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Abstract

Many discussions on online platforms suffer
from users offending others by using abusive
terminology, threatening each other, or being
sarcastic. Since an automatic detection of abu-
sive language can support human moderators
of online discussion platforms, detecting abu-
siveness has recently received increased atten-
tion. However, the existing approaches sim-
ply train one classifier for the whole variety of
abusiveness. In contrast, our approach is to
distinguish explicitly abusive cases from the
more “shadowed” ones. By dynamically ex-
tending a lexicon of abusive terms (e.g., includ-
ing new obfuscations of abusive terms), our ap-
proach can support a moderator with explicit
unraveled explanations for why something was
flagged as abusive: due to known explicitly
abusive terms, due to newly detected (obfus-
cated) terms, or due to shadowed cases.

1 Introduction

The web has become the primary medium for peo-
ple to share and discuss their opinions, stances, and
knowledge. But not all people behave ethically on
the respective online platforms: different types of
abusive language have widely spread on the web.
Systems that (semi-)automatically detect abusive
language have gained quite some attention in the
recent years. Such tools could support human mod-
erators who try to protect online platforms from
abusive language and to maintain high-quality user-
generated content.

People use various ways to offend others. On
one hand, they either directly offend the recipient
of a text (direct recipient) or indirectly offend some

other person, entity, or group (other recipient). On
the other hand, abusive words and phrases may be
used explicitly (e.g., “asshole!”), possibly in obfus-
cated form (e.g., “a$$h0le”), or abusiveness can
also happen implicitly via sarcasm (e.g., “go back
to school, whatever you learned didn’t stick”) or via
new racist or abusive codes (e.g., on the platform
4chan, “Google” is used as a slur for black people,
“skittle” for Arabs, and “butterfly” for gays).1

Some recent studies have pointed to different
types and to the importance of separating them,
especially (Waseem et al., 2017). However, the dis-
tinction between the different offending dimensions
has hardly been investigated for the development of
abusive language classifiers (Schmidt and Wiegand,
2017). Accordingly, existing approaches consider
the language of all abusive texts irrespective of their
offending dimensions as one single search space.
They simply train one machine learning model with
different linguistic features on this space in order to
classify unseen text as being abusive or not. Due to
the diversity of language in offending dimensions,
we expect such models to often result in limited
effectiveness in practice. The reason is that, when
learning to detect abusive texts following one way,
for instance, the inclusion of training texts follow-
ing other ways induces noise that diminishes the
visibility of discriminative patterns.

As a solution, we propose to unravel the search
space of abusive language via a three-stage classifi-
cation approach. First, utilizing an abusive lexicon,
we split the search space into two subspaces: texts
with abusive words or phrases from the lexicon,

1https://mic.com/articles/155739

https://mic.com/articles/155739
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(a) Standard
      approach

(b) Proposed 
      approach: Unraveling the search space of abusive language
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Figure 1: (a) Standard abusive language detection: Train a single classifier on all instances. (b) Proposed approach:
Iteratively split the search space based on the offending dimension and train classifiers for each subspace.

and texts without such words. Second, we train a
distinct classifier for each subspace. Third, using
the predictions of the two classifiers, we perform
an ablation test to discover new abusive terms from
the subspaces. The found abusive words are added
to the abusive lexicon that can serve as a dynamic
source of explanations for a moderator that ques-
tions the detectors decision to flag a text as abusive.
Figure 1 compares our approach to the “standard”
single-search-space method.

To evaluate our approach to abusive language
detection, we carried out several experiments us-
ing the personal attacks corpus of Wulczyn et al.
(2017). The corpus consists of more than 100,000
comments from Wikipedia talk pages, each labeled
as being a personal attack or not. In addition, the
corpus includes manual labels for the target of at-
tack, i.e., being the direct recipient or a third party.

The experimental results show that our search
space unraveling slightly improves over state-of-
the-art single-space classifiers with the additional
bonus of a dynamic abusiveness lexicon that can
help to explain the classifier’s decisions.

The contribution of this paper is three-fold:

• We investigate how to unravel the search space
of abusive language based on the underlying
offending way.

• We develop computational approach that per-
forms the unraveling in practice, and we eval-
uate it for the classification of Wikipedia talk
page comments as being abusive or not.

• We dynamically develop a new lexicon for
new abusive terms.

The developed resources are freely available on
https://webis.de.

2 Related Work

The automatic detection of abusive language has
been studied extensively in the last years. Pro-
posed approaches target different types of abusive
language, ranging from hate speech (Warner and
Hirschberg, 2012) and cyberbullying (Nitta et al.,
2013) to profanity (Sood et al., 2012) and personal
attacks (Wulczyn et al., 2017).

Despite the importance of labeled data for abu-
sive language detection, only few datasets are avail-
able so far for this task. Most of them come from
large online platforms, such as Twitter (Waseem
and Hovy, 2016), Yahoo (Nobata et al., 2016), and
Wikipedia (Wulczyn et al., 2017). In terms of the
number of labeled texts, the latter is the biggest,
consisting of more than 100,000 Wikipedia talk
page comments. We use this dataset for the evalua-
tion of our approach.

Abusive (or offensive) language detection usu-
ally follows a supervised learning paradigm with
either binary or multi-class classifiers. While exist-
ing abusiveness classifiers exploit a variety of lexi-
cal, syntactic, semantic, and knowledge-based fea-
tures, one study showed character n-grams alone
to be very good features (Mehdad and Tetreault,
2016). Until recently, the most effective overall ap-
proaches rely on neural network architectures such
as CNN and RNN (Badjatiya et al., 2017; Pavlopou-
los et al., 2017). On the personal attacks corpus,
Pavlopoulos et al. (2017) have developed several
very effective deep learning models with word em-
bedding features. We employ the best-performing
neural model, but we analyze the effect of adding
our new approach (i.e., to unravel the abusiveness
search space) that simultaneously helps to improve
lexicon-based explainability.

https://webis.de
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An approach somewhat comparable to ours has
been proposed by Dinakar et al. (2011) to detect
cyberbullying on YouTube: different classifiers
trained for different cyberbullying topics (e.g., sex-
uality, intelligence, and culture). The best results
come from combining the individual classifiers,
while a single multi-class classifier (mixing the
different topics) was less effective.

Our approach is also related to co-training (Blum
and Mitchell, 1998) and iterative feature selec-
tion/discovery (Liu et al., 2003; Xiang et al., 2012).
In co-training, a labeled training set is extended
by iteratively adding trustful instances from an un-
labeled set based on the predictions of the classi-
fier. Similarly, our approach extends its abusive-
ness lexicon iteratively. The iterative feature selec-
tion/discovery aims at finding new discriminating
features to train the classifiers. This is in line with
the third stage of our approach where new abusive
terms are learned based on the predictions of the
classifiers. The dynamically-updated lexicon can
then serve as a good source for explaining many
classifier decisions on the in-lexicon cases.

3 Data

In this section, we detail the data that we employ for
the implementation and evaluation of our approach.
Specifically, we describe the Wikipedia personal at-
tack corpus (Wulczyn et al., 2017) and the abusive
language lexicon of Wiegand et al. (2018).

3.1 Wikipedia Personal Attack Corpus
Wikipedia is one of the online platforms suffering
from abusive language, especially from personal
attacks (Shachaf and Hara, 2010). In particular,
each Wikipedia article is associated to a so called
talk page, where users are solicited to write com-
ments in order to discuss and improve the quality
of the article’s content. While the large majority
of comments is valuable, some users attack others
with texts comprising hate speech and harassment,
among others.

Our analysis and evaluation are based on the
personal attack corpus (Wulczyn et al., 2017)
that includes 115,864 comments extracted from
Wikipedia talk page comments. Each comment has
been labeled by at least ten crowdsourced anno-
tators as an ‘attack’ (i.e., being abusive) or ‘not-
attack’ (i.e., non-abusive) with an inter-annotator
agreement of 0.45 in terms of Krippendorff’s α.
The label of each comment was aggregated based

Train Validation Test

Attack 8,079 2,755 2,880
Not-attack 61,447 20,405 20,298

All 69,526 23,160 23,178

Table 1: Statistics of the personal attacks corpus.

on the distribution of the labels and the majority
vote (about 12% are attacks). The corpus comes
with a 60-20-20 split into training, validation, and
test set (see Table 1 for corpus statistics).

3.2 Abusive Language Lexicon
To carry out our approach, we employ the lexicon
of Wiegand et al. (2018). This lexicon has been
built through an in-depth examination of negative
polar expressions. To this end, a set of candidate
abusive words has been collected from the negative
polar expressions from the ‘subjectivity lexicon’ of
(Wilson et al., 2005) as well as the frequently listed
abusive words in the lexicons surveyed by Schmidt
and Wiegand (2017). The expressions in this set
have been manually labeled into abusive and non-
abusive using a crowdsourcing setting. Based on
the resulting labels, a new supervised classifier that
distinguishes between abusive and non-abusive ex-
pressions has been developed. This classifier, then,
has been applied to a large number of negative po-
lar expressions derived from Wiktionary, in order
to label them into abusive and non-abusive.

Accordingly, two versions of the lexicon have
been created: (1) the base lexicon which comprises
the manually labeled expressions, and (2) the ex-
panded lexicon which includes the automatically
labeled expressions in accordance with the predic-
tions of the developed classifier. The first lexicon
contains 1650 words and expressions in which 551
of them are abusive, while the second contains 8478
words and expressions with 2989 abusive ones.

The results of using the lexicon for detecting
the abusive language in micro-posts demonstrate
high effectiveness, particularly in cross-domain set-
tings.

4 Approach

Our approach unravels the search space based on
the hypothesis that the differences of abusive texts
with and without explicit abusive words are re-
flected in varying, possibly opposite feature dis-
tributions on the lexical, syntactic, semantic, or
pragmatic level. In an iterative ablation test step,
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more domain-specific abusive words are detected.

4.1 Unraveling the Search Space
In contrast to standard approaches training abusive-
ness classifiers on all examples at once, we propose
to apply a three-stage approach.

1) Splitting the Search Space Using an abusive
lexicon, we split the training and validation sets
into two subspaces of texts containing explicit abu-
sive terms and other texts (see Figure 1(b)).

2) Training Two Abusiveness Classifiers On
each training set of the two resulting subspaces
(explicit / other), a distinct classifier is trained to
predict the ’not-attack’ probability.

3) Collecting New Abusive Terms Each of the
two classifiers is run on 100 random attack and
100 random not-attack texts from the respective
validation set (‘attack’ / ‘not-attack’ according to
ground-truth majority vote). In an ablation test,
each word from these selected texts is iteratively
removed and the probability of the text to be ‘not-
attack’ is compared to the prediction with that word.
The words are then ordered by their “abusiveness”
(i.e., words are ranked higher the more their re-
moval raises the ‘not-attack’ score). Ideally, obfus-
cated abusive words and sarcastic expressions will
be ranked high. The top-k “new” abusive words
for each subset (explicit / other) and each ground-
truth label (‘attack’ / ‘not-attack’) are added to the
lexicon (≤ 4k words at most per iteration, k being
set to 20 after pilot experiments).

4.2 Iterative Unraveling
At the end of an iteration (i.e., splitting the datasets,
training two classifiers, and collecting new abusive
words), the effectiveness of the classifiers is tested
on the validation set. When there is no improve-
ment for three iterations, the process stops.

4.3 Abusiveness Classification
Given an unknown text (e.g., in the test set), we
check whether it contains an explicit abusive word
from the developed lexicon, and select the appro-
priate classifier accordingly.

5 Experiments and Results

We compare our approach to the state of the art
on the personal attack corpus, following the origi-
nal suggestion of using the 2-class area under the
ROC curve (AUC) and Spearman rank correlation

as the evaluation metrics (AUC computed between
derived ‘attack’ probabilities and the corpus major-
ity vote while Spearman considers the fraction of
corpus votes agreeing with a prediction).

5.1 Experimental Setup
To represent the state of the art, we employ the
best-performing model on the personal attack cor-
pus proposed by Pavlopoulos et al. (2017): an
RNN model where the basic cell is a GRU. An em-
bedding layer transforms an input word sequence
into a word embedding sequence. Then, the model
learns a hidden state from the word embeddings.
The hidden state is employed to predict the proba-
bility of ‘not-attack’ using a linear regression layer.

We use 300-dimensional word embeddings (Pen-
nington et al., 2014) pre-trained on the Common
Crawl with 840 billion tokens and a vocabulary
size of 2.2 million. Out-of-vocabulary words are
mapped to one random vector. We use Glorot (Glo-
rot and Bengio, 2010) to initialize the model, with
mean-square error as loss function, Adam for op-
timization (Kingma and Ba, 2014), a learning rate
of 0.001, and a batch size of 128.

The initial abusive lexicon used for splitting the
search space is the complete set of words in the
base lexicon of Wiegand et al. (2018) containing
1650 negative polar expressions. This lexicon per-
formed better in our pilot experiments compared
to the weakly labeled set of expressions in the ex-
panded lexicon.

5.2 Results
On the personal attacks corpus, we compare our
approach to the effectiveness reported by Wulczyn
et al. (2017) and Pavlopoulos et al. (2017), and
to our re-implementation of the RNN model of
Pavlopoulos et al. (2017) that forms the basis of our
approach (some implementation details missing in
the original paper).

As can be seen in Table 2, our approach is
slightly better than the re-implementation in terms
of AUC and Spearman in both splits and the whole
test set. Our approach is on a par with the previous
best approach reported (slight AUC improvement
to 97.80, but slightly lower Spearman score). The
fact that the concatenation of explicit and other
yields a higher AUC than any subspace is a result
of the substantially lower predicted probabilities
of attack on the other set as well as of the highly
imbalanced distribution of ‘attack’ in the two sets.
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Go fuk your Momma Rancie
Stop erasing my work you MF Douche bag

why are you such an idiot
You re fuck of bitch

Go fuk your Momma Rancie
Stop erasing my work you MF Douche bag

why are you such an idiot
You re fuck of bitch

Second IterationFirst Iteration

Other

Explicit

Figure 2: The abusiveness of words in texts with explicit abusive terms (above the line) and without abusive terms
(below the line) in the first two iterations. Darker color indicates a higher abusiveness.

Approach AUC Spearman

Our proposed approach
- all cases 97.80 70.26
- explicit 97.69 78.06
- other 97.05 55.37

Reimplementation
- all cases 97.17 67.98
- explicit 97.08 75.45
- other 96.38 52.06

Pavlopoulos et al. (2017) 97.71 72.79
Wulczyn et al. (2017) 96.59 68.17

Table 2: Effectiveness on the test set of the per-
sonal attacks corpus (AUC and Spearman coefficients):
our proposed approach, the previous state of the art
(Pavlopoulos et al., 2017), our reimplementation of it,
and the “standard” approach by Wulczyn et al. (2017).

Table 3 shows the AUC values and Spearman co-
efficients for the first five iterations of our approach
on the unraveled validation and test set. The ap-
proach stops at the fifth iteration since the highest
AUC performance (our target evaluation measure)
on all and the explicit subspace of the validation set
was obtained in the second iteration (three failed
improvement attempts). The highest AUC for the
other subspace is achieved in the first iteration,
though. The Spearman values increase after each
iteration, except again for the other subspace where
the first iteration works best.

The expansion rates of the abusive lexicon are
shown in Table 4. Fewer and fewer terms are added
in later iterations since it becomes increasingly less
likely for the ablation test to discover important
new abusive words. Additionally, we asked two
experts to also check the newly added words; they
confirmed that more and more abusive terms are
added (inter-annotator agreement of 0.59).

Our approach iteratively identifies new “highly
abusive” words and moves the respective texts from
the other subspace to the explicit subspace. Since
the abusive terms are important clues for the clas-
sification, this will force the model for the other
subspace to utilize new features. As a result, the

Measure 1 2 3 4 5

AUC - Valid. all 97.17 97.46 97.40 97.34 97.33
AUC - Valid. explicit 96.94 97.40 97.21 97.25 97.14
AUC - Valid. other 97.63 96.58 96.36 95.46 95.32

AUC - Test all 97.58 97.80 97.74 97.68 97.69
AUC - Test explicit 97.25 97.69 97.51 97.55 97.55
AUC - Test other 97.29 97.05 96.94 94.14 96.15

Spearman - Valid. all 69.19 70.26 70.40 70.25 70.41
Spearman - Valid. explicit 76.67 77.43 78.05 78.47 78.46
Spearman - Valid. other 56.88 54.62 51.64 49.21 47.73

Spearman - Test all 69.73 71.07 71.26 70.87 71.26
Spearman - Test explicit 77.38 78.06 78.47 78.79 78.59
Spearman - Test other 57.10 55.37 53.37 50.50 50.14

Table 3: Effectiveness (AUC values and Spearman co-
efficients) of our approach’s first five iterations.

1 2 3 4 5

Size 1650 1725 1780 1829 1875
Increment +75 +55 +49 +46

Partially abusive +20 +30 +24 +18
Abusive +14 +13 +18 +21
Non-abusive +41 +12 + 7 + 7

Table 4: Increment and of the abusive lexicon in the
first five iterations of our approach. The rows partially
abusive, abusive, and non-abusive indicate the numbers
of abusive words agreed by one of, both, none of the
experts in the newly added words respectively.

texts without explicit abusive terms become more
“difficult”, such that the effectiveness in the other
subspace decreases over time.

Table 5 shows the newly found words in each
of the first iterations. For every iteration, we show
words labeled as ‘abusive’ (two experts both agree
they are abusive), ‘partial abusive’ (one of the ex-
perts agreed they are abusive) and ‘non-abusive’
(none of two experts both agrees they are abu-
sive). For each label and each iteration, we se-
lect three words which have the highest ‘abusive-
ness’ (see the definition of ‘abusiveness’ in sec-
tion 4.1). We found that our approach can find un-
usual abusive words (such as ‘faggots’) and also ob-
fuscated/misspelled abusive words (such as ‘fvck’).

Figure 2 illustrates some texts with the abusive-
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Iteration Abusive Partially abusive Non-abusive

2 jerk masturbating headline
fuckheads freak heck

douchebag clowns nightmare

3 fucking rudely hometown
fvck dunce lifetime

bastard pederast imature

4 bithces filthy policemans
sissy lame foot

fuk harrassing die

5 niggers nazi pint
faggots hypocritical boss
fuckers imposter pay

Table 5: The newly added abusive words in the first it-
erations. By ‘abusive’, we refer to the words that both
experts label as abusive. By ‘partially abusive’, we re-
fer to the words that only one of the experts labels as
abusive, and by ‘non-abusive’, we refer to the words
that both experts label as non-abusive.

ness of each word in the first and second iteration.
The classifier for the explicit subspace learns to em-
phasize the explicit abusive words (e.g., the more
important “fuck” or “bitch” and the less impor-
tant “are” or “an” in the second iteration) while
the classifier for the other subspace identifies “new”
abusive terms (e.g., “Douche” or “fuk”) to be added
to the lexicon.

6 Conclusion

Abusive language has become a ubiquitous prob-
lem on online platforms. Previous work aimed to
train detectors on a single search space of poten-
tially abusive texts. In contrast, we suggest to di-
vide the search space into texts containing explicit
abusive words (according to a dynamic lexicon)
and texts that do not contain such terms. For each
subspace, a different classifier is trained.

In an online scenario of consistently running our
approach on new comments (some users may report
offensive ones, etc.) to support human moderators
on online platforms, newly “emerging” obfuscated
offensive terms will quickly be spotted and are not
“lost” in the dominating space of explicit abusive-
ness. The iterative extension of the lexicon also
helps to increase effectiveness in our experiments
showing our approach to be on a par with the previ-
ous state of the art on the personal attacks corpus.

Besides matching the previous state-of-the-art
“black box” classification performance, our new
approach with its dynamic lexicon comes with the
benefit of an improved explainability that a human

moderator may appreciate for the in-lexicon cases.
For the human-in-the-loop platform moderation
scenario, we plan a user study also including a
functionality to manually add or blacklist terms
from the lexicon in each iteration.
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