TellMeWhy: Learning to Explain Corrective Feedback for Second
Language Learners

Yi-Huei Lai, Jason Chang
National Tsing Hua University, Hsinchu, Taiwan

{yima,

Abstract

We present a writing prototype feedback sys-
tem, TellMeWhy, to provide explanations of er-
rors in submitted essays. In our approach, the
sentence with corrections is analyzed to iden-
tify error types and problem words, aimed at
customizing explanations based on the context
of the error. The method involves learning the
relation of errors and problem words, gener-
ating common feedback patterns, and extract-
ing grammar patterns, collocations and exam-
ple sentences. At run-time, a sentence with
corrections is classified, and the problem word
and template are identified to provide detailed
explanations. Preliminary evaluation shows
that the method has potential to improve ex-
isting commercial writing services.

1 Introduction

Many English essays and sentences with gram-
matical errors (e.g., “We discussed about the is-
sue.’) are submitted by L2 learners to writ-
ing services every day, and an increasing num-
ber of online grammar checkers specifically tar-
get learners’ essays. For example, Write & Im-
prove (writeandimprove.com) pinpoints an
error without explaining the correction. Gram-
marly (www.grammarly.com) corrects gram-
matical errors and provides context-insensitive ex-
amples using pre-compiled information.

Writing services such as Write & Improve and
Grammarly typically use canned text to explain a
common error. However, corrective feedback with
the most useful and comprehensive explanations
may contain collocations, grammar, and context-
sensitive examples. These systems could provide
better explanations to the user, if the context of the
correction is taken into consideration.

Consider the sentence ‘We discussed about the
issue.” The best explanation for the error is prob-
ably not (1) and (2) which only state the obvious

235

jason}@nlplab.cc

TELLMEWHY GEC FindExample ~ Suggest

We discussed abeut the issue .

Omit about

+ Discuss is a transitive verb and needs an object instead
of a preposition (e.g. about)
The usage of discuss: V n

ides, itis often paired ver

or b discuss with
PRONOUN, plan.

Figure 1: Example TellMeWhy-GEC for the error ‘We dis-
cussed about the issue.’

(i.e. editing operations for a correction), but rather
(3) which explains using the grammar patterns of
the problem word (i.e., discuss) with a simple ex-
ample.
(1) This word about may not be needed. Is your writing
clearer without it? (from Write & Improve)
(2) The preposition seems unnecessary after the verb dis-

cussed. Consider removing the preposition. (from
Grammarly)

Examples:
X The government advocated to recycling.

v The government advocated recycling.
discuss sth (WITHOUT about/on): ‘He simply re-
fuses to discuss the matter.’

3

Compare talk about, a discussion about/on: ‘They
want to talk about what to do next.” (from Longman

Common Error Dictionary (Turton and Heaton, 1996))

We present a prototype system, TellMeWhy,
with three functions: GEC (in Figure 1), Find-
Example, and Suggest. Suggest displays statisti-
cal data of erroneous and corrected usage to ex-
plain correctness; GEC and FindExample explain
corrections using linguistic characteristics. With
an underlying grammatical error correction (GEC)
system, we will provide feedback based on the
correction made by the GEC. However, if the GEC
system can not detect an error, our explanation
module cannot be activated. For this, FindExam-
ple can search for a sentence with correction edits

Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 235-240
Hong Kong, China, November 3 — 7, 2019. (©2019 Association for Computational Linguistics

writeandimprove.com
www.grammarly.com

and display explanations so TellMeWhy will not
being limited by the underlying GEC system.

At run-time, TellMeWhy starts with a given sen-
tence, potentially with corrections made by the
underlying GEC system or submitted to FindEx-
ample. TellMeWhy then generates feedback after
identifying error types, problem words, and lin-
guistic information as described in Section 3.1.
We develop explanation templates based on hand-
crafted training data. In our prototype, TellMeWhy
returns the feedback to the end user directly (Fig-
ure 1); also, the feedback can be shown to a human
rater in order to assist them in rating essays.

2 Related Work

Corrective feedback on learners’ writing has been
an area of active research. Recently, the state-of-
the-art in the research has been represented in Lea-
cock et al. (2010) involving many automated ap-
proaches to detect a wide range of error types.

To generate explanations, most writing services
adopt the approach of canned text with table look-
up schemes (Andersen et al., 2013). This ap-
proach, despite providing basic explanations, is
not optimal, because canned feedback tends to be
superficial and context-insensitive. Additionally,
canned feedback is limited to common grammat-
ical errors, without covering lexical error types,
such as word-choice errors.

Providing corrective feedback and explaining
how the correction improves grammaticality and
adheres to idiomatic principles (Sinclair, 1991)
have long been an important research area in
Teaching English as Second Language (TESOL).
Bitchener et al. (2005) concluded that proper er-
ror feedback is significant in improving English
writing. In this work, we focus on identifying the
problem-causing word and providing a compre-
hensive and context-sensitive explanation based
on the problem word.

In a study more closely related to our work,
Nicholls (2003) describes an error coding scheme
for lexicography and English Language Teaching
(ELT) research based on a Cambridge Learner
Corpus. Turton and Heaton (1996) compiled ex-
amples of common errors organized by problem
words based on Longman Learners’ Corpus. Chen
et al. (2017) describes methods for providing ex-
planations based on grammar patterns.

We used the data in Turton and Heaton (1996)
as the main source of training data and adopted

236

M
2

3
@

Classifying the error type

Extracting grammar patterns, collocations as
well as examples and definitions

Calculating co-occurrence frequency of pairs of
an edit and neighboring words

Building explanation templates based on hand-
crafted training data

Figure 2: Outline of the process used to train the TellMeWhy
system

the explaining strategy proposed by Chen et al.
(2017). The main difference between our work
and Chen et al. (2017) is that Chen et al. (2017)
provided limited error types with grammar pat-
terns as explanation, while our method provides
context-sensitive explanations of more error types.

In contrast to the existing systems on corrective
feedback, TellMeWhy provides comprehensive ex-
planations for multiple error types with an under-
lying GEC system. Additionally, to provide good
explanations, a promising approach is to automati-
cally classify the error and extract a problem word
nearby to tailor the explanation to the context of
the error.

3 The TellMeWhy System

We focus on providing comprehensive feedback
on a given English sentence with corrections. The
feedback is returned as an output to the end user
directly. It is important to detect the potential
problem-causing word and classify the error. Our
goal is returning a context-sensitive explanation
using the problem word and the error type to in-
stantiate suitable explanation template and fetch
reference linguistic information.

3.1 Learning to Provide Feedback

We attempt to learn to generate an informative and
comprehensive explanation that matches the error
and context (in particular, the problem word). Our
learning process is shown in Figure 2.

In the first stage of the learning process (Step
(1) in Figure 2), we analyze sentences with a cor-
rection annotated with a problem-causing word
which is a word regularly causing the specific er-
ror. As we will describe in Section 3.1, we use
Turton and Heaton (1996) for training. Based
on an existing method, ERRANT (Bryant et al.,
2017), we analyze differences between a sentence
containing an error and a corrected sentence. Then
we produce an error type including an edit type
(insert, delete, and replace) and PoS of the edit

Table 1: top 10 error codes

Code Gloss Samples Sentence

1. SP Spelling [-Fortunaly-]{+Fortunately+}, the police found her.

2.RV Replace v. How to [—muke—]{+create+} a better hairstyle.

3.RT Replace prep. ~ We should invest more money [-to-]{+in+} education.

4.MD Missingdet. School finishes at five in {-+the+} afternoon.

5.R Replace w. Some people tried to enter without [-any-]{+a+} ticket.

6. RN Replace n. Television provides many [-advantages-]{+benefits+}.

7.FV Form v. The problems have been [-arised-]{+arisen+} due to overpopulation.
8. MT Missing prep. He apologized {+to+} her for the long delay.

9. UD Useless det. I have work to do. I don’t have [-a-] time for anything else.

10. UT Useless prep. ~ We discussed [-about-] the issue.

(1) Generating a set of phrase templates in the form
of PoS tags

(2) Extracting grammar patterns for all keywords
in the given corpus annotated by PoS based on
phrase templates

(3) Extracting exemplary instances for all patterns of
all keywords

Figure 3: Outline of the pattern extraction process

(e.g., (DEL, PREP, about)). For simplicity, we
limit ourselves to Top /0 most common error types
(in Table 1) in CLE-FCE (Yannakoudakis et al.,
2011) and associated error types (i.e., extending
error types from Top 10, such as from replacing
a word, to deleting a word or missing a word) to
derive explanation templates. To sum up, we limit
ourselves to provide explanation for error types re-
lated to editing a verb, adjective, noun, preposi-
tions and function words (e.g., articles).

In the second stage of the learning algorithm
(Step (2) in Figure 2), we extract reference in-
formation. First, we extract grammar patterns
from Corpus of Contemporary American English
(COCA") using an existing method (in Figure 3)
described in Chang and Chang (2015). Subse-
quently, we store examples corresponded to a key-
word’s grammar patterns (e.g., (discuss, V n): is-
sue, topic, matters). Next, we build a collocation
dictionary with dependency relation information
using triples (e.g., (eat, V:obj:N, bananas)). The
relation (e.g., V:obj:N) is produced by a depen-
dency parser using COCA. Finally, we store def-
initions in Online Cambridge Dictionary to ex-
plain word-choice errors (e.g., ‘accept’ education).
Additionally, Online Cambridge Dictionary gives
a pair of English-Chinese definition and a guide
word (e.g., TAKE, APPROVE) for each sense of a
polysemous word (e.g., accept). The guide words
are instrumental for us to find the closest sense be-
tween erroneous and correction words.

In the third stage of the learning algorithm
(Step (3) in Figure 2), we calculate co-occurrence
frequency of pairs of an edit and neighboring

'www.english-corpora.org/coca

237

(1) Generating skipped bigrams from a large corpus
and storing corresponded distance

(2) Filtering the collocates

(3) Filtering the distances for each collocates

Figure 4: Outline of the Smadja’s process

words using the EF-Cambridge Open Language
Database EFCAMDAT (Geertzen et al. (2013) and
Huang et al. (2018)). Then, we use the method
proposed by Smadja (1993) (in Figure 4) to cal-
culate co-occurrence frequency of pairs of an edit
and neighboring words with the goal of select-
ing the most potential neighboring word triggering
the edit. In other words, we assume the problem-
causing word as a collocate of the edit.

In the fourth and final stage of training (Step
(4) in Figure 2), we formulate a feedback template
for each error type, classified by ERRANT. For
each error type, we observe and exploit the con-
sistent patterns of feedback in Turton and Heaton
(1996) to design the templates. For example, we
formulate an explanation template for unnecessary
preposition error with three components: problem
word, grammar pattern, and example. An exam-
ple feedback template is shown in Table 2. After
inferencing from explanation instances of each er-
ror type, we develop type-specific templates with
slots to be filled with specific information: prob-
lem words along with a grammar pattern, colloca-
tions and examples.

3.2 Run-Time Feedback

Once feedback templates have been designed and
reference information for problem words has been
extracted, they are stored in tables.

At run-time, users submit an essay possibly
with some errors (e.g., We discussed about the is-
sue). The underlying GEC system corrects the es-
say with edits (e.g., We discussed [-about-] the is-
sue). Next, TellMeWhy determines the error type
(e.g., (DEL,PREP,about)) and the problem word
(e.g., discussed). We then produce as follows.

First, we handle corrections in the input sen-
tence one by one. We correct an input sentence
with multiple corrections to be only one correction
edit temporally and iteratively. After recording the
correction information (e.g., the editing type, er-
roneous and correction word), we also correct the
only one correction because correction tags could
influence a tagger to tag each word with PoS. An-
notated the input sentence with PoS, we could ex-

Table 2: Sample correction-feedback pairs from the training collection

Problem Word Sentence and Feedback Analysis
discuss X They would like to discuss about what to do next. $pw = ‘discuss’
v They would like to discuss what to do next. $edits = (DEL, PREP, about)
discuss sth (WITHOUT about/on): $gp=Vn
He simply refuses to discuss the matter.
There is nothing to discuss.
Template feedback($pw,$gp,Sedits) = $Spw $gp (WITHOUT S$edits[2]): $example(Spw,$gp)
! $gp denotes a grammar pattern.
% $pw denotes a problem-trigger word.
3 $example denotes an example consisting a grammar pattern based on a problem word.
Table 3: Template for Replace a Preposition
Problem Word Sentence and Feedback Analysis
arm X She would not stop crying until I held her on my arms. $pw = arm
v/ She would not stop crying until I held her in my arms. S$edits = (RP, PREP, on, in)
(hold sb/sth) in your arms (NOT on): $gp=inN
He had a great pile of books in his arms.
Template feedback($pw,$gp.$edits) = $gp (NOT $edits[2]): $example($Spw,$gp)

tract grammar patterns in the input sentence cov-
ering correction using the method in Figure 3.

Next, to make feedback relevant to the context,
we identify the most potential problem verb, noun
or adjective through the highest co-occurrence fre-
quency of the correction and potential problem
words. The problem word is then used to instan-
tiate the explanation template and fetch reference
information of grammar patterns, collocations, ex-
amples, and problem word definitions.

4 Experiment and Evaluation

TellMeWhy was designed to generate explanations
containing grammar, definitions, collocations, and
examples. Thus, TellMeWhy was trained by us-
ing the Longman Dictionary Of Common Errors
(Turton and Heaton, 1996) as the main source of
knowledge. In this section, we first present the de-
tails of training. Next, we describe common error
types tested. Finally, we introduce feedback strat-
egy and evaluate the experimental results.

4.1 Training TellMeWhy

We used 70% of common errors and explanations
in Turton and Heaton (1996) to train TellMeWhy.
Turton and Heaton (1996) contains a collection
of approximately 2,500 common errors and ex-
planations. Table 2 shows one sample correction-
explanation pairs with a problem word and an ex-
planation template. Additionally, we used EF-
CAMDAT, a corpus of real learners’ writings with
edits by human graders and containing over 83
million words from 1 million essays written by
174,000 learners, to compute co-occurrence fre-
quency of edits and problem words.

238

By analyzing a sentence with errors and their
correction pairs, we produced error types includ-
ing three edits: replace, insert, and delete, and
PoS of the erroneous and correction words. We
found that explaining strategies are highly related
to error type. Therefore, we customized explain-
ing strategies for each error type.

For errors related to replacing a preposition.
First, we use a template (in Table 3) that shows the
grammar patterns of the problem-causing word.
The potential problem words are the closest noun,
verb, or adjective to the erroneous preposition
such as ‘held’ and ‘arms’. We detected grammar
patterns (in Figure 3) for each potential problem
word (e.g., hold: V in n, arm: in N). The most
relevant grammar pattern is selected by highest
co-occurrence frequency of a problem word and
the edit calculated in advance using EFCAMDAT
through the method proposed by Smadja (1993).
Then, we ranked collocations of an edit-problem-
word pair (e.g., ([-on-]{+in+}, arm), (hold, [-on-
]{+in+})) by highest co-occurrence frequency of
a problem word and the edit.

As for errors related to replacing function words
(e.g., articles and demonstratives), which form a
closed set, we exploited feedback in Turton and
Heaton (1996) and rules in Cobuild et al. (2005).
Nevertheless, determiner errors related to time
(e.g., in ‘the’ morning and at night) are difficult
to handle using general determiner rules. In that
case, we followed Turton and Heaton (1996) time-
specific rules.

With respect to cases of replacing open-class
words (i.e., verb, noun, and adjective), we han-
dled the errors by cases: (1) spelling, (2) tense,

Table 4: Template for Replacing a Word

Problem Word Sentence and Feedback Analysis
abandon X Since capital punishment was abandoned, the crime rate has increased. $pw = abandon
v Since capital punishment was abolished, the crime rate has increased. $edits = (RP, VERB, abandon, abolish)
abandon = give up a plan, activity or attempt to do something, without being successful: = $col[0] = [plan, activity]
Bad weather forced them to abandon the search.
Without government support, the project will have to be abandoned.
Template feedback(S$edits,$col) =

S$edits[2] = $def($edits[2]) and usually paired with $col[0] : $example($edits[2])
S$edits[3] = $def($edits[3]) and usually paired with $col[1] : $example(Sedits[3])

! $def denotes a definition of a word.
% $col denotes a collocation of $pw

Table 5: Scores (0-2) for explanations on top 10 er-
ror codes, generated by four systems: TellMeWhy-GEC
(TMW-GEC),TeliMeWhy-FindExample (TMW-FE) Gram-
marly (GL) and Write & Improve (W&I)

Code Gloss TMW-GEC TMW-FE GL W&l
1. SP Spelling 2 2 2 2
2. RV Replace v. 1.3
3.RT Replace prep. 2 1.8 1 1
4.MD Missing det. 2 1.8 1 1
5.R Replace w. 1.67 1.8 1.71 1
6. RN Replace n. 1.6 1
7.FV Formv. 0.8 1 1.4 1
8. MT Missing prep. 2 1.6 0.83
9.UD Useless det. 1 0.9 2 1
10. UT Useless prep. 1.67 1.5 1 1
Average score 1.64 1.53 137 1.13

(3) word choice errors. Spelling and tense errors
associate with morphological variation and could
be detected directly and explained easily as such.
A word-choice example pair of correction and
feedback from Turton and Heaton (1996) is shown
in Table 4. From this, we found word choice mis-
take is often made because users do not understand
the definition of erroneous and corrected words
very well. With this in mind, we first used the defi-
nitions from Online Cambridge Dictionary for the
erroneous and corrected words (e.g., ‘abandon’ vs
‘abolish’). To determine the contextually appro-
priate senses for polysemous words, we replaced
erroneous and corrected words with all possible
guide words (e.g., ‘abandon’: leave, stop; ‘abol-
ish’: abolish) in Online Cambridge Dictionary.
Second, we calculated cosine similarity between
pairs of error-correction (e.g., leave-abolish and
stop-abolish) using Word2vec. We choose the pair
of senses with the highest cosine similarity to dis-
play definitions. Additionally, word-choice errors
could be caused by miscollocation. We also pro-
vided related collocations with frequency to ex-
plain why the correction word is more appropriate.

4.2 Evaluation

Once we have trained TellMeWhy as described,
we evaluated the performance using ten randomly-

239

Table 6: The number of testcases can be corrected by three
systems: TellMeWhy-GEC (TMW-GEC), Grammarly (GL)
and Write & Improve (W&I)

Code Gloss TMW-GEC GL W&l
1. SP Spelling 10 10 10
2. RV Replace v. 0 0 0
3.RT Replace prep. 4 6 1
4. MD Missing det. 5 6 1
5.R Replace w. 6 7 5
6. RN Replace n. 0 0 1
7.FV Formv. 7 8 3
8. MT Missing prep. 4 6 0
9. UD Useless det. 7 9 3
10. UT Useless prep. 9 8 3

selected sentences for each top 10 common error
type. We also evaluated problem word detection
performance using Turton and Heaton (1996).

Two functions in our systems are used to
evaluate explanations: TellMeWhy-GEC and
TellMeWhy-FindExample. The former has an un-
derlying GEC system. The latter is a writing ex-
amples search engine so that users can submit a
sentence with known correction edits to under-
stand why the edit makes sense; additionally, we
can evaluate performance without being limited by
the underlying GEC system.

One evaluation of comparison between TellMe-
Why and other commercial systems is shown in
Table 5 was evaluated by ten sentences for each
error type and carried out by a linguist. A wrong
explanation (such as a wrong problem word, in-
appropriate corrective feedback) gets zero point,
while a correct explanation (i.e., identifying the
problem word correctly but providing context-
insensitive examples) gets one point. Explanations
related to a problem word and context receive two
points. However, the score of feedback on errors
that TellMeWhy-GEC, Grammarly, and Write &
Improve cannot detect does not count into the aver-
age score; besides, the correction performance of
each system is shown in Table 6. The evaluation
results show that TellMeWhy is considerably better

than the existing services and able to explain more
error types, such as word-choice and collocation
errors, and provides context-sensitive information.

The other evaluation is the performance of
problem word identification. We evaluated
problem word identification using Turton and
Heaton (1996) containing approximately 2,500
edit-feedback pairs. We evaluated TellMeWhy us-
ing the rest 30% of the dataset (i.e., 750 edit-
feedback pairs). Additionally, we limited our-
selves to evaluate for Top 10 error types and ex-
tension types defined in the first stage of Section
3.1. Those types of test data account for 616 edit-
ing sentences out of 750 edit-feedback pairs. For
our evaluation, we treated keywords organized by
Turton and Heaton (1996) as ground truth. The ac-
curacy of problem word identification is approxi-
mately 80% (493/616).

5 Future Work and Summary

In this paper, we have described a system for learn-
ing to provide corrective feedback on English sen-
tences with corrections. The method involves clas-
sifying errors into different error types, identifying
potential problem words, selecting closest senses
between misuse and corrected words, and extract-
ing collocations as well as grammar patterns. We
have implemented and evaluated the method as ap-
plied to real sentences. In preliminary evaluation,
we have shown that the method outperforms the
existing commercial systems for many error types,
especially an error triggered by a verb or adjective.

Many avenues exist for future research and im-
provement of our system. For example, we could
extend our method to handle more error types,
such as sentence patterns (e.g., One ... Another
... The other, so ... that). Collocation knowledge
and selectional preference could be used to im-
prove the explanation of word-choice error types
so that explanations may contain word concepts
collocating with a problem word. Additionally,
better methods such as learning-based approach to
identifying problem words could be implemented.

References

Qistein E Andersen, Helen Yannakoudakis, Fiona
Barker, and Tim Parish. 2013. Developing and test-
ing a self-assessment and tutoring system. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
32-41.

240

John Bitchener, Stuart Young, and Denise Cameron.
2005. The effect of different types of corrective
feedback on esl student writing. Journal of second
language writing, 14(3):191-205.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 793-805.

Jim Chang and Jason Chang. 2015. Writeahead2: Min-
ing lexical grammar patterns for assisted writing. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 106—110.

Jhih-Jie Chen, Jim Chang, Ching-Yu Yang, Mei-Hua
Chen, and Jason S Chang. 2017. Extracting formu-
laic expressions and grammar and edit patterns to
assist academic writing. EUROPHRAS 2017: Com-
putational and Corpus-based Phraseology: Recent
Advances and Interdisciplinary Approaches.

Collins Cobuild et al. 2005. Collins Cobuild English
Grammar. Collins Cobuild.

Jeroen Geertzen, Theodora Alexopoulou, and Anna
Korhonen. 2013. Automatic linguistic annotation of
large scale 12 databases: The ef-cambridge open lan-
guage database (efcamdat). In Proceedings of the
31st Second Language Research Forum. Somerville,
MA: Cascadilla Proceedings Project.

Yan Huang, Akira Murakami, Theodora Alexopoulou,
and Anna Korhonen. 2018. Dependency parsing
of learner english. International Journal of Corpus
Linguistics, 23(1):28-54.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated grammatical
error detection for language learners. Synthesis lec-
tures on human language technologies, 3(1):1-134.

Diane Nicholls. 2003. The cambridge learner corpus:
Error coding and analysis for lexicography and elt.
In Proceedings of the Corpus Linguistics 2003 con-
ference, volume 16, pages 572-581.

John Sinclair. 1991. Corpus, concordance, colloca-
tion. Oxford University Press.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational linguistics, 19(1):143-177.

ND Turton and JB Heaton. 1996. Longman dictionary
of common errors. new edition.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180-189. Association for Computational
Linguistics.

