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Abstract

In this paper, we describe the neural machine
translation (NMT) system submitted by the
Kangwon National University and HYUNDAI
(KNU-HYUNDAI) team to the translation
tasks of the 6th workshop on Asian Trans-
lation (WAT 2019). We participated in all
tasks of ASPEC and JPC2, which included
those of Chinese-Japanese, English-Japanese,
and Korean→Japanese. We submitted our
transformer-based NMT system with built us-
ing the following methods: a) relative posi-
tioning method for pairwise relationships be-
tween the input elements, b) back-translation
and multi-source translation for data augmen-
tation, c) right-to-left (r2l)-reranking model
robust against error propagation in autoregres-
sive architectures such as decoders, and d)
checkpoint ensemble models, which selected
the top three models with the best validation
bilingual evaluation understudy (BLEU) . We
have reported the translation results on the two
aforementioned tasks. We performed well in
both the tasks and were ranked first in terms of
the BLEU scores in all the JPC2 subtasks we
participated in.

1 Introduction

Owing to several studies on neural networks, the
field of machine translation has significantly de-
veloped. Numerous methods have been attempted
for machine translation, ranging from a simple
approach such as an encoder-decoder of two re-
current neural networks (RNN) (Bahdanau et al.,
2014), and to a transformer model (Vaswani et al.,
2017) comprising multiple layers with multi-head
attention. Furthermore, with the development of
open sources such as OpenNMT1 (Klein et al.,
2017), anyone with a parallel corpus can eas-
ily challenge neural machine translation (NMT).

1http://opennmt.net/

We herein describe the KNU-HYUNDAI’s NMT
system, which uses a transformer model based
on OpenNMT. We participated in the ASPEC
(Nakazawa et al., 2016) and JPC2 tasks of WAT
2019 (Nakazawa et al., 2019). The ASPEC
task consisted of English-Japanese and Chinese-
Japanese parallel corpus, and the JPC2 task con-
sisted of English-Japanese, Chinese-Japanese, and
Korean-Japanese parallel corpus.

To solve open vocabulary problems, we pre-
processed all the data into subword units called
byte-pair-encoding (BPE) (Sennrich et al., 2015b).
We encoded the source and target languages as
shared dictionaries. The encoded subwords are
subsequently converted to an embedding with rel-
ative position representations (Shaw et al., 2018)
and transmitted to a transformer.

We attempted three methods to use other re-
sources. 1) Training by blending distinct paral-
lel corpora of the same language pair. 2) Back-
translation (Sennrich et al., 2015a) of the mono-
lingual corpus added to the current train set. 3)
Augmentation of the dataset according to multi-
source translation (Zoph and Knight, 2016) that
trains two different pairs of sources with the same
target as a model. When translating, we re-ranked
(Liu et al., 2016) the generated text by training
model decoded by the backward (Right-to-Left)
technique, and the model decoded by the forward
(Left-to-Right) technique.

2 System Overview

2.1 Transformer

Our base system is based on the transformer ar-
chitecture (Vaswani et al., 2017) implemented in
OpenNMT (Klein et al., 2017). This transformer
comprises multi-head attention and a feed-forward
neural network (FFNN). The multi-head attention
such as Mhead(Q,K, V ) calculates the attention
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scores for the Q, K, and V matrices with scaled
dot-product attention for each head and concate-
nates the attentions for all heads, the equations for
which are as follows:

Mhead(Q,K, V ) = concat(head1, ..., headh)Wo

(1)

headi = Attn(QWQ
i ,KWK

i , VWV
i ) (2)

Attn(Qi,Ki, Vi) = softmax(QiK
T
i /

√
dk)Vi

(3)
The multi-head attention used here resembles

self-attention and calculates the attention score by
capturing its own structural information. The en-
coder of the transformer has the same encoding
for Q, K, and V , and the number of dimensions
of the hidden state is split by h and multiplied
by WQ

i ,WK
i ,WV

i , respectively. Attention scores
of the inputs Qi,Ki,Vi are calculated using scaled
dot-product attention, and therefore, the calculated
attention score is headi. The concatenation of all
headi multiplied by WO yields the hidden states
of the multi-head attention. Subsequently, the out-
put of the transformer block is generated by per-
forming max(0, xW1 + b1)W2 + b2 which is a
position-wise FFNN.

The performance of the transformer decoder is
similar to that of the encoder but produces one
word at a time from left to right through masking.
The decoder consists of three sublayers: the first
sublayer is a masked multi-head self-attention that
forces the attention to only the previous word. The
second layer is multi-head attention, followed by
the encoder-decoder attention. The final sublayer
is a position-wise feed-forward layer. The trans-
former model uses residual connection (He et al.,
2016) and layer normalization (Ba et al., 2016)
around each of the sublayers.

2.2 Relative Position Representation
In contrast to recurrent and convolutional neu-
ral networks, the transformer does not explicitly
model relative or absolute positions to its inputs.
The transformer adds positional encoding to the
embedding to consider the positional information
of words. This type of encoding conducts se-
quence modeling by adding an absolute positional
representation for the input word. For relative

positional encoding (Shaw et al., 2018), a self-
attention extension model is used to consider the
pairwise relationships between the input elements.
By modeling the input as a connected graph, the
relative positional encoding represents the edges
between the inputs xi and xj by the vectors αV

ij ,
αK
ij . The vectors represent information on the rel-

ative difference of position between the input el-
ements. Relative position information is incorpo-
rated by adding the embedding vectors αV

ij , αK
ij

that can be trained to the self-attention layer as in
Equation (4-6).

zi =
n∑

j=1

αi,j(xjWV + αV
i,j) (4)

αi,j = exp(ei,j)/
n∑

k=1

exp(ei,k) (5)

ei,j = xiWQ(xjWK + αK
i,j)

T/
√
dz (6)

2.3 Data Augmentation

In deep learning, a large amount of data is needed
to achieve superior performances, however, data
annotation is expensive. Data augmentation can
be used to enhance the model efficiency by auto-
matically increasing the amount of training data.
In natural language processing, data is augmented
by the use of external resources or back-translation
or text generation.

We herein use some of the data supplied
by WAT 2019 (ASPEC, JPC2) for performing
data augmentation by back-translation and multi-
source translation, which are frequently used in
NMT.

2.3.1 Back-translation

Back-translation (Sennrich et al., 2015a) is an ef-
fective and widely used data augmentation tech-
nique in NMT monolingual data integration. In
view of the source and target languages, training is
done in reverse and subsequently the model is used
to translate the new corpus corresponding to the
target language. The corpus used for translation
and translated sentences form an auto-generated
parallel corpus, and the translation model is re-
trained in addition to the original corpus. We per-
formed back-translation using the parallel corpus
provided in WAT.
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2.3.2 Multi-source Translation for
Augmentation

The multi-source translation (Zoph and Knight,
2016) is a method of training by giving various
source languages as input to the same target lan-
guage to improve the quality of NMT. We used
the same target language and different source lan-
guages when training the transformer model. For
example, if the translation is Zh→Ja, we add
En→Ja and Ko→Ja dataset to train together. The
symbols Zh, En, Ko, and Ja denote the words Chi-
nese, English, Korean, and Japanese, respectively.

2.4 Right-to-Left Re-ranking
The decoder of the sequence-to-sequence model
is an autoregressive architecture that uses previ-
ous predictions as contextual information. If the
previous prediction is incorrect, the error will act
as noise that will degrade the quality of the next
prediction. To address this, Liu et al. (2016) pro-
posed a Right-to-Left (r2l) model, which reranks
the n-best hypothesis generated by the Left-to-
Right (l2r) model to the r2l model. The formula
for the r2l reranking model is as follows (Mor-
ishita et al., 2018):

P (ỹ) = argmaxy∈Y P (y|x; θl2r)P (yr|x; θr2l)
(7)

3 Experiments

Subtasks of WAT 2019 (Nakazawa et al., 2019) in-
clude Scientific paper using Asian Scientific Paper
Excerpt Corpus (ASPEC) (Nakazawa et al., 2016)
and Patent task using Japan Patent Office Patent
Corpus 2.0 (JPC2). We participated in both tasks.
ASPEC consists of English-Japanese (En-Ja) and
Chinese-Japanese (Zh-Ja), and JPC2 consists of
English-Japanese (En-Ja), Chinese-Japanese (Zh-
Ja), Korean-Japanese (Ko-Ja).

3.1 Dataset
Dataset statistics for each of the subtasks are pre-
sented in Table 1. Because similarity scores sorted
the ASPEC En-Ja dataset, we used up to 1,000,000
(1M) parallel sentences for the training dataset and
2M sentences for back-translation.

3.2 Tokenization
We used a BPE-based algorithm for subword seg-
mentation. Using this algorithm, it is possible
to represent a sentence as a subword sequence
through as fixed-size vocabulary and to solve the

Task Dataset Train Dev Test

ASPEC
En-Ja 3,008,500 1,790 1,812
Zh-Ja 672,315 2,090 2,107
En-Ja 1,000,000 2,000 5,668

JPC2 Ko-Ja 1,000,000 2,000 5,230
Zh-Ja 1,000,000 2,000 5,204

Table 1: Statistics of parallel sentences (sentence)

problem of unknown words and rare words ef-
fectively. SentencePiece used the BPE applica-
tion. SentencePiece performs sentence normaliza-
tion with NFKC-based text normalization. The
normalized sentence, such as ‘◦C’ in the gener-
ated translation sentence, was therefore changed to
‘℃’. We used 32,000 shared vocabularies for each
language dataset. Japanese sentences were seg-
mented using Juman++2 (Tolmachev et al., 2018;
Kurohashi, 2018), and the tokenization of Chinese
dataset was performed using the Stanford Word
Segmenter3 (Chang et al., 2008). The English sen-
tences were tokenized using Moses4 and the Ko-
rean sentences were morphologically analyzed us-
ing Mecab5(Sim, 2014; Matsumoto et al., 1999).

3.3 Experimental Setup

We used the OpenNMT transformer for our exper-
iments. The early-stopping method from Open-
NMT was specifically used. The training stopped
when the model did not reach the new maxi-
mum accuracy for ten savepoints (saved every
5,000 steps) with a validation accuracy. We se-
lected the validation model with the highest BLEU
score. When we trained the Zh-Ja dataset, we
chose the validation model with the highest BLEU
score among all the validation models except for
the early-stopping method in OpenNMT. We op-
timized the hyperparameters to six layers, word
embedding size to 512, FFNN dimension size to
2048, number of attention heads to eight, number
of training steps to 200,000, dropout to 0.1, batch
size to 4096, accum to 2, and learning rate to 2. We
used the same hyperparameters for all the models
for training, and set the decoding beam size to 12
for En-Ja, Zh-Ja, and to 2 for Ko→Ja.

2https://github.com/ku-nlp/jumanpp
3https://nlp.stanford.edu/software/segmenter.shtml
4https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
5https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/
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Sub-task BLEU B rank H rank
ASPEC (En→Ja) 44.08 4 of 5 5 of 5
ASPEC (Ja→En) 30.88 2 of 4 2 of 4
JPC2 (En→Ja) 47.38 1 of 2 None
JPC2 (Ja→En) 44.72 1 of 2 None

Table 2: BLEU score for English-Japanese tasks on
leaderboard

3.4 Evaluations

We measure Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002), Rank-based Intu-
itive Bilingual Evaluation Score (RIBES) (Isozaki
et al., 2010), Adequacy-fluency metrics (AM-FM)
(Banchs et al., 2015) on leaderboard. BLEU is
computed as the geometric mean of unigram, bi-
gram, trigram, and 4-gram precision multiplied by
a brevity penalty. RIBES, which provides a value
in the range of [0; 1], was proposed to address
the shortcomings of BLEU, in particular, the dis-
tant language pairs, where changes in word or-
der deteriorates the effectiveness of BLEU. We
also submitted a manual evaluation, such as Pair-
wise Crowdsourcing evaluation and JPO Ade-
quacy evaluation, which was performed in case of
more than three submissions.

3.5 Experimental Results

3.5.1 English-Japanese

Table 2 indicates the BLEU score and rank of the
system we submitted in the ASPEC and JPC2 sub-
tasks of WAT 2019. We obtained 44.08 and 30.88
BLEU scores, respectively, in the ASPEC En→Ja
and Ja→En tasks and were ranked fourth amongst
the five teams and second out of the four teams
who submitted their BLEU scores (B rank). At
this time, we were ranked fifth out of the five teams
and second out of the four teams in the case of hu-
man evaluation (H rank in table 2). In the JPC2
En→Ja, Ja→En tasks, our system recorded 47.38
and 44.72 scores, respectively, and thus, we were
ranked first about the bilingual dataset.

English-Japanese for ASPEC dataset: Table
3 shows the cumulative feature ablation for the En-
Ja for the ASPEC dataset. We used only the upper
part of the training dataset comprising 1M paral-
lel sentences (train-1) to train the baseline model
as a transformer base model. We applied rela-
tive positioning to the baseline model to improve
the BLEU scores by 0.51 and 0.23 in the cases of

Method En→Ja Ja→En
Baseline 40.34 29.08
+ relative position 40.85 29.31
+ back-translation 42.26 29.93
+ checkpoint ensemble 43.21 30.23
+ independent ensemble 43.78 30.47
+ r2l re-ranking 44.08 30.88

Table 3: Method ablation for ASPEC En-Ja sub-task

En→Ja and Ja→En, respectively. We used the re-
maining training dataset comprising 2M sentences
for back-translation, and the synthetic data gener-
ated by back-translation was added to train-1 par-
allel data and subsequently used for training. We
oversampled the train-1 parallel data and used the
parallel and composite data in a 1:1 ratio. We
used the 〈BT〉 tag for training at the beginning of
the sentences for back-translation (Caswell et al.,
2019). By applying back-translation, our system
improved by 1.41 and 0.62 in terms of BLEU
scores in En→Ja, Ja→En, respectively.

Next, we performed the checkpoint ensemble
and independency ensemble methods. The for-
mer was performed for the top three models with
the best validation BLEU scores among the check-
points created in the first round of training. Sim-
ilarly, the latter was also used for training the
top three models with the best validation BLEU
scores. The checkpoint ensemble method led to
a performance improvement by 0.95 and 0.30 of
the BLEU score, and the independent to 1.52 and
0.54 of the BLEU score. Finally, the r2l model
reranked the 12 best output (beam size 12) of
the left-to-right model by a right-to-left ensemble
model (similar to the l2r ensemble method). The
best performance of our model was a BLEU score
of 44.08 in the En→Ja dataset and 30.88 in the
Ja→En dataset.

English-Japanese for JPC2 dataset: Using
only the training dataset having 1M parallel sen-
tence for the JPC2 dataset, the baseline model was
trained using a transformer base model from the
OpenNMT. In table 4, we demonstrated the per-
formance when external resources were not used
for the JPC2 dataset (En→Ja (a)) and when AS-
PEC En-Ja dataset was used as an external re-
source (En→Ja (b), Ja→En). The En→Ja (b) and
Ja→En models were trained by adding ASPEC
train-1 for En-Ja to the existing trainset for JPC2.
This method improved the score by 1.86 and 1.43
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Method En→Ja
(a)

En→Ja
(b)

Ja→En

baseline 42.67 42.67 41.25
+ ASPEC data None 44.53 42.68
+ relative position 42.95 44.90 43.14
+ back-translation 45.84 46.33 43.59
+ checkpoint en-

semble
46.32 46.82 43.94

+ r2l re-ranking 47.19 47.38 44.72

Table 4: Method ablation for JPC2 En-Ja sub-task

over the baseline. By applying relative position-
ing, En→Ja (a) score improved by 0.28 from the
baseline, and the En→Ja (b), Ja→En were 0.37
and 0.46 higher than in the case of the ASPEC data
addition method, respectively.

In En→Ja (a, b), the back-translation process
used 2M single sentences of the Japanese dataset
in the JPC2 Zh-Ja and Ko-Ja datasets. Ja→En
used the remaining training dataset of 2M sen-
tences from the ASPEC Ja-En dataset for back-
translation. En→Ja (a) and Ja→En oversampled
the JPC2 parallel data to ensure that the ratio
of data added with the parallel data and back-
translation was 1:1. We also inserted a back-
translation tag 〈BT〉 at the beginning of the sen-
tences during back-translation. As a result of
adding back-translation data, the BLEU scores im-
provement of En→Ja (a) was 2.89, En→Ja (b) was
1.43, and Ja→En was 0.45 as compared to that of
the previous case (+relative position). Addition-
ally , we verified the performance of BLEU to be
45.36, which is 0.44 higher than the previous step
(+relative position), and for multi-source applica-
tion using Zh-Ja parallel data instead of the back-
translation in En→Ja (b).

We performed the checkpoint ensemble
method. This improved the BLEU score over 0.3
by selecting the top three models from validation.
Finally, we reranked the 12-best outputs (beam
size 12) of the l2r model to a r2l model using
the checkpoint ensemble method to improve their
respective BLEU scores by 0.87, 0.56, and 0.78.

3.5.2 Chinese-Japanese
In this paper, we experimented by combining AS-
PEC and JPC2 dataset methods for each subtask:
(1) Using only ASPEC or JPC2 dataset, (2) Us-
ing both data together, (3) Using 1:1 ratio of data.
We used fast align tool to match the rate of the

Sub-task BLEU BLEU rank
ASPEC (Zh→Ja) 51.92 2 of 2
ASPEC (Ja→Zh) 36.77 2 of 2
JPC2 (Zh→Ja) 51.33 1 of 3
JPC2 (Ja→Zh) 43.30 1 of 3

Table 5: BLEU score for Chinese-Japanese tasks on
leaderboard

datasets. As the number of sentences in JPC2
is one million, which is larger than the ASPEC
dataset, 1:1 ratio of dataset experiment does not
experiment in the Patent task. The baseline is
the transformer model with only ASPEC or JPC2
dataset. In both Ja→Zh and Zh→Ja subtasks in the
Patent task, the method of using both the dataset
performances is better than using only one dataset.

Table 5 presents the results of BLEU for each
Zh→Ja subtask of the method used in this pa-
per. The system we used scored 51.92 and 36.77
BLEU in the Zh→Ja and Ja→Zh subtasks of the
ASPEC data set, respectively. The Zh→Ja and
Ja→Zh subtasks of the JPC2 dataset scored 51.33
and 43.30 BLEU, respectively, and therefore, we
were first amongst the three teams.

Chinese→Japanese for ASPEC dataset: The
baseline performance of the ASPEC Zh→Ja sub-
task is a 47.24 BLEU score, which is the highest
among all the combination experiments. The base-
line is 0.1 score higher than the experiment when
both the datasets were used, and 0.18 score higher
than the experiment in which the datasets were in
the ration of 1:1.

Relative positioning method leads to an im-
provement of 0.49 BLEU score. We applied back-
translation using 700K sentences of the ASPEC
En-Ja dataset. The existing dataset was added one
more time to adjust the ratio of the existing dataset
and back translation dataset to 2:1. This led to an
increase of 0.37 F1 BLEU score. A 0.95 increase
in the method was observed when 1M sentences
of ASPEC En-Ja dataset were used in the multi-
source experiment. r2l re-ranking leads to a 0.52
performance improvement.

The performance of nine checkpoint ensemble
models for the six different models is a 51.92
BLEU score. The difference between the highest
performing model of this task is the 2.35 BLEU
score. The number of sentence pairs used to train
the final model of this task is 3,044,630.

Japanese→Chinese for ASPEC dataset: AS-
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Method BLEU
Baseline (ASPEC) 47.24
ASPEC + JPC2 47.14
ASPEC + JPC2 (1:1) 47.06
+ relative position 47.55
+ back-translation 47.92
+ multi-source 48.87
+ r2l re-ranking 49.39

Ensemble 51.92

Table 6: Method ablation for ASPEC Zh→Ja sub-task

Method BLEU
Baseline (ASPEC) 34.93
ASPEC + JPC2 34.91
ASPEC + JPC2 (1:1) 35.03
+ relative position 35.23
+ back-translation 35.23
+ r2l re-ranking 35.69

Ensemble 36.77

Table 7: Method ablation for ASPEC Ja→Zh sub-task

PEC Ja→Zh subtask showed a 34.93 F1 BLEU
score in an experiment using only ASPEC dataset
(baseline). The experiment in which the ratio of
ASPEC and JPC2 was adjusted to be 1:1 showed
the highest score among all the data combination
experiments. The BLEU F1 score for this exper-
iment was 35.03, which is 0.12 higher than that
using both the datasets.

Relative positioning yielded a 0.2 score im-
provement. We applied back-translation method
using 670K ASPEC En-Ja dataset, but no perfor-
mance improvement was seen. The r2l re-ranking
method lead to a 0.46 score increase.

The final performance was at 36.77, which is
the BLEU score of the ensemble model. The en-
semble method ensembled the eight checkpoints
for the four different models. This performance
differs from the highest performing model of this
task with a 0.82 BLEU score. The number of
sentence pairs used to train the final model was
2,014,630.

Chinese→Japanese for JPC2 dataset: The
JPC2 Zh→Ja subtask requires one million sen-
tences of JPC2 data and 672,315 sentences of AS-
PEC data to conduct further experiments. The
JPC2 Zh→Ja subtask 1.23 BLEU scores higher
than the Baseline score.

We applied relative positioning, back-

Method BLEU
Baseline (JPC2) 40.04
+ JPC2 + ASPEC 41.54
+ relative positio 41.80
+ back-translation 41.97
+ r2l re-ranking 42.92

Ensemble 43.30

Table 8: Method ablation for JPC2 Zh→Ja sub-task

translation, multi-sourcing, and r2l re-ranking
to increase the BLEU score by 0.1, 0.63, 1.14,
and 1.32, respectively. In this task, the back
translation method combines JPC2 Ja→Zh data
1M sentences and JPC2 Ko-Ja also comprising
1M sentences to generate new Zh-Ja data. The
1M sentences of the JPC2 Ja-En dataset was used
during the application of the multi-source method.
The total number of sentence pairs used in the
final model in this task is 4,672,315.

As the ensemble method creates a new shared
dictionary for the application of the multi-source,
the ensemble system is applied to the seven check-
points of the five independent models up to the
multi-source system.

Japanese→Chinese for JPC2 dataset: JPC2
Ja→Zh subtasks are further experimented based
on the model trained by combining the one million
JPC2 dataset and 672,315 ASPEC dataset. The
method using both the datasets is 1.5 BLEU higher
than the baseline using only JPC2.

We applied relative positioning, back-
translation, and r2l re-ranking to increase the
BLEU scores by 0.26, 0.17, and 0.95 , respec-
tively. Back-translation uses the one million
existing dataset to generate the Ja→Zh dataset.

The ensemble method of this task performs
an ensemble experiment on nine checkpoints of
the baseline model, the additional relative posi-
tion model, the other r2l re-ranking model, and
the transformer big model . The number of sen-
tence pairs of training data in the final model is
2,672,315, and the BLEU score is 43.3. This score
differs from the second and third place models
submitted to WAT2019, respectively, with 1.3 and
2.13 BLEU scores, respectively.

3.5.3 Korean-Japanese
Table 10 shows the translation performance of
JPC2 dataset for Korean and Japanese as JPC2 Ko-
Ja. We applied the methods proposed in this paper.



87

Method BLEU
Baseline (JPC2) 46.31
+ JPC2 + ASPEC 47.54
+ relative position 47.64
+ back-translation 48.27
+ multi-source 49.41
+ r2l re-ranking 50.73

Ensemble 51.33

Table 9: Method ablation for JPC2 Ja→Zh sub-task

Sub-task BLEU BLEU rank
JPC2 (Ko→Ja) 73.04 1 of 3

Table 10: BLEU score for Korean→Japanese sub-
tasks on leaderboard

The Ko-Ja translation task has only a paten sub-
task as JPC2, and we only participated in tasks for
Korean to Japanese (Ko→Ja). The final submis-
sion performance was 73.04 for BLEU and ranked
first among the three teams competing.

Korean→Japanese for JPC2 dataset: Simi-
larly, we used the OpenNMT transformer as the
baseline for the JPC2 Ko→Ja dataset, with a
BLEU of 70.90. In table 11, we added the base-
line to the relative position, and then methods per-
formed a method ablation until R2L re-ranking.
When the relative position was added to the trans-
former, the BLEU performance improved from
0.62 to 71.52. We performed back-translation with
JPC2’s Japanese datasets (2M sentences) of Zh-
Ja and En-Ja and measured the transformer using
a relative position model with a total of 3M sen-
tences in addition to JPC2 Ko-Ja.

Unlike other sub-tasks, JPC2 Ko-Ja showed a
71.23 BLEU performance, which is less by 0.3
from the previous method of the transformer with
relative position. For back-translation, we trained
the JPC2 Ja→Ko dataset as a transformer model,
which showed a BLEU score of 68.53. Unlike
back-translation, the multi-source training method
by adding JPC2 En-Ja and Zh-Ja datasets to JPC2
Ko→Ja dataset showed a performance of 0.9 lower
than the BLEU score of 70.62. When R2L rerank-
ing was applied, the BLEU score was 70.34, which
is 1.18 less compared to the case of the trans-
former when relative positioning was applied.

Accordingly, we performed an ensemble
method based on the model using the best
performing transformer models with relative

Method BLEU
Baseline (JPC2) 70.90
+ relative position 71.52
+ back-translation 71.23
+ multi-source 70.62
+ r2l re-ranking 70.34

Ensemble 73.04

Table 11: Method ablation for JPC2 Ko→Ja sub-task

Sub-task Adequacy
ASPEC (Ja→En) 4.51
ASPEC (Zh→Ja) 4.63
ASPEC (Ja→Zh) 4.36
JPC2 (En→Ja) 4.50
JPC2 (Ja→En) 4.78
JPC2 (Zh→Ja) 4.65
JPC2 (Ja→Zh) 4.55
JPC2 (Ko→Ja) 4.65

Table 12: Adequacy Evaluation of Our Model

positioning. We ensembled the eight checkpoints
generated when we trained by setting the learning
rate to two and three checkpoints created when
we trained by setting the learning rate to three.
As a result of the ensemble experiments, the best
performance was achieved with a BLEU score of
73.04.

3.6 Adequacy Evaluation Summary
WAT 2019 (Nakazawa et al., 2019) showed the
evaluation summary of top systems. Table 12
shows the adequacy performance for the sub-tasks
we participated in. In terms of adequacy perfor-
mance, ASPEC Ja→En showed the best adequacy
performance of 4.51. ASPEC Zh→Ja scored
4.59 and Ja→Zh scored 4.36 adequacy evalua-
tion. JPC2’s En→Ja, Ja→En, Zh→Ja, Ja→Zh,
and Ko→Ja all performed well with adequacy
scores of 4.50, 4.78, 4.65, 4.55, 4.65, respectively.

4 Conclusion

We participated in the ASPEC and JPC2 transla-
tion tasks of WAT 2019. We utilized several meth-
ods of the NMT system. Relative positioning was
applied based on OpenNMT’s transformer model,
and the data was added to construct a model robust
to error and back-translation, and multi-source
methods were applied to address error propaga-
tion in the decoder, an autoregressive architecture,
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and the performance was further improved by per-
forming the ensemble methods. Consequently, we
were amongst the top ranks in the ASPEC En-Ja
and Zh-Ja tasks and were ranked first in the JPC2
En-Ja, Zh-Ja, and Ko→Ja sub-tasks.
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