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Abstract

Considering event structure information has
proven helpful in text-based stock movement
prediction. However, existing works mainly
adopt the coarse-grained events, which loses
the specific semantic information of diverse
event types. In this work, we propose to incor-
porate the fine-grained events in stock move-
ment prediction. Firstly, we propose a pro-
fessional finance event dictionary built by do-
main experts and use it to extract fine-grained
events automatically from finance news. Then
we design a neural model to combine finance
news with fine-grained event structure and
stock trade data to predict the stock move-
ment. Besides, in order to improve the gener-
alizability of the proposed method, we design
an advanced model that uses the extracted fine-
grained events as the distant supervised label
to train a multi-task framework of event ex-
traction and stock prediction. The experimen-
tal results show that our method outperforms
all the baselines and has good generalizability.

1 Introduction

Stock movement plays an important role in eco-
nomic activities, so the prediction of stock move-
ment has caught a lot of attention of researchers.
In recent years, employing the stock related text
(such as finance news or tweets) has become the
mainstream (Si et al., 2014; Ding et al., 2015; Li
et al., 2015; Alostad and Davulcu, 2017; Zhong
et al., 2017; Zhang et al., 2018a) of stock move-
ment prediction task. In these text-based stock
prediction works, various methods are proposed
to extract semantic information from stock re-
lated text to help the prediction of stock move-
ment. There are mainly two methods of applying
text: employing raw text (Hu et al., 2018; Xu and
Cohen, 2018) or coarse-grained <S,P,O> struc-
ture (subject, predicate and object) extracted from

*This work is done when Deli Chen is a intern at Mizuho
Securities.
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« Daiseki 9-mth group
recurring profit is 5.61
bln yen (-11.4 %).

Raw Text

* Subject: group recurring
profit

* Predicate: is

 Object: 5.61 bln yen

Coarse-grained
Event

e Firm: Daiseki

« Type: group recurring
* Value: 5.61 bln yen

« Change Rate: -11.4 %
e Time: 9-mth

Fine-grained
Event

Figure 1: The same news of Earnings Profit event in
different forms. The event structure consists of event
roles (red words) which are the key point of the seman-
tic information.

text (Ding et al., 2016; Zhang et al., 2018b). In
the previous studies, the latter method has proven
more powerful than the former one, which demon-
strates that the event structure containing semantic
information is helpful for stock movement predic-
tion. Figure 1 shows a piece of news of Earn-
ings Profit event in different forms: raw text,
coarse-grained event (<S,P,0>) and fine-grained
event (Yang et al., 2018; Liu et al., 2018). We
observe that there are still some issues with the
<S,P,O> method. Firstly, the <S,P,O> method
only extracts subject, predicate and object, which
misses some important event roles, such as the
earnings Time and Change Rate, which are in-
cluded in the fine-grained event. Besides, apply-
ing <S,P,O> structure for all event types loses
the specific semantic structure in different types
of finance events. In Figure 1, the fine-grained
event employs Type instead of Subject used in the
coarse-grained event and employs Value instead of
Object, which can describe the event roles in a
more detailed way. In this work, we propose to in-
corporate the fine-grained events in one-day-ahead
stock movement prediction. The fine-grained
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event structure describes the specific framework
and key points of various finance events. Applying
fine-grained events is beneficial for learning a bet-
ter text representation because the finance knowl-
edge contained in event structure is helpful for un-
derstanding the semantic information.

Inspired by the automatic event data generation
method (Chen et al., 2017; Zeng et al., 2018; Yang
et al., 2018), we propose the TOPIX! Finance
Event Dictionary (TFED) built by domain experts
with professional finance knowledge and adopt
it to extract fine-grained events automatically for
most of finance news. Then we design two dif-
ferent neural models: Structured Stock Prediction
Model (SSPM) and Multi-task Structured Stock
Prediction Model (MSSPM). SSPM fuses the ex-
tracted fine-grained event and news text firstly,
and then conduct interaction between text data and
stock trade data to make prediction. SSPM outper-
forms all the baselines but it can hardly handle the
news that can not be recognized by TFED, which
we call uncovered news, so MSSPM is designed to
learn event extraction using the fine-grained events
as the distant supervised label. Besides, we pro-
pose to learn event extraction and stock predic-
tion jointly in MSSPM because these two tasks
are highly related. The improvement of event ex-
traction result can boost news understanding and
promote the stock prediction. And the output of
stock prediction can give feedback to event extrac-
tion. So the joint learning can share valuable infor-
mation between tasks. Result shows that MSSPM
outperforms SSPM on the uncovered news and in-
creases the method’s generalizability. The contri-
butions of this work are summarized as follows:

e We propose to incorporate the fine-grained
events in stock movement prediction and this
method outperforms all the baselines.

e We propose to learn event extraction and
stock prediction jointly, which improves the
method generalizability for uncovered news.

e We propose TFED and a pipeline method
which can extract fine-grained events from fi-
nance news automatically.

e We propose the embedding method for
minute-level stock trade data, and adopt time-
series models to learn its representation.

'Tokyo Stock Price Index, commonly known as TOPIX,
is an important stock market index for the Tokyo Stock Ex-
change (TSE) in Japan.

32

2 Related Work

2.1 Automatically Event Data Labeling

According to (Chen et al., 2015; Liu et al., 2018;
Huang et al., 2018), the fine-grained event struc-
ture contains event types, event trigger words and
event roles. Zhou et al. (2015) propose a frame-
work to extract events from twitter automatically.
Yang et al. (2018) employ a predefined dictionary
to label events and then extract document-level
events from Chinese finance news. However, they
only conduct experiments on 4 event types. While
we employ a widely-covered dictionary with 32
different event types. Chen et al. (2017) adopt
world and linguistic knowledge to detect event
roles and trigger words from text. Zeng et al.
(2018) use the Freebase CVT structure to label
data and extract event. Araki and Mitamura (2018)
adopt distant supervision to extract event from
open domain. There are some works using either
manual rules (Arendarenko and Kakkonen, 2012)
or machine learning methods (Jacobs et al., 2018)
for finance event detection, while our event label-
ing method is stock specific with professional do-
main knowledge.

2.2 Stock Movement Prediction

Many works using related text for stock move-
ment prediction take the raw text as model input
directly. Xu and Cohen (2018) adopt a variational
generation model to combine tweets and stock his-
tory data to make the prediction. Si et al. (2014)
employ the sentiment analysis to help the deci-
sion. Li et al. (2015) adopt the tensor decompose
method to get the interaction information of dif-
ferent inputs. Duan et al. (2018) use the summary
of news body instead of news headline to predict
the stock returns. Some other works try to employ
structure information to predict the stock move-
ment. Ding et al. (2014) extract <S,P,O> (subject,
predicate and object) structure from news to pre-
dict the stock movement. Then they propose two
improved method based on <S,P,O> structure by
applying the weighted fusion of event roles (Ding
et al.,, 2015) and introducing the entity relation
knowledge (Ding et al., 2016). Besides, Zhang
et al. (2018b) employ a RBM to process <S,P,O>
to get the event representation.



3 Fine-grained Event Extraction

3.1 TOPIX Finance Event Dictionary

As shown in (Yang et al., 2018; Zeng et al., 2018)
automatic fine-grained event extraction needs an
event dictionary to define the event types. Each
event type consists of event trigger words and
event roles. News containing trigger words per-
haps belongs to this event type. The event roles
are the key points of semantic structure of this
event type. However, there is no specific event
dictionary for stock related finance events. So we
hired three domain experts to summarize the high-
frequency finance events which have a significant
impact on stock trading and determine the event
trigger words and event roles. With help of domain
experts, we also annotated some auxiliary infor-
mation for the following event extraction process:
the POS label of the event roles, the dependency
relation pattern of the event types and the neces-
sary/unnecessary label of event roles. Not all event
roles will appear in every instance of this event
type. Take the Earnings Profit event in Figure 1
for example, the Firm, Type and Value will appear
in every Earnings Profit instance. But the Change
Rate and Time may not appear in some Earnings
Profit instances. We regard the news containing all
the necessary roles as an instance of related event.

TFED contains 32 types of finance events in 8
categories and covers all the main types of finance
events that are highly related to stock movement,
such as Earnings Profit, M&A and Credit Ratings.
All the 32 event types of TFED are displayed in
supplementary material A, as well as their trigger
words and event roles.

3.2 Event Extraction Process

There are 4 steps in the event extraction process, in
which we extract the fine-grained event structures
from finance news.

1. Extract Auxiliary Information. In this step,
we extract the auxiliary information of news: POS
Tagging (lexical information) and Dependency
Relation (syntactic information) by the popular
Standford CoreNLP? (Manning et al., 2014).

2. Filter Event Candidates. We filter the news
that may be an event instance by the TFED. News
that contains any trigger word(s) in the dictionary
will be regarded as a candidate of the related event.

https://stanfordnlp.github.io/
CoreNLP/
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For example, the news in the Figure 1 is a candi-
date for the Earnings Profit event because it con-
tains the trigger word profit.

3. Locate Event Roles. We regard news con-
taining all the necessary event roles as an event
instance. For event candidates driven by trigger
words, we adopt matching rules set by domain ex-
perts to check the dependency relation and POS in-
formation. Firstly, we match the dependency rela-
tion of the candidate news with predefined depen-
dency relation pattern of this event type in TFED
to locate the event roles and check if all the nec-
essary event roles are recalled. Then we check if
all the event roles’ POS labels are consistent with
predefined labels. Only if these two conditions are
satisfied, this news will be regarded as an event
instance and the event roles are determined.

4. BIO Post-process. The result of Step 3 is the
label for event roles. Since we want to get the
event label for each word in news, we use the BIO
label standard to normalize the labeling result. Af-
ter all these 4 steps, we access the fine-grained
event of news. And the extraction result shows
that our method covers 71% news in the 210k sam-
ples, which proves that the TFED and the pipeline
method work well on our experiment data. And
for uncovered news, adding more event types is
of high cost and low efficiency, so we extract the
<S,P,O> structure as replacement following the
approach in (Zhang et al., 2018b).

4 Proposed Method

4.1 Problem Formulation

Given N samples in the dataset, and the ¢-th sam-
ple (z°,7 €, s") contains the news text z°, the
stock trade data y* in the day before news happens,
the event role label e’ generated in Section 3.2 and
stock movement label s*. z' = {xil,x%, ,a:’L}
is a sequence of words with length of L. ¢’
{et, e, ...,et } is a sequence of labels indicat-
ing the event role of each word in z*. ' =
{vi, 5, ..., y4 } is a sequence of trade record vec-
tors for each trade minute with length of M. s* €
{0, 1} is the stock movement label telling whether
the stock trade price is up or down at prediction
time. The stock movement prediction task can be
defined as assigning movement label for the news
input and trade data input.


https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
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Figure 2: The overview of the proposed SSPM model.

4.2 Trade Data Embedding

Different from works of (Xu and Cohen, 2018;
Zhang et al., 2018b) who use limited daily-level
stock trade data (stock close price and daily trade
volume, for example), we adopt the minute-level
stock data to describe the stock movement in a
more detailed way. For each minute when at
least one trade happens, we collect the following
items: (1) First/last/highest/lowest trade price of
the minute; (2) Total trade volume/value of the
minute; (3) Volume-weighted average trade price.
The stock trade data is of time series data, so in or-
der to apply the powerful time series neural mod-
els, we transfer the raw trade features into trade
data embedding E,. The following combination
performs best on the develop set:

e Raw Number: first/last/highest/lowest trade
price, total trade volume and volume-
weighted average trade price

e Change Rate: change rates of all the raw
number items compared to last minute

Now we get 12 feature numbers for each trade
minute. We set the length of time step to 10
minutes. Then we get the trade data embedding
E, € RT™P« T = M/10 and Ds = 120. M is
the length of the trade minutes. Finally, we adopt
the min-max scale method for each stock’s sam-
ples and pad the time steps less than 10 minutes
with last trade minute’s data.

4.3 Base Model: Structured Stock Prediction
Model (SSPM)

Figure 2 shows the overview of SSPM. We first
transfer various sources of input (x,y,e) into
dense vectors. Then we get the representations
of text and stock data through bi-directional Long
Short Term Memory (BiLSTM) and self-attention.
Then we fuse text and event structure to access the
structure-aware text representation. Finally, we in-
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teract text and stock data by co-attention to predict
stock movement. There are 4 modules in SSPM:
input embedding, single-modal information rep-
resentation, bi-modal information interaction and
prediction. Experiment results show that SSPM
outperforms all the baselines.

4.3.1 Input Embedding

The purpose of this module is to transfer various
sources of input (z,y, e) into dense vectors. For
words in finance news z, we use both word-level
pretrained embedding Glove (Pennington et al.,
2014) and character-level pretrained embedding
ELMo (Peters et al., 2018) for the purpose of rep-
resenting words better from different levels. Then
we concatenate them to get the final word repre-
sentation E, € REXDPw We use the method pro-
posed in Section 4.2 to get the stock trade data em-
bedding E, € RT*Ps  Besides, we embed event
role labels e into dense vectors E, € RY*Pe using
a parameter matrix initialized with random val-
ues. D, Dg, D, are the embedding dimensions
of word, stock and event role, respectively. T is
the length of stock time-steps.

4.3.2 Single-modal Information
Representation

The purpose of this module is to get the represen-
tations for both news and stock trade data inde-
pendently. After accessing the input embedding,
we employ BiLSTM to encode the E, and E, :

H, = BiLSTM,(E,)
H, = BiLSTM, (E,)

Now we access the sentence representation H, €
RE*2 and daily stock trade representation H, y €
RT*2h " h is the hidden size of BILSTM. In order
to enhance the learning ability, we use the self-
attention to allow the H,, and H to have a look at
themselves and make adjustment. We apply the bi-
linear attention method which have proven (Wang



et al., 2018; Deng et al., 2018) more powerful in
learning ability. Here are the formulas for H:

WE, = softmax(Hy - Wy - HJ)

W1 is a trainable weight matrix and S, € RL*2k,

In the same way we get the self-attention result of
the stock data: S, € R7*2h,

In the <S,PO> method, event roles are ex-
tracted as separated phrases where some words are
ignored and the word order information is missing.
Instead, we fuse the text representation S, with the
event role embedding E, to capture the structure
information and remain the word order at the same
time. F. contains both word-level (event role) and
sentence-level (BIO label) information, which is
similar with S, so we select to fuse F, with S,
instead of E,. Here we adopt the fusion function
used in (Wang et al., 2018; Mou et al., 2016) to
fuse the event structure and text effectively:

H}, = 0(Wy[Se; Ee; Se — Ee; Sz 0 Ec] + by)

; means tensor connection. We ensure D, = 2h so
that F, has the same dimension with S,.. o means
element-wise multiplication and ¢ is the activation
function. HY, € REX2h is the structure-aware text
representation.

4.3.3 Bi-modal Information Interaction

In this part we conduct the interaction between
the two modal information: finance news of text
mode and stock trade data of number mode. These
two different modal information are highly rel-
evant: the finance news represents the environ-
ment variable and the stock trade data represents
history movement. The interaction between them
can lead to a better understanding of stock move-
ment. We use the co-attention to interact the bi-

modal information: H) = {h;}, h2, ... hE }
and Sy = { s;, 312/, e ,sg;}. The attention weight
is computed by the following function:

fare(i, ) = Relu(h|" Wa )

W is a trainable weight matrix. We use the soft-
max function to normalize the attention weight:

efatt ('Lv])

Yoy efon o) Y

Finally we get the reconstructed representations:

T L
. .
i od _ L pi
ch = g Qij 873 cg/— E Bij hy
=1 i=1

efa,tt (17.7)
Qg i
i i~ efatt J)
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Now we access the reconstructed represen-
tations Cy {cz, Chy ,cﬁ} and Cy
{e},cb,- el } based on the attention to another
modal information. Then we use the gating mech-
anism to incorporate the original representation
and the corresponding attention result:

Go =g(H, Cz) - Co + (1 - g(Hy, Cp)) - Hy,
Gy = g(Syv Cy) - Cy+ (1 —g(8Sy,Cy)) - Sy
where the g(, ) is the gating function and we use

the non-linear transformation with sigmod activa-
tion function in experiment.

4.3.4 Prediction

In this module, we concatenate the G, and G,
and predict the stock movement label p:

p(s|z,y, e) = softmax(Wp[Gz; Gy] + by)

4.4 Advanced Model: Multi-task Structured
Stock Prediction Model (MSSPM)

SSPM can hardly process the uncovered news that
can not be recognized by the TFED since the
fine-grained event structure information is not pro-
vided. MSSPM is designed to handle this issue by
employing the generated e in Section 3.2 as the
distant supervised label to train an event extrac-
tor. Furthermore, we design a multi-task frame-
work to jointly learn event extraction and stock
prediction because these two tasks are highly re-
lated. The quality of event extraction result has a
direct influence on the downstream stock predic-
tion task. At the same time, the results of stock
prediction can give valuable feedback to event ex-
traction. The multi-task framework can share use-
ful information and make effective interaction be-
tween tasks. The overview of MSSPM is shown
in Figure 3. The upper half of the dotted line rep-
resents the event extraction part. We regard the
event extraction task as a sequence labeling task
and adopt the self-attended BiILSTM-CRF (condi-
tional random fields) method to make labeling de-
cisions. The lower half stands for the stock move-
ment prediction part which works in a similar way
as SSPM.

4.4.1 Event Extraction

After accessing the word embedding E,, we em-
ploy the BiLSTM to get the sentence representa-
tion H,. Then we employ self-attention to learn
a better representation Sy. Finally we predict the
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Figure 3: The overview of the proposed MSSPM model.

event label and employ CRF to optimize output:
= softmax(W; Sy + b;)
= CRF(e)

€

¢

e’ is the estimation of the event role. Then we

adopt the method introduced in Section 4.3.1 to

get the event role embedding F. from e’ and adopt

the tensor fusion function used in SSPM to get the
structure-aware text representation HZ.

4.4.2 Stock Movement Prediction

The stock movement prediction process is similar
with SSPM, and the main difference is the event
input E, is predicted from the event extractor in
Section 4.4.1. The stock trade representation Sy,
is accessed in the same way with SSPM. Then we
employ the co-attention to interact H, and S,,,
followed by the gated sum and so ftmax function
to predict the stock movement label 5.

4.4.3 Multi-task Learning Object

The loss function of MSSPM consists of two parts,
which are the negative logarithm loss of event ex-
traction and that of stock prediction:

LS@ _Zetlogp(et’x)a t= [17 e aL]
t

LSs —slogp(s|x,y)

We select the weighted sum of these two losses as
the final loss of MSSPM:

LS = ALS./L+ (1 — \)LS,

The A is a hyper-parameter to balance two losses.
LS, is divided by the number of words to ensure
it is comparable with LS;. The experiment re-
sult shows that model performs best on develop
set when A = 0.43.
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5 Experiment

The experiment data is from the professional fi-
nance news providers Reuters’. We collect fi-
nance news related to TOPIX top 1000 stocks*
from 2011 to 2017. The raw data contains both
news headline and body, and we use headline only
since the headline contains the most valuable in-
formation and has less noise than news body. We
collect stock trade data for news happens in/out
of trade time (9:00 AM - 15:00 PM in trade day)
differently. For those news happens in trade time,
we collect the trade data from 9:00 AM to the last
minute before news happens. And for those news
happens out of trade time, we collect the trade data
of last trade day. We want to ensure no trade data
after news happens are included in the input in
which situation the market reactions are leaked to
the model. We get about 210k data samples finally.
Following (Ding et al., 2015; Xu and Cohen,
2018), the stock movement is divided into two cat-
egories: stock up/down. The stock up and down
rates are 45% and 55% in our dataset, respec-
tively. We adopt TOPIX Sector Index to correct
the stock movement in order to eliminate the influ-
ence of macro news and the details are introduced
in supplementary materials C. In experiment, we
reserve 10k samples for developing and 10k sam-
ples for testing. The samples in train set are pre-
vious to samples in valid set and test set to avoid
the possible information leakage. All the rest 190k
samples are applied for training SSPM while only
the dictionary covered part (about 70%) in the
190k samples are applied for training MSSPM to
acquire a high-quality event extractor. We tune
the hyper-parameters on the development set and

3Source Reuters News cThomson Reuters cREFINITIV,
https://www.thomsonreuters.com/en.html

“Each news in Reuters has a manual field indicating its
related stock(s) and we use it to filter the stock related news.


https://www.thomsonreuters.com/en.html

test model on the test set. The evaluation met-
rics are accuracy and Matthews Correlation Co-
efficient (MCC). MCC is often used in stock fore-
cast (Xu and Cohen, 2018; Ding et al., 2016) be-
cause it can overcome the data imbalance issue.
More experiment details are listed in the supple-
mentary material D.

6 Results and Analysis

We analyze the results of experiments in this sec-
tion. Firstly, we compare the proposed methods
with the baselines in Section 6.1. Then we ana-
lyze the effect of event structure input in SSPM
in Section 6.2 and analyze the MSSPM method in
Section 6.3. Lastly, we conduct the ablation study
in Section 6.4. We also conduct error analysis over
different times’ news, which is shown in the sup-
plementary material B.

6.1 Comparison With Baselines

The following baselines are used in this work.

e Bagging Decision Tree: This method adopt
bagging ensemble algorithm to combine 20
Decision Tree classifiers to make the predic-
tion. It outperforms all the other traditional

machine learning methods we tried.

Sentiment Analysis: This method (Si et al.,
2014) conducts sentiment analysis on news
headlines to predict stock movement.

Target Specific Representation:  This
method (Duan et al., 2018) employs the news
headline as the target to summarize the news
body in order to utilize the abundant informa-
tion of news body.

Triple Structure: This method (Ding et al.,
2014) adopts the <S,P,O> triple to represent
the event structure.

Weighted Triple Structure: This method
(Ding et al., 2015) adds trainable weight ma-
trices in <S,P,O> to enhance fitting ability.

Triple Structure with RBM: This method
(Zhang et al., 2018b) uses Restricted Boltz-
mann Machine to handle the <S,PO> and
then adopts multi-instance learning to model
the latent consistencies of different data
sources. Because tweet data are contained in
news data® in our dataset, our implementa-

Some related tweets about stocks are also provided by
Reuters mixed with news.
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Method Event Acc(%) MCC
Bagging Decision Tree No 549  0.096
Sentiment Analysis
(Si et al., 2014) No 62.8  0.253
Target Specific Rep.
(Duan et al., 2018) No 637 0275
Triple Structure .
(Ding et al., 2014) Coarse-grained 63.2 0.270
Weighted Triple Structure .
(Ding et al., 2015) Coarse-grained 63.5 0.269
Triple Structure with RBM . "
(Zhang et al., 2018b) Coarse-grained 64.0 0.278
MSSPM(proposed) Fine-grained 657 0315
SSPM(proposed) Fine-grained 66.4 0.330
Ensemble Fine-grained 67.2  0.348

Table 1: Results on test set compared with base-

lines; the results in this table and following tables have
proven significant with p < 0.05 by student t-test.

tion uses news and stock data instead of news,
tweet and stock data.

Table 1 is divided into three parts. The three
baselines in the top part employ the text di-
rectly as model input. These methods totally ig-
nore the structure information of text. The three
baselines in the middle part take structure infor-
mation into account. These methods consider
<S,P,O> event roles in all event types though,
they miss some important event roles and describe
the event roles in a very rough way. Moreover,
the word order information is missing under such
settings. Both SSPM and MSSPM outperform
all the baselines. These proposed method incor-
porate the fine-grained event structure in stock
movement prediction. It can extract specific fine-
grained event structures for different types of fi-
nance events. At the same time, this method re-
mains the original word order through the tensor
fusion. Another advantage of our method is that
it applies the stock data embedding method for the
minute-level stock trade data and conducts interac-
tion between stock data and news data. SSPM per-
forms a little better than MSSPM because SSPM
adopts more data for training and the learning of
event extraction in MSSPM is not perfect. The En-
semble method follows a simple rule to combine
the SSPM and MSSPM: The TFED covered news
is processed by SSPM and the uncovered news is
processed by MSSPM. It achieves the best result
among all the baselines and proposed methods.

6.2 Effect of Event Structure

In this section, we analyze the effect of event
structure. Although there have been some compar-
isons of different event structures in Section 6.1,



Input Form Acc(%) MCC
No Text 58.1 0.161
No Event (Raw Text) 62.2 0.246
Coarse-grained Event 64.6 0.291
Fine-grained Event 66.4  0.330

Table 2: Different Text Input Forms in SSPM.

the models are different. In this section, we con-
duct an experiment based on the SSPM model and
change different text input forms to check the im-
pact of the event structure. We design 4 different
text input forms for SSPM: (1) No Text method
takes no text information as input and relies en-
tirely on trade data to predict stock movement; (2)
No Event takes the raw news text as model in-
put and removes the event input from SSPM; (3)
Coarse-grained Event employs the coarse-grained
event structure <S, P, O> as event input of SSPM;
(4) Fine-grained Event is the proposed method
to utilize the category-specific fine-grained event
as model input. The results are shown in Ta-
ble 2. We can find that all the there methods
adding text input outperform the No Text method,
which proves the effect of finance news. Both
the Coarse-grained and Fine-grained Event meth-
ods bring improvement to the prediction result,
which shows that the event structure is very useful.
Moreover, the Fine-grained Event method brings
larger improvement than the Coarse-grained Event
method, which demonstrates that utilizing fine-
grained events is more helpful to help model un-
derstanding the semantic information of news text.

6.3 Analysis of MSSPM

Although SSPM performs well in stock predic-
tion, there are two important issues with it. Firstly,
29% news in our dataset can not be recognized
by TFED, and the Table 3 shows that the result
of uncovered data is obvious lower than the cov-
ered data. Secondly, TFED is domain specific, so
the generalizability of SSPM may be restricted.
MSSPM is designed to handle these two issues.

As shown in Table 3, although the performance
of MSSPM is lower than SSPM on the covered test
set, its performance is higher than SSPM on the
uncovered test set. The performance decrease of
MSSPM after transferring from covered set to un-
covered set is much smaller than SSPM’s, which
proves MSSPM has higher transferability. The un-
covered news can be regarded as events of new
types, and MSSPM performs better on it by learn-
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Data Covered Uncovered
Metric | Acc(%) MCC | Acc(%) MCC
SSPM 67.6 0.351 63.4 0.267

MSSPM 65.9 0.318 65.2 0.305

Table 3: Result on different sets of test data. The cov-
ered set means samples recognized by the TFED and
the uncovered set means the samples out of the dictio-
nary. These two sets account for around 30% and 70%
of the test set, respectively.

Task Event Extraction | Stock Prediction
Metric Micro-F1(%) Acc(%) MCC
Pipeline 79.2 64.8 0.297
Multi-Task 84.3 65.7 0.315

Table 4: Comparison of pipeline method and multi-task
learning method (MSSPM). The pipeline method trains
the event extractor first and then predicts the stock. We
report the micro-F1 score for the event extraction task.

ing event extraction, which improves the general-
izability of the structured stock prediction method.
As shown in Table 4, the performance of multi-
task learning is clearly better than the pipeline
method, which confirms our assumption that these
two tasks are highly related and the joint learning
improves both of their results.

6.4 Ablation Study

In this section, we report and analyze the results
of ablation study. We remove different compo-
nents of both SSPM and MSSPM to check their
effect. As shown in Table 5 and Table 6, we found
that the model performance drops in all the abla-
tion experiments as expected. The fusion function,
attention mechanism (both self-attention and co-
attention) and the gating mechanism are all help-
ful for both SSPM and MSSPM. We can observe
an obvious decrease after removing fusion func-
tion (adopt adding method instead) both in SSPM
({ 1.5 of Acc) and MSSPM ({ 1.1 of Acc), which
demonstrates that the fusion function combines
the event structure and the news text effectively.
Besides, the co-attention between news and stock
trade data also plays an important role in both
models.

7 Conclusion

In this work, we propose to incorporate the fine-
grained events in stock movement prediction task.
We propose the TOPIX Finance Event Dictionary
with domain experts’ knowledge and extract fine-
grained events automatically. We propose SSPM



Metric Acc(%)
SSPM 66.4
w/o Fusion Function 64.9(] 1.5)

MCC
0.330
0.298(] 0.032)

w/o Self-Attention 66.0(J 0.4) 0.319() 0.011)
w/o Co-Attention 65.1(J 1.3) 0.303(] 0.027)
w/o Gated Sum 65.6(J 0.8) 0.314(] 0.016)

Table 5: Ablation Study of SSPM.

Metric Acc(%) MCC
MSSPM 65.7 0.315
w/o Fusion Function 64.6(] 1.1) 0.292({ 0.023)
w/o Self-Attention 65.5(1 0.2) 0.310(J 0.005)
w/o Co-Attention 64.9(1 0.8) 0.298(J 0.017)
w/o Gated Sum 65.2(1 0.5) 0.304(J 0.011)
w/o CRF 64.2(] 1.5) 0.285({ 0.030)

Table 6: Ablation Study of MSSPM.

to incorporate fine-grained events in stock move-
ment prediction which outperforms all the base-
lines. Besides, to handle the uncovered news, we
use the event data as the distant supervised label
to train a multi-task framework MSSPM. The re-
sults show that MSSPM performs better on uncov-
ered news and improves the generalizability of the
structured stock prediction method.
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