.kyoto-u

.php?t=71&0=9

.ac.jp/WAT/
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Table 6: En—My leaderboard®. The values are BLEU
score (second column) and Adequacy scores (third col-
umn). Rows highlighted in yellow identify systems that
make use of additional monolingual data. Our system
is tagged as FBAL

the four teams that scored the best according to
BLEU, and they performed a JPO adequacy hu-
man evaluation (Nakazawa et al., 2018). These
evaluations are conducted by professional transla-
tions who assign a score between 1 and 5 to each
translation based on its adequacy. A score equal to
5 points means that all the important information
is correctly reported while a score equal to 1 point
means that almost all the important information is
missing or incorrect.

First, we observe that our system achieves the
best BLEU and adequacy score in both directions,
with a gain of more than 8 BLEU points over the
second best entry for both directions. The av-
erage adequacy score is 0.4 point and 1.2 point
higher than the second best entry for My—En and
En—My , respectively. Among the rated sen-
tences, more than 30% of sentences translated by
our system are rated with 5 points in En—+My ,
compared to 6.3% of the second best system. For
My—En , 48% of our translated sentences are
rated with 5 points while the second best system
has only 24.5%. See Fig 1 for the percentage of
each score obtained by the best systems which par-
ticipated in the competition.

Second, our submission which does not use ad-
ditional monolingual data is even stronger than
all the other submissions in En—My in terms of
BLEU score, including those that do make use of
additional monolingual data (see second row of
Tab. 6).

If we consider submissions that only use the
provided parallel data (see rows that are not high-
lighted), our submission improves upon the sec-


http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=70&o=4
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=70&o=4
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=71&o=9
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=71&o=9

100% |  p— . 100%
80% l 80%
60% 60%
40% 40%
20% 20%

0% [ —— | 0%
FBAI Team 1 Team 2 Team 3
en-my

= .

mmm 5 points

4 points

3 points
mmm 2 points
mmm 1 points

FBAI TeamA  TeamB  TeamH
my-en

Figure 1: Percentage of each adequacy score obtained by the best systems which participated in the competition. Our system

is tagged as FBAL

ond best system by 7.2 BLEU in My—En and 10.9
BLEU in En—My . This suggests that our base-
line system is very strong and that applying ST and
BT to the parallel dataset is a good way to build
even stronger baselines, as demonstrated also in
Tab. 3.

Finally, the gains brought by monolingual
datasets is striking only in My—En (+11.8 BLEU
points in My—En compared to only +2.5 BLEU
points in En—My , for our submissions). The rea-
son is because the ALT test set originates from
English news and the target English monolingual
data is high quality and in-domain with the test
set. Moreover, the source originating Myanmar
sentences are translationese of English news sen-
tences, a setting which is particularly favorable to
BT. Instead, Myanmar monolingual data is out-of-
domain and noisy which makes BT much less ef-
fective. ST helps improving BT performance as
shown in Tab. 2 but the gains are still limited.

5 Conclusion

We described the approach we used in our submis-
sion to the WAT 2019 Myanmar-English machine
translation competition. Our approach achieved
the best performance both with and without the
use of additional monolingual data. It is based
on several methods which we combine together.
First, we use back-translation to help regularizing
and adapting to the test domain, particularly in the
Myanmar to English direction. Second, we use
self-training as a way to better leverage in-domain
source-side monolingual data, particularly in the
English to Myanmar direction. Third, given the
complementary nature of these two approaches we
combined them in an iterative fashion. Fourth,
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we improve decoding by using noisy-channel re-
ranking and ensembling.

We surmise that there is still quite some room
for improvement by better leveraging noisy par-
allel data resources, by better combining together
these different sources of additional data, and by
designing better approaches to leverage source
side monolingual data.

Acknowledgements

The Authors wish to thank Sergey Edunov for
sharing precious insights about his experience par-
ticipating in WMT competitions and Htet Linn for
feedback on how spacing is used in Burmese and
for checking a handful of translations during early
development.

References

Mikel Artetxe and Holger Schwenk. 2018. Massively
Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond. arXiv preprint
arXiv:1812.10464.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61, Florence, Italy.
Association for Computational Linguistics.

Peter F. Brown, Stephen A. Della-Pietra, Vin-
cent J. Della-Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation.
Computational Linguistics, 19(2):263-313.


https://arxiv.org/pdf/1812.10464.pdf
https://arxiv.org/pdf/1812.10464.pdf
https://arxiv.org/pdf/1812.10464.pdf
http://acl.ldc.upenn.edu/J/J93/J93-2003.pdf

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram counts and language models from the
common crawl. In Proceedings of the Language Re-
sources and Evaluation Conference, Reykjavik, Ice-
land.

Christian Buck and Philipp Koehn. 2016. Quick and
reliable document alignment via tf/idf-weighted co-
sine distance. In Proceedings of the First Confer-
ence on Machine Translation: Volume 2, Shared
Task Papers, pages 672—-678.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged back-translation. arXiv preprint
arXiv:1906.06442.

Vishrav Chaudhary, Yuqing Tang, Francisco Guzman,
Holger Schwenk, and Philipp Koehn. 2019. Low-
resource corpus filtering using multilingual sentence
embeddings. In Proceedings of the Fourth Confer-
ence on Machine Translation (WMT).

Chenchen Ding, Hnin Thu Zar Aye, Win Pa Pa, Khin
Thandar Nwet, Khin Mar Soe, Masao Utiyama, and
Eiichiro Sumita. 2019. Towards Burmese (Myan-
mar) morphological analysis: Syllable-based tok-
enization and part-of-speech tagging. ACM Trans-
actions on Asian and Low-Resource Language In-
formation Processing (TALLIP), 19(1):5.

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita.
2018. NOVA: A feasible and flexible annotation
system for joint tokenization and part-of-speech
tagging. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 18(2):17.

Francisco Guzman, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’ Aurelio Ranzato. 2019. Two
new evaluation datasets for low-resource machine
translation: ~ Nepali-english and sinhala-english.
arXiv preprint arXiv:1902.01382.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Rengian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. In
arXiv:1803.05567.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio
Ranzato. 2019. Revisiting self-training for neural
sequence generation. arXiv:1909.13788.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427-431. Association for Computational
Linguistics.

119

Catherine Kobus, Josep Maria Crego, and Jean Senel-
lart. 2016. Domain control for neural machine trans-
lation. CoRR, abs/1612.06140.

Philipp Koehn, Francisco Guzman, Vishrav Chaud-
hary, and Juan M. Pino. 2019. Findings of the
wmt 2019 shared task on parallel corpus filtering
for low-resource conditions. In Proceedings of the
Fourth Conference on Machine Translation, Volume
2: Shared Task Papers, Florence, Italy. Association
for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL 07, pages 177-180. Association for Computa-
tional Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations.

G. Lample, A. Conneau, L. Denoyer, and M. Ran-
zato. 2018a. Unsupervised machine translation us-
ing monolingual corpora only. In International Con-
ference on Learning Representations (ICLR).

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’ Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In Empirical Methods in Natural Language
Processing (EMNLP).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Toshiaki Nakazawa, Chenchen Ding, Raj Dabre,
Hideya Mino, Isao Goto, Win Pa Pa, Nobushige
Doi, Yusuke Oda, Anoop Kunchukuttan, Shan-
tipriya Parida, Ondej Bojar, and Sadao Kurohashi.
2019. Overview of the 6th workshop on Asian trans-
lation. In Proceedings of the 6th Workshop on Asian
Translation, Hong Kong. Association for Computa-
tional Linguistics.

Toshiaki Nakazawa, Katsuhito Sudoh, Shohei Hi-
gashiyama, Chenchen Ding, Raj Dabre, Hideya
Mino, Isao Goto, Win Pa Pa, Anoop Kunchukut-
tan, and Sadao Kurohashi. 2018. Overview of the


https://arxiv.org/abs/1902.01382
https://arxiv.org/abs/1902.01382
https://arxiv.org/abs/1902.01382
http://arxiv.org/abs/1612.06140
http://arxiv.org/abs/1612.06140
http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.18653/v1/d18-2012
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://www.aclweb.org/anthology/Y18-3001

5th workshop on Asian translation. In Proceed-
ings of the 32nd Pacific Asia Conference on Lan-
guage, Information and Computation: 5th Workshop
on Asian Translation: 5th Workshop on Asian Trans-
lation, Hong Kong. Association for Computational
Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Face-
book fair’s wmt19 news translation task submission.
arXiv preprint arXiv:1907.06616.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2.  amazonaws.  com/openai-

assets/researchcovers/languageunsupervised/language

understanding paper. pdf.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 86-96.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine. In
Proceedings of NAACL-HLT.

Jiajun Shen, Peng-Jen Chen, Matt Le, Junxian He, Ji-
atao Gu, Myle Ott, Michael Auli, and Marc’ Aurelio
Ranzato. 2019. The source-target domain mismatch
problem in machine translation. arXiv:1909.13151.

Ye Kyaw Thu, Win Pa Pa, Masao Utiyama, Andrew
Finch, and Eiichiro Sumita. 2016. Introducing the
asian language treebank (alt). In LREC.

Nicola Ueffing. 2006. Using monolingual source-
language data to improve mt performance. In
IWSLT.

P. Vincent, H. Larochelle, Y. Bengio, and P.A. Man-
zagol. 2008. Extracting and composing robust fea-
tures with denoising autoencoders. In Proceedings
of the 25th international conference on Machine
learning.

David Yarowski. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In An-
nual Meeting of the Association for Computational
Linguistics.

Kyra Yee, Nathan Ng, Yann N. Dauphin, and
Michael Auli. 2019. Simple and effective noisy
channel modeling for neural machine translation.
arXiv:1908.05731.

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural machine
translation. In Empirical Methods in Natural Lan-
guage Processing.


https://www.aclweb.org/anthology/Y18-3001

A Hyper-Parameter Search

In this section we report the set of hyper-
parameters and range of values that we used in our
random hyper-parameter search. For each experi-
ment we searched using N = 30 hyper-parameter
configurations.

Notice that the actual range of hyper-parameters
searched in each experiment may be smaller than
reported below; for instance, if a model shows
signs of overfitting we may search up to 5 layers
as opposed to 6 at the next iteration.

Layers: {4, 5, 6}
Embedding dim: {128, 256, 512, 1024}

FEN dim: {128, 256, 512, 1024, 2048, 4096,
8192}

Attention heads: {1, 2,4, 8, 16}
Dropout: {0.1, 0.2, 0.3, 0.4, 0.5}

Batch size (number of tokens): {1, 2, 4, 8,
12, 16, 24, 32} (multiply by 16000)

Label smoothing: {0.1, 0.2, 0.3}

Learning rate: {1, 3, 5, 7, 10, 30, 50, 100,
300, 500} (multiply by le-4)

Seed: {1, 2,3, ..., 30}

Data upsampling ratio

- bitext: {1, 2,3, 4, 6, 8, 12, 16, 20, 32,
40, 64}

- forward-translated: {1, 2, 3,4, 6, 8,9}
— back-translated: {1, 2, 3,4, 6, 8,9}

When applying noisy-channel reranking, we
tune the hyper-parameters A\; and A\ on the valida-
tion set. The ranges of the two hyper-parameters
are between 0 and 3.

B Things We Tried But Did Not Use

This section details attempts that did not signif-
icantly improve the overall performance of our
translation system and which were therefore left
out of the final system.
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B.1 Out-of-domain parallel data

Similarly to Guzman et al. (2019) we added out-
of-domain parallel data from various sources of
the OPUS repository’, namely GNOME/Ubuntu,
QED and GlobalVoices. This provides an addi-
tional 38,459 sentence pairs. We also considered
two versions of Bible translations from the bible-
corpus® resulting in additional 61,843 sentence
pairs. Adding this data improved the baseline sys-
tem by +0.17 BLEU for My—En and +0.26 BLEU
for En—My .

B.2 Pre-training

We pre-trained our translation system using a
cross-lingual language modeling task (Lample and
Conneau, 2019) as well as a Denoising Auto-
Encoding (DAE) task (Vincent et al., 2008). They
both did not provide significant improvements; in
the following, we report our results using DAE.

In this setting, we have a single encoder-
decoder model which takes a batch of mono-
lingual data, encodes it with the model’s en-
coder, prepends the encoded representation with
a language-specific token, and then tries to recon-
struct the original input using the model’s decoder.
Additionally, the source sentences are corrupted
using three different types of noise: word drop-
ping, word blanking, and word swapping (Lam-
ple et al., 2018a,b). The goal is to encourage the
model to learn some kind of common representa-
tion for both languages.

We found some gains, particularly for the
En—My direction, however, doing backtransla-
tion on top of DAE pretraining did worse or did
not improve compared to backtranslation without
DAE pretraining. For this reason, we decided to
leave this technique out of our final system.

B.3 PBSMT

We also train a phrase based system using Moses
with a default setting. We preprocessed the data
using moses tokenizer for English sentences. For
Myanmar sentences, we use BPE instead. We train
a count-based 5-gram English and Myanmar lan-
guage models on the monolingual data we collect.
We tune the system using MERT on the ALT val-
idation set. However, the phrase based system
does not perform as good as our NMT baseline.

"nttp://opus.nlpl.eu/
$https://github.com/christos—c/
bible-corpus/
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The phrase based system we train on the paral-
lel data only yields 10.98 BLEU for My—En and
21.89 BLEU for En—My , which are 12.32 and
13.05 BLEU points lower than our supervised sin-
gle NMT model.

B.4 Weak Supervision

For augmenting the original training data with a
noisy set of parallel sentences, we mine bitexts
from Commoncrawl. This is achieved by first
aligning the webpages in English and Myanmar
and then extracting parallel sentences from them.
To align webpages, we perform sentence align-
ment using the IBM1 sentence alignment algo-
rithm (Brown et al., 1993), trained on the provided
parallel data to obtain bilingual dictionaries from
English to Myanmar and Myanmar to English.
Using these dictionaries, unigram-based Myanmar
translations are added to the English web docu-
ments and Myanmar translations are added to the
English documents. The similarity score of a doc-
ument pair a and b is computed as:

sim(a,b) = Lev(urly, urly) x Jaccard(a,b)

2)
where Lev(url,, urly) is the Levenshtein similar-
ity between the url, and url, and Jaccard(a,b)
is the Jaccard similarity between documents a and
b. Finally, a one-to-one matching between English
and Myanmar documents is enforced by applying
a greedy bipartite matching algorithm as described
in Buck and Koehn (2016). The set of matched
aligned documents is then mined for parallel bi-
texts.

We align sentences within two comparable
webpages by following the methods outlined in
the parallel corpus filtering shared task for low-
resource languages (Koehn et al., 2019). One of
the best performing methods for this task used the
LASER model (Artetxe and Schwenk, 2018) to
gauge similarity between sentence pairs (Chaud-
hary et al., 2019). Since the open-source LASER
model is only trained with 2,000 Myanmar-
English bitexts, we retrained the model using the
provided UCSY and ALT corpora. For tuning, we
use similarity error on the ALT validation dataset
and observe that the model performs rather poorly
as the available training data was substantially
lower than the original setup.
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