
Proceedings of the 2nd Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 139–142
Hong Kong, China, November 4, 2019 c©2019 Association for Computational Linguistics

139

Pretrained Ensemble Learning for Fine-Grained Propaganda Detection

Ali Fadel, Ibraheem Tuffaha, and Mahmoud Al-Ayyoub

Jordan University of Science and Technology, Irbid, Jordan
{aliosm1997, bro.t.1996, malayyoub}@gmail.com

Abstract

In this paper, we describe our team’s ef-
fort on the fine-grained propaganda detection
on sentence level classification (SLC) task of
NLP4IF 2019 workshop co-located with the
EMNLP-IJCNLP 2019 conference. Our top
performing system results come from applying
ensemble average on three pretrained models
to make their predictions. The first two models
use the uncased and cased versions of Bidirec-
tional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2018) while
the third model uses Universal Sentence En-
coder (USE) (Cer et al., 2018). Out of 26 par-
ticipating teams, our system is ranked in the
first place with 68.8312 F1-score on the de-
velopment dataset and in the sixth place with
61.3870 F1-score on the testing dataset.

1 Introduction

Propaganda is an information, particularly of a
misleading or biased nature, used to promote cer-
tain causes or views influencing specific audiences
agenda using incorrect claims that might include
emotional delusions.

Thus, propaganda detection problem is a real-
life challenge that can affect how people under-
stand news. Despite the uniqueness of the propa-
ganda detection problem where the sentence can
be affected by the context of the news articles and
biased by external influences like the author writ-
ing style, the problem can still be considered as
a binary sentiment analysis task (Medhat et al.,
2014). Given a sequence of tokens representing
a sentence from an article, tag it with one of two
classes: 0 for non-propaganda or 1 for propa-
ganda.

A new task has been proposed by the Propa-
ganda Analysis Project1 with a new manually an-

1https://propaganda.qcri.org/index.
html

notated dataset at Natural Language Processing
for Internet Freedom 2019 (NLP4IF 2019) work-
shop co-located with EMNLP-IJCNLP 2019 con-
ference. For the full task and dataset descriptions,
readers can refer to (Da San Martino et al., 2019b).

In this paper, we describe our team’s effort to
tackle this problem. Without any preprocessing
steps, we build several models. The first two
use Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) (un-
cased and cased versions) to extract word em-
beddings, then feed them to a Recurrent Neu-
ral Network (RNN) based on Bidirectional Long
Short-Term Memory (BiLSTM) (Hochreiter and
Schmidhuber, 1997) cells. The third one uses Uni-
versal Sentence Encoder (USE) (Cer et al., 2018)
to extract sentence embeddings, then feeds them to
a shallow Feed-Forward Neural Network (FFNN).
After that, an average ensemble is used to merge
the models predictions. Our system is ranked in
the first place with 68.8312 F1-score on the devel-
opment dataset and in the sixth place with 61.3870
F1-score on the testing dataset out of participating
26 teams. More insights about the teams results
can be found in (Da San Martino et al., 2019a).

The rest of this paper is organized as follows.
In Section 2, we describe our methodology, in-
cluding the pretrained models used and our models
structures, while, in Section 3, we present our ex-
perimental results and discuss some insights from
our models in Section 4. Finally, the paper is con-
cluded in Section 5.

2 Methodology

In this section, we present a detailed description of
the extraction procedure for the word and sentence
embeddings using both BERT and USE pretrained
models. We then discuss the neural network mod-
els built on top of the extracted representations.

https://propaganda.qcri.org/index.html
https://propaganda.qcri.org/index.html


140

Figure 1: BERT-based models architecture

The implementation is available on a public repos-
itory.2

2.1 BERT-based Models
We use the small version of BERT (Base version)
using each of the uncased and cased models pro-
vided by pytorch− transformers Python pack-
age3 to extract the word embeddings. The uncased
and cased models are separately used to build two
different models using the same RNN architecture.
The usage of the cased version is to benefit from
the cased words which mostly represent the named
entities. As shown in Figure 1, the model can be
divided into four layers/components:

1. Text Tokenization

We use either the uncased or the cased BERT
tokenizer (based on which model we want
to train or inference) to tokenize text before
feeding it to the BERT model. This step is
important to run the BERT model and get the
appropriate contextual words representations
as the pretrained BERT model was trained on
tokenized text (Devlin et al., 2018). The to-
kenizer applies several steps on the text to

2Link removed to maintain anonymity
3https://github.com/huggingface/

pytorch-transformers

tokenize it. For example, it uses the Word-
Piece tokenizer (Wu et al., 2016) to segment
the words into subwords.

2. Embeddings Extraction

After the tokenization step, the tokenized text
runs through the BERT model while saving
the outputs of the hidden layers. The final
embedding vector for each token is the sum-
mation of the last four hidden layers of the
BERT model.

3. RNN Component

The contextual embedding vectors extracted
from the BERT model are fed to two consecu-
tive BiLSTM layers (Hochreiter and Schmid-
huber, 1997) with 128 hidden units, each with
20% dropout rate (Srivastava et al., 2014).

4. Shallow Feed-Forward Neural Network
Component

The thought vector (which is the final state
outputted from the last step by the RNN cell)
taken from the second BiLSTM layer is used
as a representation vector for the input sen-
tence. The vector is used as an input to
two fully-connected layers that have 256 and
128 hidden units, respectively, with ReLU as
their activation function. These layers are fol-
lowed by an output layer with a Sigmoid ac-
tivation function.

The uncased and cased models are trained for 4
and 5 epochs, respectively, on an Nvidia GeForce
GTX 970M GPU in less than 20 minutes to train
each model using Adam optimization algorithm
(Kingma and Ba, 2014) with 0.001 learning rate,
128 batch size, and binary cross-entropy loss func-
tion. As for the inference time on the development
dataset, which contains 2235 sentences, it is 3.5
minutes with an average around 10 sentences per
second.

2.2 USE-based Model
Without any preprocessing steps, we use the
Transformer (Vaswani et al., 2017) version of the
Universal Sentence Encoder (Cer et al., 2018)
model to encode the input sentences into fixed
length vectors of size 512. These vectors are used
as an input to two fully-connected layers with the
same structure as the one used in the BERT shal-
low feed-forward neural network component.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


141

Figure 2: USE-based model architecture

This model is trained for 5 epochs on an Nvidia
GeForce GTX 970M GPU in less than 5 minutes
using Adam optimization algorithm (Kingma and
Ba, 2014) with 0.001 learning rate, 32 batch size,
and binary cross-entropy loss function. The infer-
encing time for this model is 30 seconds on the
same development dataset with an average of 75
sentences per second.

3 Experimental Results

In this section, we present our experimental results
by comparing our top performing system to sev-
eral other attempts.

Our top performing system consists of three
models. Two of these models are RNN mod-
els trained using contextual word embeddings ex-
tracted from BERT Base model using both un-
cased and cased versions. The uncased version
achieves 66.1827 F1-score on the development
dataset, while the cased version achieves 65.7849
F1-score on the development dataset. The en-
semble average over these two models achieves
67.3279 F1-score on the same dataset. The third
model, which is a shallow FFNN model that
uses sentence embeddings extracted from Univer-
sal Sentences Encoder, achieves 63.7076 F1-score
on the development dataset. Finally, the ensem-
bling of the three models using average ensembing
increases the results to 68.8312 F1-score on the
development dataset, while the results decreased
significantly on the testing dataset with 61.3870
F1-score. We adopted using 0.25 as our threshold
for all experiments because using higher thresh-
olds decreases the results significantly. For ex-
ample, when using threshold 0.5 for the uncased

Table 1: Models results on development and testing
datasets

Model Dataset F1-score
Uncased BERT Dev 66.1827
Cased BERT Dev 65.7849
Uncased BERT +
Cased BERT

Dev 67.3279

USE Dev 63.7076
Uncased BERT +
Cased BERT +
USE

Dev 68.8312

Uncased BERT +
Cased BERT +
USE

Test 61.3870

Table 2: Uncased BERT model experiments results on
development datasets

Model F1-score
More Training 60.6282
3 Fully-Connected Layers 63.3349
3 BiLSTM Layers 65.5619
Duplicating Hidden Units 65.5355
Weighted Attention 65.9804

BERT model, the results decreases to 58.1414 F1-
score on the development dataset. Table 1 shows
the models results on development and testing
datasets.

We reach the previously mentioned uncased
model that achieves 66.1827 F1-score after con-
ducting several experiments to explore the effect
of applying different techniques on the network
structure. The first experiment was to train the
model for 10 epochs instead of 5, which yielded
60.6282 F1-score. Secondly, 3 fully-connected
layers were used in training instead of 2. This re-
duced the result to 63.3349 F1-score. Similarly,
an extra BiLSTM layer was added to the model,
which decreased the result to 65.5619 F1-score.
Then, we tried to duplicate the number of hidden
units in each layers, yielding 65.5355 F1-score.
Finally, we applied a sequence weighted attention
(Felbo et al., 2017) on the outputs of the second
BiLSTM layer. The output attention vector was
used as a sentence representation instead of the
thought vector, but the results did not improve giv-
ing 65.9804 F1-score. Table 2 shows the uncased
BERT model experiments results on developments
dataset.



142

4 Discussion

Although the USE model did not perform well
compared to either the uncased or the cased
BERT models (with 63.7076 F1-score compared
to 66.1827 and 65.7849, respectively), adding the
USE model to the ensemble average on top of both
BERT models increases the results on the devel-
opment dataset by around 1.5 F1-score. This indi-
cates that the sentences representations from USE
model could have captured unique information
from the sentences which BERT models missed.
Similarly, BERT cased performs worse than BERT
uncased, but it increases its results by about 1.15
F1-score as it can differentiate the named entities
which highly affects the semantic meanings.

It is worth noting that the results for all the
teams significantly decreased in the testing dataset
compared to their corresponding results on the de-
velopment dataset. This is probably due to the
fact that the testing dataset has a different distribu-
tion from the development dataset, which makes it
harder to predict the outcome from such difference
especially given a relatively small training dataset.

5 Conclusion

In this paper, we present our work on propaganda
detection on sentence level classification, where
we implemented three different models, two are
based on BERT with uncased and cased versions
and the last one uses USE. All these models build
useful sentence representation which are used to
make predictions. The ensemble average of these
models achieved the first place with 68.8312 F1-
score on the development dataset and in the sixth
place with 61.3870 F1-score on the testing dataset
out of 26 participating teams.

Acknowledgments

We gratefully acknowledge the support of the
Deanship of Research at the Jordan University of
Science and Technology for supporting this work
via Grant #20180193.

References

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Giovanni Da San Martino, Alberto Barron-Cedeno, and
Preslav Nakov. 2019a. Findings of the nlp4if-2019
shared task on fine-grained propaganda detection. In
Proceedings of the 2nd Workshop on NLP for In-
ternet Freedom (NLP4IF): Censorship, Disinforma-
tion, and Propaganda, NLP4IFEMNLP ’19, Hong
Kong, China.

Giovanni Da San Martino, Seunghak Yu, Alberto
Barrón-Cedeño, Rostislav Petrov, and Preslav
Nakov. 2019b. Fine-grained analysis of propaganda
in news articles. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019,
EMNLP-IJCNLP 2019, Hong Kong, China.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams engineering journal,
5(4):1093–1113.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

